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1 Introduction

Discrete choice models in general, and random utility models in particular, have

been extensively used in several fields of applications for the last three decades.

The theoretical derivation of these models is well documented in the litera-

ture (Luce, 1959, McFadden, 1981, Ben-Akiva and Lerman, 1985, Anderson

et al., 1992, Hensher and Johnson, 1981, Horowitz et al., 1986, Bierlaire, 1998,

Ben-Akiva and Bierlaire, 1999). Recently, new sophisticated models have been

proposed in the literature. Among them, two main categories can be identified:

Generalized Extreme Value models, and mixed logit models.

Generalized Extreme Value (GEV) models have been proposed 25 years ago by

McFadden (1978). It is actually a family of models, consistent with random utility

theory. Since then, only a few members have been exploited, the Multinomial

Logit model and the Nested Logit model being the most popular (Ben-Akiva and

Lerman, 1985). Recently, research on the Cross-Nested logit model (Small, 1987,

Vovsha, 1997, Vovsha and Bekhor, 1998, Ben-Akiva and Bierlaire, 1999, Papola,

2000, Bierlaire, 2001, Wen and Koppelman, 2001, Swait, 2001) has extended the

number of GEV models used in practice. Also, Daly (2001) and Bierlaire (2002)

have proposed new theoretical results providing an operational representation of

GEV models.

Mixed or hybrid logit models (Ben-Akiva and Bolduc, 1996,McFadden and

Train, 1997,Bhat, 2001,Ben-Akiva et al., 2002) combine different model structures

into a richer framework. A Mixed GEV model can be roughly described as a GEV

model containing random parameters, which are normally distributed.

The level of sophistication of these models enables to capture a wide range

of situations. The price to pay is their rather complicated formulation, and the

lack of appropriate estimation procedure. For example, Vovsha (1997) proposes

a heuristic procedure for the estimation of Cross-Nested Logit models, which

appears not to be valid.

Biogeme (BIerlaire’s Optimization package for GEV Models Estimation) is

an open source package designed to estimate a wide variety of random utility

models, based on state-of-the-art optimization algorithms. The motivation for

developing Biogeme is to provide researchers with an appropriate and efficient tool

enabling to explore new models, focusing on their specification without worrying

about the estimation part. In this paper, we describe the general design of the

Biogeme package, and we illustrate the capabilities of Version 0.6.
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2 Random utility models

A random utility model is designed to forecast the choice of an individual n

among a finite and discrete set of alternatives Cn. The main assumption is that

each individual associates a quantity, called utility, to each alternative in Cn,

and selects the alternative with the highest utility. The utility associated by

individual n to alternative i, denoted by Uin is a random variable such that

Uin = Vin + εin (1)

where Vin ∈ R is the deterministic, or systematic, component of the utility, and

εin is a random term. If zin is a vector of attributes of alternative i for individuals

n, and Sn is a vector of socio-economical characteristics for individual n, we have

Vin = Vin(β, zin, Sn), (2)

where β is a vector of unknown parameters to be estimated. For simplification,

it is common practice to merge zin and Sn into a vector of attributes, denoted by

xin. Therefore, we have a simpler formulation

Vin = Vin(β, xin) (3)

The probability that individual n selects alternative i is given by

P (i|Cn) = P (Uin ≥ Uin ∀j ∈ CN). (4)

In order to obtain an operational choice model, specific assumptions must be

made about the functional form of Vin and the distribution of εin. We briefly

review the assumptions which are relevant for the Biogeme package.

The most common functional form adopted for Vin is a linear-in-parameters

defintion, that is

Vin =
∑

j

βjxinj. (5)

Less common in the literature, nonlinear formulations may also be used. The

Box-Tukey transform of attributes is a typical example, that is

Vin =
∑

j

βj
(xinj + αinj)

λinj − 1

λinj

. (6)

where xinj + αinj must be non negative, αinj and λinj are unknown parame-

ters to be estimated. Box-Tukey transforms allow to capture a wide range of
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non-linearities. Indeed, in addition to the obvious exponential transformation of

the attributes, linear (λinj = 1) and logarithm (λinj = 0) transformations are

interesting special cases.

Before discussing the assumptions about the distribution of εin, we analyze

the mean and the variance of the random variable. The mean can be considered as

a specific parameter of the utility function (called Alternative Specific Constant),

capturing a bias toward that alternative. In that case, εin is decomposed into

εin = β0
i + ε̃in (7)

so that the expectation of ε̃in can be set to any arbitrary value, typically zero.

Therefore, if an alternative specific constant is included in the utility function,

the mean can be assumed to be zero without loss of generality.

The case of the variance is discussed by first noting that

P (Uin ≥ Uin) = P (νUin ≥ νUin) ∀ν > 0.

Therefore, using Uin = Vin + εin or νUin = νVin + νεin yields to the exact same

probability model. As

Var(νU1n) = ν2Var(U1n),

the choice of ν determines the variance. Therefore, the variance of the random

parameter is directly linked to its scale, and can be arbitrarily imposed. ν = 1 is

a typical choice.

The above discussion is valid only for a given individual. It is important

to realize that assuming constant mean and variance over the population may

be a strong and irrealistic assumption. In most applications, those quantities

are different for various groups of the population. The variations of the mean

across the population are captured by dummy parameters associated with socio-

economic characteristics. Variations of the variance (or, equivalently, of the scale

parameter ν) are more complicated to capture, as they introduce a nonlinearity

in the utility function. If we consider a heterogeneous population composed of

identified groups, the utility of each group is scaled by a different factor. In that

case, if individual n belongs to group gn, we generalize (5) as

Vin = νgn

∑
j

βjxinj. (8)

and (6) as

Vin = νgn

∑
j

βj
(xinj + αinj)

λinj − 1

λinj

, (9)
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where νgn is the unknown scale parameter associated with group gn, to be es-

timated. A typical example is when Revealed Preference (RP) data are com-

bined with Stated Prefenrece (SP) data (Ben-Akiva et al., 1994,Ben-Akiva and

Morikawa, 1990). Note that (5), (6) and (8) are special cases of (9), where some

parameters are set to fixed values. Whatever the assumptions about the distri-

bution of εin, Biogeme allows to estimate parameters β, λ, α and ν in (9) from

the data, if they are identifiable.

In the literature, there are typically two families of models, based on two

types of assumptions about the error term εin. The Probit family assumes that

εin captures the sum of many independent sources of errors, and invokes the

central-limit theorem to assume that εin follows a normal distribution. The Gen-

eralized Extreme Value (GEV) family, assumes that εin captures the largest of

many independent sources of errors and, consequently, has an Extreme Value

distribution (Gumbel, 1958).

The Generalized Extreme Value (GEV) model has been derived from the

random utility paradigm by McFadden (1978). This general model consists of a

large family of models that include the Multinomial Logit, the Nested Logit and

the Cross-Nested Logit models. The probability of choosing alternative i within

the choice set C of a given choice maker is

P (i|C) =
yi

∂G
∂yi

(y1, . . . , yJ)

µG(y1, . . . , yJ)
(10)

where J is the number of available alternatives, yi = eVi , Vi is the deterministic

part of the utility function associated to alternative i, and G is a µ-GEV function.

A µ-GEV function is a differentiable function defined on RJ
+ with the following

properties:

1. G(y) ≥ 0 for all y ∈ RJ
+,

2. G is homogeneous of degree µ > 0, that is G(λy) = λµG(y), for λ > 0,

3. limyi→+∞G(y1, . . . , yi, . . . , yJ) = +∞, for each i = 1, . . . , J ,

4. the kth partial derivative with respect to k distinct yi is non-negative if k is

odd and non-positive if k is even that is, for any distinct indices i1, . . . , ik ∈
{1, . . . , J}, we have

(−1)k ∂kG

∂xi1 . . . ∂xik

(x) ≤ 0, ∀x ∈ RJ
+. (11)
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Although this condition is never stated in the literature, it is also required that

G(x) 6= 0.

The homogeneity of G and Euler’s theorem give

P (i|C) =
eVi+ln Gi(...)∑J

j=1 eVj+ln Gj(...)
, (12)

where Gi = ∂G
∂yi

. This is equivalent to assume that the joint distribution of the

error terms ε1, . . . , εJ is

F (ε1, . . . , εJ) = e−G(e−ε1 ,...,e−εJ ) (13)

The Multinomial Logit (MNL) model is a member of this model family with

G(y) =
J∑

i=1

yµ
i . (14)

where µ > 0. The Nested Logit (NL) model is also a member of the GEV family.

Contrarily to the MNL, the NL includes M + 1 parameters, where M is the

number of nests. The generating function is

G(y; µ1, . . . , µM) =
M∑

m=1

(∑
i∈Cm

yµm

i

) µ
µm

(15)

where Cm is the set of alternatives belonging to nest m. It complies with the

GEV conditions if µm ≥ µ > 0, for all m.

The Cross-Nested Logit (CNL) model is also a member of the GEV fam-

ily. Several formulations have been proposed in the literature (Small, 1987,

Vovsha, 1997, Ben-Akiva and Bierlaire, 1999, Papola, 2000, Wen and Koppel-

man, 2001). They are all based on the same formulation, and vary with regard

to the parameters that are kept fixed. A detailed analysis of this model, includ-

ing the elasticities, have been recently proposed by Wen and Koppelman (2001).

However, they call it the generalized nested logit. The generating function pro-

posed by Ben-Akiva and Bierlaire (1999), with M(J + 1) + 1 parameters, where

M is the number of nests, is given by

G
(
y; µ1, . . . , µM , (αjm)m=1,...,M

j=1,...,J

)
=

M∑
m=1

(
J∑

j=1

αjmyµm

j

) µ
µm

. (16)

Bierlaire (2001) has shown that the following conditions are sufficient for (16) to

comply with the GEV conditions:
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1. µm ≥ µ > 0, m = 1, . . . ,M ,

2. αjm ≥ 0, j = 1, . . . , J , m = 1, . . . ,M ,

3.
∑

m αjm > 0, j = 1, . . . , J .

The Network GEV (NGEV) model, proposed by Bierlaire (2002), and based

on a model formulation by Daly (2001), is a general representation of GEV mod-

els, based on a network structure. A parameter is associated with each node and

each arc of this network. We refer the reader to Bierlaire (2002) for more details.

Thanks to Denis Bolduc, Biogeme v0.6 is also able to estimate Logit Kernel

models with error components. A Logit-Kernel model is such that the utility

function of an alternative is

Ui = Vi +

p∑
j=1

σjνj + εi (17)

where σj are unknown parameters to be estimated, and νj are normal random

variables N(0, 1).

In the rest of the paper, we denote by β the unknown parameters associated

with the utility function (that is, parameters β, λ, α and ν in (9)), and by γ the

unknown parameters associated with a specific GEV model (that is, parameters

µm in the NL, CNL and NGEV models, and parameters αim in the CNL and

NGEV models).

3 Maximum likelihood estimation

The estimation of unknown parameters by maximum likelihood is a standard

technique. An observation k consists in a set of values for the set of attributes

xin, denoted xk
in, and an observed choice. The attributes are associated both

with the individual n and the alternative i. The probability for the model to

reproduce the observed choice is given by P k
in(β, γ) = Pin(β, γ, xk

in), where Pin is

the probability function corresponding to the model under consideration (like (10)

for the GEV model). If a sample of K observations is available, the probability

for the model to reproduce the whole sample is called the likelihood, and is given

by

L∗(β, γ) =
K∏

k=1

P k
in(β, γ). (18)
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The maximum likelihood estimators β̂ and γ̂ are given by

(β̂, γ̂) = argmaxβ,γ L(β, γ), (19)

where

L(β, γ) = lnL∗(β, γ) =
K∑

k=1

ln P k
in(β, γ) (20)

is the log-likelihood function. In some cases, the observations are weighted in

order to adjust their relative importance in the sample according to their relative

importance in the population. In that case, a weight ωk is associated with each

observation, and the log-likelihood function is then

L(β, γ) =
K∑

k=1

ωk ln P k
in(β, γ) (21)

Problem (19) is a nonlinear programming problem, usually non concave.

Moreover, it is sometimes necessary (and most of the time useful) to impose

constraints on β and γ. For example, the condition µm ≥ µ is necessary for the

validity of the NL and CNL models. Also, normalisation conditions may be im-

posed on the parameters. Note that Biogeme allows to impose bound constraints,

linear equality and inequality constraints, and nonlinear equality constraints on

the parameters.

Biogeme contains three different optimization algorithms. CFSQP is a C im-

plementation of the FSQP optimization algorithm developed by E.R. Panier, A.L.

Tits, J.L. Zhou, and C.T. Lawrence (see Lawrence et al., 1997). SolvOpt (Solver

for local optimization problems) by Kuntsevich and Kappel (1997) implements

a version of a minimization method with space dilation by Shor (1985). And

DONLP2 is a sequential equality constrained quadratic programming method,

developed by Spellucci (n.d.). The algorithm is described by Spellucci (1998a)

and Spellucci (1998b).

All those algorithms identify a local optimum of (19). In the (rare) cases

where the objective function is concave, and the constraints are convex, the local

optimum is also global.

3.1 Comparison

We provide in Table 1 a comparison of the final log-likelihood for the models

available on the website, and the time it took to estimate them with CFSQP,
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DONLP2 and SOLVOPT on a Dell Inspiron 8200 running Linux RedHat 7.3.

Entries with **** correspond to failure of convergence of the algorithm. The

examples are describe in Bierlaire (2003). We provide here some comments about

the results.

• CFSQP is most of the time the fastest algorithm, followed by DONLP2 and

finally by SOLVOPT, the slowest of the three.

• Biogeme may be significantly slower for general NGEV, as it does not ex-

ploit the special structure of the model.

• On the difficult problem number 10, CFSQP was much slower than DONLP2

with the CNL version (EX10), and did not even converge after 1000 itera-

tions on the NGEV version (NGEV10).

• For Logit Kernel models (examples EX13 to EX18) the final log-likelihood

may vary from one estimation to the next, as the normally distributed

random variables are simulated based on a Monte-Carlo procedure.

4 Biogeme Packages

BIOGEME is a freeware designed for the development of research in the con-

text of discrete choice models in general, and of GEV models in particular. All

information relative to BIOGEME is maintained at

http://roso.epfl.ch/biogeme

where a detailed tutorial is available (Bierlaire, 2003). We cite here the main

features of the packages.

BIOGEME has been developed on Linux, but a Windows version is available.

With the distribution of Biogeme, there are two additional utilities. Bioroute

helps preparing the input files for Biogeme in the context of a route choice analy-

sis, and Biosim is designed to perform simulations with a given model. Biogeme

is invoked by the following command

biogeme model_name sample_file

If the name of the model is mymodel, say, Biogeme reads the following files:
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• a file containing the parameters controlling the behavior of Biogeme: mymodel.par,

• a file containing the model specification: mymodel.mod,

• a file containing the data: sample.dat,

and generates the following output files:

• a file reporting the results of the estimation: mymodel.rep,

• the same file in HTML format: mymodel.html,

• a file containing the specification of the estimated model, in the same format

as the model specification file: mymodel.res,

• a file containing some statistics on the data: mymodel.sta.

For most users, the parameter file is edited only to select a specific optimiza-

tion algorithm. The data file contains in its first line a list of labels correspond-

ing to the available data, and that each subsequent line contains the exact same

number of numerical data, each row corresponding to an observation. The model

specification file is based on a syntax designed to define a wide range of models,

with several sections. We enumerate here the most important sections.

Section [Beta ] Each line of this section corresponds to a parameter β in (9).

Five entries must be provided for each parameter: its name, a default value,

a lower bound and an upper bounds on the valid values and a binary status,

specifying if the value of the parameter must be estimated or kept at its

default value. Note that this section is independent of the specific model

to be estimated, as it captures only the deterministic part of the utility

function. Here is an example.

[Beta]

// Name Value LowerBound UpperBound status

ASC1 -5.22e-02 -1.0 1.0 0

ASC2 0.0 -1.0 1.0 1

ASC3 -4.06e-01 -1.0 1.0 0

ASC4 0.0 -1.0 1.0 1

BETA1 -2.06e-02 -1.0 1.0 0

BETA2 -2.19e-02 -1.0 1.0 0
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Section [Utilities ] For each alternative in the model, the following information

must be provided in this section: the numerical identifier of the alternative,

the name of the alternative, the availability condition and the linear-in-

parameter utility function. For example,

[Utilities]

//Id Name Avail linear-in-parameter expression

100 Alt1 avail1 BETA_COST * COST1 + BETA_TIME * TIME1 + ASC1 * one

200 Alt2 avail2 BETA_COST * COST2 + BETA_TIME * TIME2 + ASC2 * one

300 Alt3 avail3 BETA_COST * COST3 + BETA_TIME * TIME3 + ASC3 * one

400 Alt4 avail4 BETA_COST * COST4 + BETA_TIME * TIME4

where lines starting by // are ignored by Biogeme and used for comments.

Section [Box-Cox ] Each line of this section corresponds to a parameter λ in

(9). The following entries must be provided: the name of the attribute xinj,

a default value, a lower bound and an upper bounds on the valid values and

a binary status, specifying if the value of the parameter must be estimated

or kept at its default value.

Section [Box-Tukey ] Each line of this section corresponds to a parameter α in

(9). The following entries must be provided: the name of the attribute xinj,

a default value, a lower bound and an upper bounds on the valid values and

a binary status, specifying if the value of the parameter must be estimated

or kept at its default value.

Section [Expressions ] In this section are defined all expressions appearing

either in the availability conditions or in the utility functions of the al-

ternatives. If the expression is readily available from the data file, it can

be omitted in the list. It is especially useful to tests alternative model

specifications (like nonlinear effects) without modifying the data file.

Section [Choice ] The user provides here the formula to compute the identifier

of the chosen alternative in the data file. Typically, a “choice” entry will

be available directly in the file, but any formula can be used to compute it.

Section [Weight ] The user provides here the formula to compute the weights

ωk in (21). Ideally, the sum of the weights should be equal to the total

number of observations, although it is not required.
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Section [Group ] The user provides here the formula to compute the group

ID of the observed individual. Typically, a “group” entry will be available

directly from the data file, but any formula can be used to compute it. A

different scale parameter µgn will be estimated for each group.

Section [Scale ] Each line of this section corresponds to a parameter νgn in (9),

one per group. The following entries must be provided: the group number,

a default value, a lower bound and an upper bound on the valid values and

a binary status, specifying if the value of the parameter must be estimated

or kept at its default value.

Section [Model ] Selects the GEV model. Valid entries are $MNL for Multino-

mial Logit model, $NL for single level Nested Logit model, $CNL for Cross-

Nested Logit model (in the sense described in Ben-Akiva and Bierlaire

(1999)), $NGEV for Network GEV model, and $LK for Logit Kernel model.

Section [NLNests ] This section is relevant only if the $NL option has been

selected. Each row of this section corresponds to a nest. The following

entries are required: the nest name, a default value, a lower bound and an

upper bound on the valid values of the nest parameter µm, and a binary

status, specifying if the value of the parameter must be estimated or kept

at its default value. And finally, the list of alternatives belonging to the

nest. Similar sections must be defined if a CNL or a NGEV model are to

be estimated.

Section [ConstraintNestCoef ] In this section, the user can constraint nests

parameters to be equal, with the following syntax.

NEST_A = NEST_B

Section [ConstantProduct ] In this section, the user may constrain the prod-

uct of two coefficients to a given value. The syntax for the constraint

β1β2 = 3.1415 is

[ConstantProduct]

BETA1 BETA2 3.1415

Section [Ratios ] The user defines here the ratio of parameters that must be

computed. Typically, the value of time is the ratio for the time paraeter by

the cost parameter.
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Section [LinearConstraints ] In this section, the user can define a list of linear

constraints, in one of the following syntaxes:

1. Formula = number,

2. Formula ≤ number,

3. Formula ≥ number.

For example, the constraint ∑
i

ASCi = 0.0

is written

ASC1 + ASC2 + ASC3 + ASC4 + ASC5 + ASC6 = 0.0

and the constraint

µ ≤ µj

is written

MU - MUJ <= 0.0

or

MUJ - MU >= 0.0

Section [NonLinearEqualityConstraints ] In this section, the user can de-

fine a list of nonlinear equality constraints of the form

h(x) = 0.0.

The section must contain a list of functions h(x). For example, the con-

straint

αµa

a1 + αµb

b1 = 1

is written

[NonLinearEqualityConstraints]

ALPHA_A1 ^ MU_A + ALPHA_B1 ^ MU_B - 1.0
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Section [LogitKernelSigmas ] Each line of this section corresponds to a σ

parameter associated with the normal terms in the utility functions for the

Logit Kernel (17). Note that the sign of the parameter is meaningless, so

it is good practice to specify symmetric bounds (that is, lower bound is the

opposite of the upper bound).

Section [LogitKernelFactors ] This section defines the factors of the Logit

Kernel model. For each factor, the name of the associated parameter and

the ID of the associated alternative must be specified.

The report file (mymodel.rep) contains the results of the maximum likelihood

estimation of the model.

• The estimated value of the β parameters, with the associated standard

error and the t-test. A star (*) is appended if the t-test fails, according

to a threshold specified by the use in the parameter file (default threshold:

1.96).

• The estimated value of the µ parameter, with the associated standard error

and the t-test.

• The estimated value of the GEV model parameters, with the associated

standard error and the t-test. Note that the t-test is computed to compare

the estimated value both to 0 and 1.

• The estimated value of the scale parameters, with the associated standard

error and the t-test. Note that the t-test is computed to compare the

estimated value to 1.

• A covariance/correlation analysis of pairs of estimated β parameters, sorted

according to the t-test value.

A list of examples is available from the BIOGEME webpage, and are commented

in Bierlaire (2003).

The package Biosim is invoked exactly like Biogeme, with the exact same input

file. But instead of performing a parameter estimation, it uses the default value

for each parameter, performs a sample enumeration and produces a Gnuplot

file allowing for a graphical display of the model sensitivity. The output file

mymodel.enu contains the result of the sample enumeration. For each observation

in the sample, the following results are provided:
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Figure 1: Example of a Gnuplot output

1. The choice actually reported in the sample file;

2. The probability given by the model for the chosen alternative;

3. For each alternative, the probability given by the model;

4. A list of simulated choice, based on random draws using the model.

The file mymodel.gp is an input file for the Gnuplot. It allows to graphically

analyze the sensitivity of the model to modifications of one attribute (see, for

instance, Figure 1).

Finally, the package Bioroute is used in the context of route choice analysis.

Indeed, the explicit enumeration of paths may be cumbersome when specifying

route choice models. Moreover, computing the size of the paths for Path-Size

models (Ben-Akiva and Bierlaire, 1999, Ramming, 2001) or the cross-nested co-

efficients for the link-nested logit model (Vovsha and Bekhor, 1998) is tedious and

subject to errors. The utility BioRoute is designed to help the analyst. Bioroute

takes as input a full description of the network, and prepares the files needed by
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Biogeme, that is the model specification file and the sample file. After Bioroute

has been used, it is important to edit the generated specification file.

5 Future developments

Biogeme is in continuous developement. Biogeme 0.7 will be able to estimate gen-

eral nonlinear utility functions, and Mixed GEV models. Mixed GEV models are

a generalization of Mixed Logit models, also called Hybrid Loigt or Logit Kernel

models (see McFadden and Train, 1997, Ben-Akiva et al., 2001, Bhat, 2001, Ben-

Akiva et al., 2002). This is a major step that will allows a vast variety of models to

be estimated, including the heteroscedastic model, the factor analytic with fixed

loadings, the error component formulation and the general autoregressive process

(see Ben-Akiva and Bierlaire, 1999, Walker, 2001 and Ben-Akiva et al., 2001).

All these efforts are motivated by the same objective: provide researchers and

practitionners with flexible tools to investigate a wide range of discrete choice

models.

6 Appendix: derivatives

In addition to the programming burden, a major effort in developping packages

for model estimation is the computation of the derivatives required by the opti-

mization packages. We provide in this appendix the derivatives used in Biogeme

for log-likelihood estimation of Multinomial, Nested and Cross-Nested logit mod-

els.

The log-likelihood function is defined by (21). The derivatives are trivially

defined as
∂L
β

=
K∑

k=1

∂ ln P k
in(β, γ)

∂β
(22)

and
∂L
γ

=
K∑

k=1

∂ ln P k
in(β, γ)

∂γ
. (23)

Denoting by i the chosen alternative, V the J utilities, γ the ` model parameters,

and ν the scale parameter, we have

P (i, V1, . . . , VJ , γ1, . . . , γ`, ν, µ) =
eνVi+ln Gi(e

νV1 ,...,eνVJ ,γ1,...,γ`,µ)∑
j eνVj+ln Gj(eνV1 ,...,eνVJ ,γ1,...,γ`,µ)
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and

ln P (i, V1, . . . , VJ , γ1, . . . , γ`, ν, µ) = νVi

+ ln Gi(e
νV1 , . . . , eνVJ , γ1, . . . , γ`, µ)

− ln
(∑

j eνVjGj(e
νV1 , . . . , eνVJ , γ1, . . . , γ`, µ)

)
.

The derivatives with respect to βk are given by

∂

∂βk

ln P = ν
∂Vi

∂βk

+
1

Gi

J∑
j=1

∂Gi

∂xj

eνVjν
∂Vj

∂βk

− 1

∆

∑
j

eνVj

(
ν

∂Vj

∂βk

Gj +
J∑

n=1

∂Gj

∂xn

eνVnν
∂Vn

∂βk

)

where

∆ =
∑

j

eνVjGj.

Note that we do not assume here that the Vj are linear-in-parameters, so that

∂Vj/∂βk may be not trivial.

The derivatives with respect to the model parameters γk are given by

∂

∂γk

ln P =
1

Gi

∂Gi

∂γk

− 1

∆

∑
j

eνVj
∂Gj

∂γk

.

The derivative with respect to the homogeneity parameter µ is given by

∂

∂µ
ln P =

1

Gi

∂Gi

∂µ
− 1

∆

∑
j

eνVj
∂Gj

∂µ

In general, the parameter µ is constraint to 1. However, Biogeme allows to

estimate it if the user desires to do so. Therefore, the derivatives are necessary.

The derivative with respect to the scale parameter ν is given by

∂

∂ν
ln P = Vi +

1

Gi

∂Gi

∂ν
− 1

∆

∂∆

∂ν

where
∂Gi

∂ν
=
∑

j

Vje
νVj

∂Gi

∂xj

and
∂∆

∂ν
=
∑

j

(
Vje

νVjGj + eνVj
∂Gj

∂ν

)
.

The GEV generating function for the MNL model is given by (14). We have

∂G

∂yi

= Gi = µyµ−1
i ,
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and
∂G

∂µ
=

n∑
i=1

yµ
i ln(yi).

The second derivatives are

∂2G

∂yi∂yj

=

{
µ(µ− 1)yµ−2

i if i = j

0 if i 6= j.

and
∂2G

∂xi∂µ
= (µ ln xi + 1)xµ−1

i .

The GEV generating function for the NL model is given by (15). We have

∂G

∂yi

= µy
µmi−1

i

 ∑
j∈Cmi

y
µmi
j

( µ
µmi

−1)

where mi is the (unique) nest containing alternative i, and

∂G

∂µ
=

M∑
m=1

1

µm

(∑
i∈Cm

yµm

i

) µ
µm

ln

(∑
i∈Cm

yµm

i

)
.

The partial derivative with respect to one structural parameter µm is

∂G

∂µm

=
µ

µm

(
∑
i∈Cm

yµm

i )
µ

µm
−1(
∑
i∈Cm

yµm

i ln(yi))−
µ

µ2
m

(
∑
i∈Cm

yµm

i )
µ

µm ln(
∑
i∈Cm

yµm

i ).

We have now the second partial derivative with respect to two variables i and j.

If i = j, we have

∂2G

∂y2
i

=
∂Gi

∂yi

= µ(µm−1)y
(µm−2)
i (

∑
i∈Cm

yµm

i )( µ
µm
−1)+µ(µ−µm)y

(2µm−2)
i (

∑
i∈Cm

yµm

i )( µ
µm
−2)

If i 6= j and i, j ∈ Cm, we have

∂2G

∂yi∂yj

=
∂Gi

∂yj

= µ(µ− µm)yµm−1
i yµm−1

j (
∑
i∈Cm

yµm

i )( µ
µm
−2)

If i ∈ Cm and j 6∈ Cm, we have

∂2G

∂yi∂yj

=
∂Gi

∂yj

= 0
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The second partial derivative with respect to one variable and µ is given by

∂2G

∂yi∂µ
=

∂Gi

∂µ
= yµm−1

i (
∑
i∈Cm

yµm

i )
µ

µm
−1

(
1 +

µ

µm

ln(
∑
i∈Cm

yµm

i )

)
We have now the second partial derivative with respect to one structural param-

eter µm and one variable yi. If i ∈ Cm, we have

∂2G

∂yi∂µm

=
∂Gi

∂µm

= µΓ
µ

µm
−1

m yµm−1
i ln yi+µyµm−1

i Γ
µ

µm
−1

m

(
µ

µm
− 1

Γm

∑
j

yµm

j ln yj −
µ

µ2
m

ln Γm

)
,

where

Γm =
∑

j∈Cm

yµm

j .

If i 6∈ Cm we have
∂2G

∂yi∂µm

=
∂Gi

∂µm

= 0.

The GEV generating function for the CNL model is given by (16). We have

Gi =
∂G

∂yi

= µ
∑
m

αimyµm−1
i

(∑
j

αjmyµm

j

) µ
µm
−1

.

The partial derivative with respect to µ, the homogeneity factor is

∂G

∂µ
=
∑
m

1

µm

Γ
µ

µm
m ln(Γm)

where

Γm =
∑

j∈Cm

αjmyµm

j . (24)

The partial derivative with respect to one nest parameter µm is

∂G

∂µm

=
µ

µm

Γ
µ

µm
−1

m

(∑
j∈Cm

αjmyµm

j ln(yj)

)
− µ

µ2
m

Γ
µ

µm
m ln(Γm)

and with respect αim is
∂G

∂αim

=
µ

µm

Γ
µ

µm
−1

m yµk
i

where Γm is defined by (24). We write now the second partial derivative with

respect to two variables yi and yj. If i = j, we have

∂2G

∂y2
i

=
∂Gi

∂yi

=
∑
m

µ

µm

Γ
µ

µm
−2

m αimµmyµm−2
i ((

µ

µm

− 1)αimµmyµm

i + Γm(µm − 1))
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and if i 6= j, we have

∂2G

∂yi∂yj

=
∂Gi

∂yj

=
∑
m

µmµ(
µ

µm

− 1)αimαjmΓ
µ

µm
−2

m yµm−1
i yµm−1

j

where

Γm =
∑

j∈Cm

αjmyµm

j .

The second partial derivative with respect to one variable yi and µ is

∂2G

∂yi∂µ
=

∂Gi

∂µ
=
∑
m

Γ
µ

µm
−1

m αimyµm−1
i (1 +

µ

µm

ln(Γm))

where Γm is defined by (24). The second partial derivative with respect to one

nest parameter µm and one variable yi is

∂2G

∂yi∂µm

=
∂Gi

∂µm

= − µ

µm

Γ
µ

µm
−1

m αimyµm−1
i

− µ2

µ2
m

Γ
µ

µm
−1

m ln(Γm)αimyµm−1
i

+
µ

µm

Γ
µ

µm
−1

m αimyµm−1
i

+ µΓ
µ

µm
−1

m αimyµm−1
i ln(yi),

and the second partial derivative with respect to αjk and one variable yi is

∂2G

∂yi∂αik

= µyµk−1
i Γ

µ
µk
−1

k

(
1 + αik(

µ

µk

− 1)Γ−1
k yµk

i

)
and, if i 6= j,

∂2G

∂yi∂αjk

= µαiky
µk−1
i (

µ

µk

− 1)Γ
µ

µk
−2

k yµk
j

where Γm is defined by (24).

Finally, we provide the derivatives of (9) with respect to the parameters. As

the scale parameter ν has already been addressed above, we consider here

V (β, λ, α) = β
(x + α)λ − 1

λ

where the indices have been dropped for clarity. We have also

lim
λ→0

V (β, λ, α) = β ln(x + α).
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The derivatives are
∂V

∂β
=

(x + α)λ − 1

λ
,

∂V

∂λ
=

β

λ2

(
1 + (x + α)λ(λ ln(x + α)− 1)

)
,

lim
λ→0

∂V

∂λ
=

β

2
ln2(x + α)

and
∂V

∂α
= β(x + α)λ−1.
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Time Time Time
Example L∗ CFSQP DONLP2 SOLVOPT

EX00 -1582.56 00:00:01 00:00:03 00:00:08
NGEV00 -1582.56 00:00:20 00:00:25 00:01:58

EX01 -1582.56 00:00:01 00:00:02 00:00:08
NGEV01 -1582.56 00:00:20 00:00:27 00:01:54

EX02 -1582.56 00:00:02 00:00:02 00:00:09
NGEV02 -1582.56 00:00:20 00:00:27 00:02:03

EX03 -1578.25 00:00:02 00:00:02 00:00:15
NGEV03 -1578.25 00:00:22 00:00:26 00:03:31

EX04 -1587.30 00:00:02 00:00:02 00:00:18
NGEV04 -1587.30 00:00:22 00:00:26 00:03:59

EX05 -1586.09 00:00:03 00:00:03 00:00:09
NGEV05 -1586.09 00:00:57 00:01:07 00:03:30

EX06 -691.937 00:00:05 00:00:06 00:00:16
NGEV06 -691.937 00:01:22 00:01:39 00:03:37

EX07 -690.833 00:00:07 00:00:11 00:00:20
NGEV07 -690.833 00:01:29 00:03:21 00:03:51

EX08 -688.665 00:00:07 00:00:08 00:00:48
NGEV08 -688.665 00:01:23 00:03:30 00:10:55

EX09 -691.21 00:00:10 00:00:13 00:01:07
NGEV09 -691.21 00:02:18 00:03:08 00:11:57

EX10 -658.205 00:23:42 00:03:23 ****
NGEV10 -658.205 **** 00:10:21

EX11 -691.935 00:00:53 00:01:05 00:15:23
NGEV11 -691.935 00:09:07 00:14:43

EX12 -662.619 00:00:10 00:01:36 00:30:22
NGEV12 -662.619 00:05:03 00:07:36

EX13 -652.219 00:02:55 00:05:03 00:09:19

EX14 -676.072 00:03:25 00:05:49 00:11:53

EX15 -655.517 00:04:26 00:06:32 00:12:47

EX16 -657.651 00:05:00 00:08:43 00:13:46

EX17 -655.519 00:03:39 00:08:47 00:10:03

EX18 -685.451 00:04:55 00:07:30 00:14:15

Table 1: Comparison of the examples
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