An agent-based model of travel demand of all of Switzerland

The MATSim-T developer team1,2,3

1Institute for Transport Planning and Systems
Swiss Federal Institute of Technology (ETH) Zurich

2Transport Systems Planning and Transport Telematics
Technical University of Berlin

3Digitec AG, Zurich

\textbf{STRC} \textbf{Swiss Transport Research Conference}
Exchanging ideas for transport
12 - 14 September 2007, Monte Verità
Synthetic agent population
Model of street network
Activity plan
Market share vs. distance
Simulation steps

- Preparation of input data
 - Network data
 - Facilities
 - Population
 - Initial demand
- Plan generation
- Plan execution by traffic flow simulation
- Scoring of plans, re-planning and re-execution
- Analysis of simulation results
Scoring function

Total score of a plan:

\[U_{total} = \sum_{i=1}^{n} U_{perf,i} + \sum_{i=1}^{n} U_{late,i} + \sum_{i=1}^{n} U_{travel,i} \]

where

- \(n \) - number of activities
- \(U_{perf,i} \) - utility of performing activity \(i \)
- \(U_{late,i} \) - utility of arriving late at activity \(i \)
- \(U_{travel,i} \) - utility of travelling to activity \(i \)

for details see Charypar and Nagel (2005)
System relaxation

[Graph showing iterations vs. average score, average trip duration, and link flow capacity]

- Average score
- Average trip duration
- Link flow capacity

Initial demand
Iterating for results
Validation
Literatur
Run times

- dur replanning
- dur dump plans
- dur dump deqsim
- dur deqsim
- dur read events
Counting stations
Provisional results
Thank you!

http://www.matsim.org