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Abstract 

This paper presents an analysis of air traveller’s itinerary choice in Europe. The analysis is 
based on three datasets, which cover altogether 70 origin-destination pairs in Europe. These 
OD-pairs differ in many aspects such as geographic coverage, number of available connections, 
number of transfers and travel time.  

The first dataset contains itinerary fares collected from the Web in the period September-
November 2006 for flights departing in November 2006. The second dataset contains the 
booked travel itineraries in November 2006 through customer reservation systems. Finnaly, 
detailed itinerary information is obtained from the Official Airline Guide (OAG) By matching 
these three datasets, a data set has been derived that will allow to model the influence of several 
variables, e.g. departure time, travel time, code shares, number of transfers and fare, on the 
itinerary choice in air transport. 

With the derived data set, it is possible to construct a choice set with the alternatives an air 
traveller faced at the booking day. Estimated models include models with the sensitivity of air 
travellers for fare over time and per duration of stay. Also, a continuous departure time function 
is implemented in the choice model. 

Keywords 

Aviation, Discrete choice modeling,  Airlines, Departure time modeling, Pricing 
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1. Introduction 

Compared to public and private transportation, the number of studies using discrete choice 
models to represent passenger behaviour in the aviation sector is fairly limited. Potential 
application areas for discrete choice models are airport choice modelling and air connection 
choice (itinerary) modelling, or combinations of both. They form a challenging research area 
as they include complex choices across multiple dimensions. Itinerary choice modelling can 
aid airlines with their medium and long-term planning as they provide carriers with an 
understanding of the relative importance of different service factors. This understanding can 
also aid airlines and online travel portals with the listings of different air connections on their 
websites. 

Several datasets have been necessary for this research: a dataset that contains tickets bookings 
through computer reservation systems (CRS) for November 2006, a dataset with fares 
observed in the period September 2006 – November 2006 for flights departing in November 
2006 on 70 origin-destination pairs and the official airline guide database (OAG, 2006). They 
have been combined to form a comprehensive dataset for the analysis of itinerary choice. 

The remainder of the paper is structured as follows: First, an overview will be given of choice 
modelling in the aviation sector. This overview is structured from an airline and airport point 
of view and help to identify unaddressed and potential research and application areas of 
discrete choice models. Following this overview, the modelling framework will be presented. 
Special attention is paid to choice set formulation. The available datasets and descriptive 
statistics are then discussed in section 4. Before presenting and discussing model estimation 
results in section 5, the specification of the utility function is presented. The paper concludes 
with a summary of the main findings. 
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2. Literature Overview 

As discussed in the previous section, this literature overview is structured by the various 
planning levels that airline managers face. After the overview regarding the airlines, a brief 
overview of airport choice literature will be given, together with a potential application area 
of choice models in this setting.  

Ordered by long term to short term decision (or strategic to tactical), the following decision 
stages can be recognized (Belobaba 2006): 

- Fleet planning, which regards the number and type of aircraft to acquire or retire. Criteria 
for aircraft evaluation include technical performance and characteristics, economics of 
operation and revenue generation, marketing and environmental issues and political and 
international trade concerns; 

- Route evaluation, which regards what network structure to operate and which city-pairs to 
serve. Considerations include forecasts of potential demand and revenues, airline’s market 
share of total demand and network implications for costs and revenues; 

- Schedule development, which regards frequency planning, timetable development, fleet 
assignment and aircraft rotation planning. In this stage the demand per itinerary is 
necessary and the response of demand to a decrease or increase in service level per time 
period (Lohatepanont & Barnhart 2004); 

- Pricing, which regards the products, fares and restriction for each origin-destination 
market. Current challenges lie within the field of price elasticity estimation and 
willingness-to-pay; 

- Revenue management, how many bookings should be accepted, by type of fare to 
maximize the revenue of each flight and over the network. This can than also be seen as 
inventory control for airlines. It is estimated that revenue management systems increase 
revenues by 4-6% (Talluri & van Ryzin 2005). 

In all planning stages, forecasting demand plays an important role. The level of detail varies 
from aggregate (i.e. development of air demand, in general, origin-destination market) to 
disaggregate (i.e. origin-destination pair, leg).  

Coldren et al (2003) argue that disaggregate demand models can be used to support long and 
intermediate decision-making, as current studies of air-travel market allocation do not give an 
airline’s management enough planning information due to its lack of detail on carrier service 
attributes in different markets. Studies discussed in their literature overview are either based 
on a high level of geographic aggregation or limited to a small number of city-pairs. However, 
they do not discuss how a disaggregate demand model may be applied to fleet planning or 
route evaluation. 
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Parker (2007) discusses several potential applications of discrete choice models with regard to 
airline planning. One application is the incorporation of a passenger choice behavior in a 
market simulator, named the Universal Market Simulator (UMS). This is a discrete event 
simulator, in which airlines and passengers act as agents. After running a number of 
simulations, demand is assigned to airlines and the network. He mentions some features still 
lacking in the UMS, such as models for airport choice and more specific choice models of 
passenger behaviour. Parker addresses the application of the notion of consumer surplus, 
coupled with discrete choice models in order to evaluate a network change. This network 
change can follow from the introduction of new equipment to the impact of a low cost carrier. 

Both studies highlight the usage of discrete choice models in the context of strategic and 
tactical planning as they address fleet planning and route evaluation.  

Carrier (2006) argues that previous studies have not included fare and schedule convenience 
on a detailed level, which ultimately influences passenger choice and sees as a potential 
application area pricing policy and revenue management. Such a level of detail might, 
however, be unnecessary for strategic and tactical planning, as also argued by Grammig et al 
(2005). They argue that fare is an outcome of the revenue management in place, and not 
necessary for network planning. Boeing for instance, offers a high and low resolution discrete 
choice model (Parker 2007), and apply them for different purposes and planning levels. 
Carrier (2006) analyzes the joint choice of an itinerary and a fare product based on past 
booking data. Talluri and van Ryzin (2004) step into more detail and apply a simple discrete 
choice model to revenue management and compare it to a current revenue management 
method. The incorporation of a discrete choice model in revenue management algorithms lead 
to an increase in revenue. They consider an individual making a choice for a fare product on 
an itinerary and not a choice between itineraries, as earlier discussed studies (Coldren, et al. 
2003, Coldren & Koppelman 2005, Garrow, et al. 2007, Parker 2007)  do. A considerable part 
of revenue management literature covers standby and overbooking forecasting. Discrete 
choice modelling is applied here by Garrow and Koppelman (2004a, 2004b). These studies 
offer a more detailed description of standby and no-show behaviour, as they use 
disaggregated data and offer an analysis of rescheduling behaviour. 

Several studies have been carried into airport choice behaviour. Bondzio (1996) conducted a 
study regarding airport choice in Southern-Germany and showed that travel time to the airport 
played an important role and that access time was more important for business passengers 
than for leisure travellers. Pels et al (2001, 2003) analyzed the combined choice of airport and 
airline in the San Francisco area and the combined choice of access-mode and airport. In the 
first study they find that airline choice is nested within airport choice, i.e. the competition 
between airlines departing from the same airport is more severe between airlines departing 
from different airports. In their second study they analyze the joint choice of access-mode and 
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airport, showing high sensitivity to access time, especially for business travellers. Business 
passengers also consider frequency of the flight to be important. Leisure travellers consider 
access cost and itinerary fare more important. A case study of the London area is presented by 
Hess and Polak (2006). Their study reveals that business travellers are very reluctant to accept 
increases in access journeys; outlying airports depend heavily on good-access connections 
and/or low air fares. The results of these studies show that strong differences exist between 
preferences of leisure and business travellers. 

An aspect not directly related to the interaction between travellers and airports is demand 
management. Demand management refers to any set of administrative or economic measures 
and regulations aimed at constraining the demand for access to a busy airfield and/or 
modifying the temporal characteristics (de Neufville & Odoni 2003).  Three approaches are 
available: purely administrative, purely economic and hybrid approaches, which combine the 
previous two.  The fundament of the administrative approach is the slot: an interval of time 
reserved for the arrival or departure of the flight. Airlines do not necessary have to use 
assigned slots. Economic approaches utilize congestion pricing (Brueckner 2002, Pels & 
Verhoef 2004), which has goal to internalize external costs. A hybrid approach would consist 
of the assignment of slots and congestion pricing, where the landing fees would be published 
prior to the slot assignment. These slots could then be auctioned. Without carrying into much 
detail, a potential application of the itinerary choice models of Coldren et al (Coldren, et al. 
2003, Coldren & Koppelman 2005) can be seen here. Coldren showed that the choice 
probabilities of different itineraries, holding all other attributes constant, differed per hour-of-
day. For airlines such models can help in determining their willingness-to-pay for a certain 
slot; such models can help airports with the differentiation of their slot and landing fees. 

From the preceding discussion, two largely unaddressed and interesting research themes can 
be distilled. First, this is the willingness-to-pay of a traveller for several aspects of an 
itinerary, such as departure time and service level are not incorporated in a discrete choice 
model framework, despite the potential of doing so. Second, the incorporation of discrete 
choice models in revenue management applications deserves more attention. Without carrying 
into detail on architecture of such systems, this can be either in the demand forecasting stage 
in such a system, but this can also be on the moment a potential customer requests a fare. This 
fare can then be adjusted to the willingness-to-pay of a customer based on the limited 
information a traveller enters on a booking site. 
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3. Modelling Framework 

3.1 MNL-Model 

With discrete choice models, a decision-makers’ choice is described; any choice is made, by 
definition, from a non-empty set of alternatives. The utility iqU of an alternative i  for a 

decision-maker q  is defined by: 

 ( , )iq iq iq iq iqU V f xε β ε= + = +  (1) 

with a deterministic part  iqV   that consists of a function ( , )iqf xβ of the vector β  of taste 

parameters and the vector iqx  of attributes of the alternative, the decision-maker and the 

choice situation. In addition, socio-demographic attributes of decision-maker q  can be 

included in the deterministic part of the utility function. The non-deterministic, non-
observable part of the utility function is captured by iqε . 

Decision-maker n  will chose the alternative from set C  with the highest utility: 

 ( | ) [ ] [ max ]
q

q iq jq q iq jqj C
P i C P U U j C P U U

∈
= ≥ ∀ ∈ =  (2) 

The most widely applied discrete choice model is the Multinomial Logit (MNL) model. With 
this model, the choice probability of each alternative i can be calculated as: 

 ( | )
iq

jq

V

q V

j

eP i C
e

=
∑

 (3) 

In the next paragraph, a closer look will be given to notion of the choice set and the 
determination of the choice set. 

3.2 Choice Set Formulation 

The environment of the decision maker determines the universal set of alternatives. Any 
single decision maker considers a subset of this universal set of alternatives, the choice set or 
consideration set (Ben-Akiva & Lerman 1985, p. 33). The identification of the list of 
alternatives is usually referred to as choice set generation or choice set formation. It is 
however important to make a clear distinction between choice set generation and choice set 
formation (Bovy 2007). In the ensuing, it is assumed that choice set generation is a process 
performed by the analyst. Choice set formation is the result of a behavioural process of an 
individual and thus equals the consideration set. Bovy (1990, 2007) gives a thorough of the 
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behavioural process and makes a distinction between different stages in the choice set 
formation process. 

At least four dimensions can be recognized when an individual chooses for an itinerary and 
which influence the composition of the consideration set: 

1. The first dimension is the booking period dimension: an individual can choose to book his 
ticket any time in the period between the decision to make a trip and the preferred 
departure time. 

2. The second dimension is the dimension that includes the choice of air transportation 
service provider. An individual may consider all possible transportation service providers 
for his journey, but it is also very well possible that an individual is bounded to a carrier 
through a loyalty scheme or shows a preference for low-cost carriers; 

3. The third dimension is the departure time choice: a traveller may make a trade-off 
between her preferred departure and thus preferred arrival time and attributes of other 
known alternatives. 

4. The fourth dimension concerns the fare of an itinerary. A traveller might not consider all 
the fares or fare products offered by an airline. 

Several types of consideration sets can be distinguished when modelling itinerary choice. The 
consideration set will contain different alternatives, based on the ranges a traveller considers 
of each dimension. In Table 1 two levels are assigned to the booking time dimension (single 
booking consideration/multiple booking consideration), the information acquisition dimension 
(one carrier/multiple carriers) and preferred arrival time dimension (low preference/high 
preference). This leads to eight types of choice sets.  

Two of choice set types are less likely to occur, namely choice set V and VI. Travellers’ 
having a high arrival time preference are more likely to immediately book their ticket, either 
because they perceive a sense of urgency or because they consider price less important as 
arrival time. Choice sets based on multiple considerations, are likely to become very large. 
Booking sites for instance offer 50 itineraries per time. If all possible itineraries would be 
included for each time a traveller acquires information, the number of alternatives in the 
choice set would become very large. An approach as proposed by Chorus(2007) might offer a 
possibility to reduce the choice set. Chorus presents a discrete choice modelling approach 
which describes the full sequence of possibly multiple information acquisitions, followed by a 
travel choice. In all cases, it can prove hard to determine the traveler’s choice set, especially if 
revealed preference data is used. Even if a choice set is observed, it may difficult to determine the 
consideration set of a traveler. 
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Table 1 Combination of ranges of dimensions 

Choice Set Type Booking time 
dimension 

Information 
acquisition 
dimension 

Preferred arrival 
time dimension 

I Single booking 
consideration 

One carrier High preference 

II Single booking 
consideration 

Multiple carriers High preference 

III Single booking 
consideration 

One carrier Low preference 

IV Single booking 
consideration 

Multiple carriers Low preference 

V Sequence of booking 
considerations 

One carrier High preference 

VI Sequence of booking 
considerations 

Multiple carriers High preference 

VII Sequence of booking 
considerations 

One carrier Low preference 

VIII Sequence of booking 
considerations 

Multiple carriers Low preference 
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4. Data 

4.1 Available Datasets 

Three revealed preference datasets are available for the purpose of this research:  

- tickets bookings through computer reservation systems (CRS) in November 2006; 

- fares observed in the period September – November 2006 for departures in November 
2006 on 70 origin-destination pairs; 

- the official airline guide (OAG, 2006). 

The first dataset contains detailed records of passenger bookings in November 2006 through 
Computer Reservation Systems (CRS). CRS systems included in the dataset are Amadeus, 
Abacus, Galileo, Worldspan and Apollo. A rough comparison with Eurostat figures has led us 
to believe that the CRS data cover between the 40% and 90% of the passenger bookings on 
any one route. Variables included in the CRS dataset are: booking date, trip origin, trip 
destination, leg origin, leg destination, departure date, return date, departure and arrival times, 
carrier abbreviation, and flight number per leg. 

The second dataset was obtained by webbots querying Expedia (http://www.expedia.de) on a 
nearly daily basis in the period September – November 2006 for flights departing in 
November 2006 on 70 origin-destination pairs in Europe. Three durations of stay were 
queried: a trip returning on the same day, a trip returning on the next day and a trip returning 
in two weeks time. Variables obtained from Expedia include query date, trip origin, trip 
destination, departure date, return date, departure and arrival times, carrier name(s), flight 
number(s) and most notably fare. 

Third, detailed information of carrier schedules was obtained from the Official Airline Guide 
(OAG, 2006). This dataset contains variables such as operating day, operating airline, code 
share airlines, departure and arrival time and type of aircraft operated. 

In order to use these datasets, two steps had to be taken. First, the datasets were matched to 
obtain complete air connection information. Second, choice sets were extracted. 

Air connection fares were added to the passenger bookings by matching the CRS dataset and 
Expedia dataset on query date, departure date, duration of stay and outbound and inbound 
flight number combination. OAG information was added by matching flight numbers and 
carrier abbreviations, taking into account code share. In the end, nearly 19,000 choices with 
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fare information are observed. Unfortunately, no characteristics of the decision-makers could 
be included. Therefore, no trip purposes are known and no fare parameter per user category 
and parameters for deviation of preferred departure time (scheduled delay) could be 
estimated, as done by Garrow, Jones and Parker (2006). 

4.2 Choice Set Comparison and Descriptive Statistics 

4.2.1 Days in Advance of Booking & Duration of Stay 

First, two aspects of the choice sets will be discussed that are independent of the type of 
choice set, namely the number of days in advance a ticket is booked and the duration of stay.  

Figure 1 shows the percentage of tickets booked per day in advance, i.e. 3 days before 
departure 15% of the tickets were booked. 50% of the tickets are booked up to 8 days before 
departure; 95% of the tickets in 36 days in advance. 

Figure 1 Days in Advance of Booking 
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0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Days before departure

 

Figure 2 shows the duration of stay in the chosen alternatives after the matching of the 
datasets. 55% of the passengers return from their destination the same day, almost 40% of the 
tickets are for a duration of stay of 1 day. The remaining 5% stays 14 days at their destination. 
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Figure 2 Duration of stay 
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4.2.2 Choice set specific descriptive statistics 

As discussed in section 3.2, it is possible to formulate different types of choice sets. A closer 
look is given to the arrival time dimension and to the carrier dimension. The arrival time 
dimension is defined as a window: around each chosen itinerary an arrival time window is 
defined, which includes all itineraries arriving up to n hours earlier or later. 
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Figure 3 Choice set size 
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In the figure the choice set size is depicted. It can be seen how the choice set size steadily 
increases if the window is enlarged. If window is set to 1 hour, 90% of the choice sets contain 
20 alternatives or less, if the window is set to 2 hours this number becomes 30. A window of 4 
hours leads to even larger choice sets. If a passenger considers all flights on arriving on the 
same day, a choice set can contain up to 150 flights, almost 90% of the choice sets will 
contain 50 alternatives. Choice sets containing a single airline (the airline equal to the chosen 
airline) are also fairly large. This indicates that on a number of origin-destination pairs, only a 
few carriers serve the route. 

In the ensuing, the descriptive statistics of choice sets containing all itineraries available on 
day of booking for the chosen departure day and chosen origin-destination pair on Expedia.  
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A distinction can be made between three types of aircraft. These are the mainline jet, regional 
aircraft and propeller aircraft. The latter aircraft clearly forms a distinctive category. The first 
two are less clear when for instance looking at number of seats. However, aircraft 
manufacturers make a clear distinction on their websites. The Airbus 320-series and the 
Boeing 737-series are considered to be mainline jets; Embraers are considered to be regional 
jets. 

A preference structure can be recognized: mainline jets are chosen more often than regional 
jets; regional jets are chosen much more often as propeller aircraft. The non-chosen itineraries 
do not follow this preference structure: itineraries served by regional jets are offered more as 
mainline jets. 

Figure 4Type of aircraft in chosen and non-chosen itineraries 
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A further distinction between itineraries is their departure time. It is chosen to first aggregate 
itineraries per hour, i.e. 5:00 – 5:59, 6:00 – 6:59. A higher level aggregation can then be made 
in the next steps. 
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In Figure 5 the results can be seen. Most chosen itineraries depart in the period 6:00 – 9:00; a 
slight increase can be observed in the periods 10:00 and 12:00 and the 16:00 – 19:00. The 
departure time of the non-chosen itineraries is distributed somewhat more evenly across the 
day, but follows the same trend. 

An opposite trend can be observed for the inbound part of the itinerary; most chosen and non-
chosen itineraries depart between 16:00 and 21:00. Again, the non-chosen itineraries are 
distributed more evenly in this period. 

Both the trends for the outbound and inbound part of the itinerary can be expected when 
combined with the earlier findings with regard to the duration of stay. As a large part of the 
observed booking fall in the first stay category (duration of stay of 0 days) passengers will 
have to leave in the morning and return in the evening. 

Figure 5 Departure time of chosen and non-chosen itineraries 
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5. Specification and Results 

5.1 Specification 

Following travellers’ preferences and the available data, several itinerary characteristics are 
assumed to influence passenger utility: 

- The carrier marketing the itinerary. This is accounted for by including a dummy variable 

_carrier iD  identifying the carriers of interest. As reference an airline is chosen that occurs 

frequently in the chosen alternatives; 

- The itinerary being a code-share. Code sharing is an agreement between two airlines, 
under which an airline operating a service allows another airline to offer that service to the 
travelling public under its own flight designator. The practice is most often used to show 
connecting flights as being on one airline. This accounted for by including a dummy 
variable code shareD − which indicates if the itinerary contains a code-share; 

- The type of aircraft operated on the itinerary. A distinction is made between a propeller 
aircraft, propellor aircraftD − , regional jet, regional jetD − , and a mainline jet. The latter is the reference 

category; 

- The total travel time of the itinerary. The total travel time TT   is calculated as flight time 
plus waiting time at a transfer airport; 

- The number of transfers of the itinerary. Despite the two transfers being offered on some 
itineraries, it is never chosen. Therefore, the variable TR  indicates if the itinerary contains 
a transfer; 

- The fare of the itinerary. This is the fare, Fare ,  of the itinerary as listed on Expedia, taxes 
not included; 

- The booking time of the itinerary and stay duration. It is hypothesized, that the latter two 
influence the sensitivity to fare of a traveller. Passengers booking farther in advance will 
have a higher sensitivity to fare as compared to traveller booking close to their departure 
date. Also, passengers staying short at their destination are likely to have a lower 
sensitivity for fare, as these will probably travel for business purposes. A distinction is 
made between three stay durations _ _stay category kD and five booking periods _booking period mD − . 

- The departure time of the itinerary. On the one hand, it is hypothesized that passengers 
will prefer departing in the morning and returning in the evening. These preferences will 
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most likely vary per duration of stay. On the other hand, it is important for both airlines 
and airports to know these preferences for schedule (re)design and slot auctions. As an 
aggregation level an hourly basis is chosen, which is indicated by _ _time period jD . For 

example, itineraries departing between 8:00 and 8:59 fall in category 8, where an itinerary 
departing at 9:00 falls in category 9. 

More specifically, the utility function of a traveller is defined as: 

1

_ _
1

_ _ _ _

I

carrier i carrier i code share code share regional aircraft regional aircraft propellor aircraft propellor aircraft
i

total travel time transfer fare

time period j time period j

U D D D D

TT TR Fare

D

β β β β

β β β

β

−

− − − − − −
=

− −

= + + +

+ + +

+

∑

1

_ _
1 1

K J

stay category k
k j

D
−

= =
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In addition, several variants of this function will be estimated. First, as already discussed, it is 
hypothesized that passengers staying longer at their destination will have a higher sensitivity 
to fare (and a lower sensitivity to departure time). In stead of estimating a single fareβ , the 

parameter for fare is replaced by _ _
1

N

fare n stay category n
n

D Fareβ −
=
∑ , where _stay category nD − indicates if the 

itinerary is for period n .  The same approach is followed for booking period, where the 

parameter fareβ is replaced by _ _
1

M

fare m booking period m
m

D Fareβ −
=
∑  and _booking period mD − indicates if the 

itinerary is booked in period m . 

The discretization of departure time might give strange changes in choice probabilities. 
Koppelman et al (2007) propose an approach which is adopted from Zeid et al (2006) to 
overcome this problem. Zeid et al (2006)  propose a trigonometric function to replace 
dummy variables. The partial utility of departure time then becomes: 
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 (4) 

Where t is the departure time in minutes and 1440 the number of minutes per day. As can be 
seen, this a Fourier series approach. Gramming et al (2005) model departure time preference 

with a similar approach, namely 
3
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2sinq j q
q

q t
T
πγ φ

=

⎛ ⎞+⎜ ⎟
⎝ ⎠

∑ , and estimate the parameters 1γ , 2γ , 3γ , 

1φ , 2φ , 3φ . As can be seen, this is equal to
3 3

1 1

2 2sin cos cos sinq j q q j q
q q

q qt t
T T
π πγ φ γ φ

= =

⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑  and 

therefore equal to formula (4). Formula (4) is more convenient to implement in a software 
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package such as BIOGEME (Bierlaire 2003). Both approaches should yield the same results 
and require six parameters to be estimated. 

5.2 Results 

In Table 2, the reference model is presented. Model estimation is carried out with BIOGEME 
(Bierlaire 2003). For space reasons, not all departure time parameters are shown. Model 
performance indicators are shown in Table 4. 

All parameters the flight attributes carry the expected signs. The estimated parameters for 
aircraft attributes follow the anticipated preference structure. Thereby, the dummy variables 
for individual carriers resulted in significantly better model results than those capturing 
specific carrier attributes. Obviously the perception of carriers is more complex than indicated 
by these attributes. However, from the modeller’s point of view it would be interesting to 
classify the carriers in a next step with respect to their attributes. 

Regarding the treatment of the relationship between journey time and transfers, those models 
accounting for the total travel time and the number of transfers delivered better results. The 
other variant would be more intuitive for European flights, for which the waiting time 
represents a significant part of the overall journey time if a transfer is necessary. However, the 
number of chosen alternatives with a transfer is rather low in this sample. This leads to a 
better performance of models accounting for the number of transfers and not the actual 
waiting time.  

Adding fare to the models increased their explanatory power significantly, as did the inclusion 
of outbound departure hour, which show an expected preference structure. Passengers who 
opted for a stay of a fortnight do not show a clear preference for the departure period of their 
inbound flight. Departing in the morning is preferred by all types of passengers. However, the 
inclusion of the latter variables influenced the sign and value of carrier variables. Seen in the 
light of passenger preferences for a certain departure time and the high number of 
observations of passengers staying at their destination for a short period of time, this is 
reasonable.  

As discussed in section 5.1, a second approach to model departure time preferences is 
experimented with. The results of this approach are shown on the estimated parameters for 
departure time of passengers staying 1 night at their destination is shown in Figure 6. It can be 
seen that the Fourier series approach yields the same results as the dummy variables. An 
advantage of the Fourier series approach is that a continuous approximation of departure time 
preferences is made. Also, no reference category is necessary and the number of parameters to 
be estimated is far less. 
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Table 2 Example estimated model 

Attributes Estimated parameter Robust t-test 

Carrier attributes  

Carrier 1 …. n Not presented 

   

Flight attributes   

Non-code share 0.0000  

Code share -0.9300 -12.7956 

Total travel time out -0.0158 -6.6836 

Number of transfers -4.1352 -11.0242 

   

Aircraft attributes   

Mainline jet 0.0000  

Regional aircraft -0.1199 -4.3033 

Propeller aircraft -1.6111 -15.3361 

   

Fare attribute   

Fare -0.0067 -79.9771 

   

Departure time out- duration of stay 0 days   

6:00 -  6:59 -0.3489 -10.1552 

7:00 -  7:59 0.2357 5.4939 

8:00 -  8:59 0.0000 0.0000 

9:00 -  9:59 -1.1259 -18.2996 

10:00 - 10:59 -1.4389 -31.0608 

11:00 - 11:59 -1.9421 -33.6937 

12:00 - 12:59 -2.7223 -37.4082 

13:00 - 13:59 -4.6270 -16.4480 

14:00 - 14:59 -4.2553 -19.7668 

15:00 - 15:59 -5.3732 -5.3017 

   

Departure time out- duration of stay 1-14 days Not presented 
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Figure 6 Fourier series approach versus dummy variables for departure hour 
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In Table 3 the estimated parameters for several specifications of the fare parameter are shown. 
Passengers staying at their destination 2 weeks are more sensitive to fare as passengers 
staying at their destination one night or returning on the same day. Passengers staying at their 
destination one day are the least sensitive to fare. It is hypothesized, that this is because these 
passengers already have opted for an overnight stay. 

Six booking periods are identified based on the number of forecasts that are made prior to 
departure of an itinerary. Booking period 0 is up to 3 days before departure, booking period 1 
indicates between 4 and 7 days before departure, booking period 2 indicates between 7 and 14 
days before departure, booking period 3 indicates between 14 and 21 days before departure, 
booking period 4 indicates between 21 and 28 days before departure and booking period 5 
indicates longer as 28 days before departure. The estimated parameters for fare follow the 
anticipated preference structure: travellers booking further in advance are more sensitive to 
fare as travellers booking close to departure. 

Model performance (Table 4) does not vary much per estimated model. Models including a 
further specification of fare perform slightly better as models that do not include a further 
specification of fare. 
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Table 3 Different specifications of fare attribute 

 
Base 

model  

Fare 
parameter 
per stay 
category  

Fare 
parameter 

per 
booking 

period  

 
Estimated 
parameter 

Robust t-
test 

Estimated 
parameter 

Robust 
t-test 

Estimated 
parameter 

Robust 
t-test 

Fare -0.0067 -79.9771 - - - - 

Fare duration of stay 0 days - - -0.0075 -72.6337 - - 

Fare duration of stay 1 day - - -0.0054 -43.4048 - - 

Fare duration of stay 2 days - - -0.0085 -9.4202 - - 

Fare booking period 0 - - - - -0.0063 -27.4071 

Fare booking period 1 - - - - -0.0065 -43.4222 

Fare booking period 2 - - - - -0.0065 -49.8324 

Fare booking period 3 - - - - -0.0069 -33.0146 

Fare booking period 4 - - - - -0.0074 -23.7068 

Fare booking period 5 - - - - -0.0077 -27.0626 

 

Table 4 Model performance 

 Base model 

Model with 
fare per stay 

category 

Model with 
fare per 
booking 

period 

Model with 
Fourier 

series 
approach 

Number of estimated parameters 66 68 71 43 

Number of observations 18416 18416 18416 18416 

Number of individuals 18416 18416 18416 18416 

Null log-likelihood -68956.1 -68956.1 -68956.1 -68956.1 

Init log-likelihood -68956.1 -68956.1 -68956.1 -68956.1 

Final log-likelihood -46798.4 -46714.8 -46784.5 -46892.5 

Likelihood ratio test 44315.6 44482.7 44343.3 44127.3 

Rho-square 0.3213 0.3225 0.3215 0.3200 

Adjusted rho-square 0.3204 0.3216 0.3205 0.3193 
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6. Conclusions and Outlook 

In this paper, several relatively new and interesting areas application areas of discrete choice 
models in the aviation sector have been identified. The further incorporation of discrete 
choice models in revenue management systems is an example of this. More interesting may be 
however the willingness-to-pay of a traveller for certain itinerary characteristics. Potential 
application areas here include demand management of airports and real-time willingness-to-
pay estimation of travellers through online booking channels. 

For this purpose, an MNL model for itineraries in Europe is estimated. The model includes 
carrier attributes, aircraft attributes and a fare attribute and is based on revealed preference 
data, such as actually booked tickets through CRS systems and fares as observed on the web-
based booking system Expedia. 

Estimated models show that travellers have a different sensitivity for fare over time and per 
duration of stay. Passengers staying at their destination for only a short period of time prefer 
itineraries leaving in the morning and returning in the morning. Despite this is not being new, 
it is now possible to couple a monetary value to such parameters. A Fourier series approach of 
the modelling of departure time is a possible replacement of dummy variables for departure 
time and requires less parameters to be estimated. Different sensitivities for departure day are 
also imaginable and remain a part of future research. 

The research presented here only forms a part of a larger study towards itinerary choice 
behaviour. Seen in the light of this study, further attention should be paid to overcoming the 
IIA-assumption of the MNL-model, either by more complex model structures or, preferably, 
by the incorporation of a similarity factor. 
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