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Abstract

This paper proposes a microscopic traffic simulation that employs a continuous planning ap-
proach together with an open time horizon. It uses behavioral guidelines and the concept of
projects to model people’s motivation to execute activities. People’s behavior originates from
a planning heuristic making on the fly decisions about upcoming activities. The planning
heuristic bases its decisions on the available activity options in the near planning future and on a
discomfort measure which is derived from deviations between people’s performance and their
behavioral guidelines.

Keywords
behavioral guidelines, personal projects, continuous activity generation, open time horizon,
microscopic traffic simulation
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1 Introduction

Microscopic travel demand simulation softwares simulate each virtual person (referred to as
agent) individually, often resulting in high computational complexity. Balmer (2007) uses agents
which choose between different daily schedules. Activities of these schedules are executed
and simulation results are handed back to the planning process, allowing agents to improve
their schedules based on improved estimates of their generalized costs. This replanning step
is repeated until the simulation reaches a stochastic user equilibrium with consistent travel
demand and travel cost (Nagel and Flötteröd (2009)). This approach experiences computational
performance issues, limiting its maximal simulation horizon (Charypar et al. (2009)). Another
limitation is that agents must commit themselves to a specific daily schedule, making it difficult
to simulate unexpected events realistically. As a consequence, a different simulation approach
becomes necessary that is capable to model demand continuously with an open time horizon.

We propose a microscopic travel demand simulation that utilizes behavioral guidelines to
represent agents’ decision space. Guidelines can represent social and cultural norms and are
closely related to observed behavior, simplifying model utilization for practitioners. We use
the concept of projects to model non-recurring tasks. Projects influence behavioral guidelines
during a specific time period. Agents continuously track their performance and compare it to
their behavioral guidelines using observation windows of different temporal ranges. Deviations
from the desired behavior cause discomfort which is conveyed to a planning heuristic that
makes decisions about future activities agents should execute. This enables agents to react
spontaneously to unexpected events. At the same time, it also reduces memory consumption
because agents do not need to keep track of complete daily schedules.

The remainder of this paper is structured as follows: first, we discuss the model and its behavioral
guidelines. We then introduce the concept of projects, describe how it influences behavioral
guidelines and illustrate the concept with several examples. The next section describes the
planning heuristic and its key features. We conclude the paper with a discussion of next steps
towards implementation.

2 Other Work

Arentze and Timmermans (2006) introduced need-based theory and proposed a model for activity
generation (Arentze and Timmermans (2009)) that assumes utilities of activities are a dynamic
function of needs. Whereas Arentze and Timmermans used needs as people’s motivation to
execute activities, we assume that people have a direct perception of their motivation and describe
their desired performance through behavioral guidelines. Axhausen (1998) and Schönfelder
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and Axhausen (2009) proposed projects as a coordinated set of activities, tied together by a
common goal or outcome. Miller (2005) technically applied projects to organize complex human
behavior. We see projects as a mechanism that temporally influences behavioral guidelines and
use it to model non-recurring tasks. We pick up Gliebe and Kim (2010)’s suggestion to use
time-dependent utilities and introduce time-dependent effectiveness guidelines.

3 Behavioral Model

Agents are the central component of our model and represent virtual people. Each agent has
a motivation to do different things and specifies its desired performance through behavioral
guidelines. Deviations to behavioral guidelines result in discomfort which induces agents to
take action against the deviation; higher deviations result in higher discomfort which in turn
leads to a higher urge to take action. Agents can reduce discomfort through the execution of
activities at different locations. We assume that agents implement activity-location pairs that
provide most discomfort reduction per time. This is similar to Arentze and Timmermans (2009),
who propose activity utility as a function of need reduction.

The core assumption of this work is that people have a motivation to execute activities and that
they have a perception of their motivation in form of a desired performance. People specify this
performance through behavioral guidelines and try to comply with them across observation

windows of different duration. For instance, a person would like to play 2+2
−1 hours of tennis

about twice per week but not more than six times per month. In this example, the person specifies
a reference value of 2 hours of tennis, a bandwidth of +2

−1 hours, and two observation windows
(per week and per month) in which the person tries to comply to the guideline.

3.1 Behavioral Guidelines

3.1.1 Observation Window Guidelines

Activity execution frequency and cumulative execution duration are two guidelines with obser-
vation windows. Both guidelines define a reference value (value a person tries to target) and
a bandwidth (upper and lower bound of the reference value). For instance, a modeler could
specify these guidelines for a sport activity as follows:

• Frequency: 2×+2
−1 per week. The desired frequency is twice per week and the agent

experiences a limited discomfort in the range of [1..4] times per week. The observation
window is one week.
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Figure 1: Illustration of discounted monitoring values

(a) Execution of an activity
(b) Discounted percentage of time spent for an ac-

tivity and discounted frequency of execution

• Cumulative duration: 4h+2
−2 per week. The desired cumulative execution duration is 4h

per week and the agent experiences a limited discomfort in the range of [2..6] hours per
week. The observation window is one week.

Agents use monitoring values to record their performance and compare these values to guidelines.
Monitoring values are exponentially discounted over their observation window. This is achieved
by a convolution with an exponential kernel (see Fig. 1). Accordingly, agents give recent
behavior more weight and forget their behavioral performance beyond the observation window.
This is in contrast to a S-shaped functional form, as it is used by Arentze and Timmermans
(2009), which does not facilitate forgetting of past performance. Internally, the simulation
converts cumulative execution duration guidelines into percentage of time guidelines which
define the percentage of total time an agent should spend for an activity. In our example, the
reference value is 2 · 4/(7 · 24) = 4.76% with an upper bound of 2 · 6/(7 · 24) = 7.14% and a
lower bound of 2 · 2/(7 · 24) = 2.38%.

3.1.2 Execution Duration Guideline

The execution duration guideline specifies how long an agent should spend for one activity
execution with an upper and lower bound. For instance, a modeler could specify the satisfaction
duration guideline for a sport activity as follows:

• Duration: 2h+2
−1 per execution: The reference duration is 2 hours per execution and the

agent experiences a limited discomfort if it chooses a duration in the range of [1..4] hours.
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3.1.3 Effectiveness Guideline

Similar to Gliebe and Kim (2010) who used time-dependent utilities, we introduce a time-
dependent effectiveness guideline. This guideline informs agents about how effective it is to
execute an activity at a specific time through a value in the range of [0..1]. The effectiveness
guideline is a broad concept and can model different effects. Possible examples are:

• Shop opening hours for a daily shopping activity. This guideline takes the value of one
when shops are open and zero whenever they are closed. Agents can use this information
to either determine if they can shop and for how long or how long it takes until they can
shop next time.

• Daylight intensity for a sleep activity. This guideline specifies the light intensity. Agents
can use this information e.g. as an indication of sleep effectiveness. Hereby, we assume
that people sleep at night and have already adapted to their current timezone.

• Business hours for a work activity. This guideline can be seen as a cultural norm (cul-
tures may have different business hours) and a social norm (social groups, e.g. professions,
may have different business hours). Agents can use this information e.g. as an indication
of work effectiveness. Hereby, we assume that people depend on co-workers to be able to
do their work (the degree can differ depending on the profession).

Effectiveness guidelines can differ depending on the location. This makes it possible to model
e.g. location dependent shop opening hours. They can also combine different effects. For
instance, daylight intensity also includes seasonal effects, making it possible to follow e.g.
seasonal rhythms.

4 Project Concept

Apart from periodically executed activities (e.g. sleep or daily shopping), people can also have a
motivation to execute activities during a certain time period. The motivation and the time period
is thereby defined by a special event. An example is the plan to give a party and the necessity to
buy extra food before the party starts. In this case, it is the event of having a party that drives
people to the shop. We model such events as projects. Axhausen (1998) and Schönfelder and
Axhausen (2009) define projects as a coordinated set of activities, tied together by a common
goal or outcome. Miller (2005) argues that projects are a reasonable organizing principle for
dealing with complex human behavior. The presented framework models projects through a
mechanism that temporally modifies reference values of behavioral guidelines.
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Figure 2: Recursive structure of projects enables composition of bigger and more complex
projects

(a) Combination of subproject organize party food and tasks clean apartment and
prepare food build project organize home party

4.1 Structure of Projects

Tasks are the basic components of projects and are linked to activities (e.g. daily shopping).
They modify reference values of behavioral guidelines during a specific time period. Table 1
provides several example of possible tasks and their parameters.

A combination of several tasks build a project (see Fig. 2). For instance could the tasks buy

dessert and buy extra food build the project organize party food. Projects can also have a
recursive structure and contain other projects. The project organize party food could be re-
used, e.g. for the project organize home party which also includes tasks like prepare food

and clean apartment. The project organize home party could then become a subproject of
organize wedding together with other tasks (e.g. pick up guests) and other projects (e.g. organize

ceremony). This concept provides a mechanism where tasks and projects can be re-used to build
bigger and more complex projects.

4.2 Reference Value Modification

Projects modify reference values of behavioral guidelines during a specific time period. These
changes (difference to previous reference values) are also discounted as it is done for monitoring
values (see section Behavioral Model). This is necessary because abrupt changes would cause a
sudden increase between reference and monitoring values. Consequently, discomfort would also
instantaneously increase, leaving agents with no time to react.
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Table 1: Task examples and their parameters

Task Parameters Description
buy dessert Activity: daily shopping

Duration: +0.25h± 0.1

Frequency: +1×+0
−0

Location: confectionery
Time: 30/04/2011
from 9:00 am - 4:00 pm

This person needs to do one extra trip (parame-
ter frequency) to the confectionery (parameter
location) of approximately 0.25 hours (param-
eter duration). The task should be done on Sat
30th Apr, 2011 between 9 am and 4 pm.

buy extra food Activity: daily shopping
Duration: +0.75h± 0.25

Frequency: +0×+1
−0

Time: 30/04/2011
from 9:00 am - 4:00 pm

This person needs to do extra daily shopping

of approximately 0.75 hours (parameter du-
ration) and is free to combine it with other
shopping duties or to do an extra shopping
trip (parameter frequency). The task should
be done on Sat 30th Apr, 2011 between 9 am
and 4 pm.

get a haircut Activity: personal care
Frequency: +1×+0

−0

Location: hair dresser
Time: 30/04/2011
from 2:30 pm - 3:30 pm

This person has a hair dresser appointment on
Sat 30th Apr, 2011 from 2:30 pm to 3:30 pm.

pick up guests Activity: pick up
Frequency: +1×+0

−0

Location: train station
Time: 30/04/2011
at 4:30 pm

This person needs to do one trip (parameter
frequency) to the train station to pick up guests.
The task should be done on Sat 30th Apr, 2011
at 4:30 pm.

work Saturday
morning

Activity: work
Duration: +4.0h± 1.0

Frequency: +0×+1
−0

Time: 30/04/2011
from 7:00 pm - 12:00 am

This person needs to work approximately 4
hours on Sat 30th Apr, 2011 between 7:00 pm
to 12:00 am.

work Saturday
morning

Activity: work
Frequency: +1×+0

−0

Time: 30/04/2011
from 9:00 pm - 11:00 am

This person needs to work on Sat 30th Apr,
2011 from 9:00 pm to 11:00 am. In combi-
nation with the work task above, this models
flexible working hours with a period when the
person must be present at the work place.
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5 Planning Heuristic

Other approaches to agent-based microsimulations revealed disadvantages like poor performance
for large scenarios (Charypar and Nagel (2006)), high computational costs (Balmer (2007)) or
inflexibilities when agents should spontaneously react to unexpected events (Kuhnimhof and
Gringmuth (2009)). We consider a planning heuristic as a feasible approach that can overcome
these limitations. A heuristic aims to quickly approximate a good solution. Thus, it is unneces-
sary to have completely accurate knowledge about the state of mind and plans of other agents.
This is helpful since we plan to simulate our agents in a distributed computation environment
(Charypar et al. (2010)) where global knowledge induces extremely high computational costs.
A heuristic also enables agents to react to unexpected events because it enables agents to make
their decisions spontaneously. One could argue that people seek optimal day plans. However,
other authors (e.g. Simon (1955) and Schlich (2004)) doubt that behavior can be explained as
a utility maximization function. The aim of this work is to demonstrate how far a decision
procedure, that approximate a good solution with limited information, can produce real world
behavior.

The next section introduces mathematical formulations used by the planning heuristic during
its decision procedure. The section thereafter demonstrates the actual decision steps and the
application of the mathematical formulations.

5.1 Mathematical Formulations

5.1.1 Discomfort

Discomfort levels identify the urgency an agent experiences to take action against them. The
discomfort an agent receives from an activity at time t is defined as

D(t) =
n∑

k=1

(fk
refV al(t)− fk

monV al(t))
2 ·

{
wk

1 if fmonV al(t)k ≤ frefV al(t)k

wk
2 otherwise

(1)

wk
1 =

1

(fk
refV al(t)− fk

lower−bandwidth(t))
2

(2)

wk
2 =

1

(fk
refV al(t)− fk

upper−bandwidth(t))
2

(3)
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the sum of the squared difference of the reference frefV al(t) and monitoring values fmonV al(t)

of all observation window guidelines n normalized by the squared difference of the reference
value and the lower bandwidth wk

1 if fmonV al(t)k ≤ frefV al(t)k or by the squared difference of
the reference value and the upper bandwidth wk

2 otherwise.

5.1.2 Discomfort Reduction

The discomfort reduction an agent receives for executing an activity is defined as

DR(tes, tee) = D(tes)−D(tee) (4)

the difference of the discomfort D(tes) at execution start tes and the expected discomfort D(tee)

at execution end tee.

5.1.3 Execution Time Quota

The execution time quota an agent receives for an activity at a location is defined as

q(tes, tee) =

tee∫
tes

feffect(t) dt

tee − tes
(5)

the integral of the effectiveness guideline feffect(t) between execution start tes and execution
end tee normalized by the execution duration tee − tes. This parameter is important if an agent
decides to execute an activity during a time period where it cannot or can only be partially
executed (e.g. because the shop closes).

5.1.4 Look-Ahead Measure

Effectiveness guidelines provide information about future execution options. For instance, shop
opening hours inform agents about either if they can shop and for how long or how long it
takes until they can shop next time. Agents can use such information to plan ahead and e.g.
postpone execution of activities because time windows of other activities are going to close soon.
Other authors (e.g. Atkinson (1994) and Ioannou et al. (2001)) working on Vehicle Scheduling

Problems with Time Window Constraints also recognized the importance of such information.

The aim of the proposed look-ahead measure is to provide agents with an awareness of decreasing
execution options in the near future. We extract this measure through a convolution of the
effectiveness guideline with an exponential kernel (see Fig. 3), similar to the convolution of
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monitoring values (see Fig. 1). In this convolution, we use an exponential kernel that give
opening hours in the near future more weight. The look-ahead measure an agent receives for
executing an activity at a specific location at time t is defined as

LA(t) =

 1 + w1 · (1−
h∫
0

(feffect(t+ x) · kernel(x)) dx) if feffect(t) > u

1 otherwise
(6)

1 plus the multiplication of w1 with the difference of 1 minus the integral of the effectiveness
guideline feffect(t) multiplied by kernel(x) between 0 and the observation window horizon
h if the effectiveness guideline feffect(t) yields a higher value than a predefined threshold u

(e.g. 0 for closed shops) or 1 otherwise. Since we use LA(t) as a factor in the final heuristic
(see Section 5.1.5), we designed it in such a way that it yields a value in the range of [1..w1]
(1 if execution is not advisable (e.g. because shops are closed) and a value approaching w1 for
decreasing execution options).

5.1.5 Discomfort Reduction Density

Discomfort reduction density is defined as

DRD(tts, tes, tee) = q(tes, tee) ·
DR(tes, tee)

tee − tts
· LA(tee) (7)

the multiplication of the execution time quota q(tes, tee) with the discomfort reduction DR(tes, tee)

between execution start tes and execution end tee normalized by the difference between exe-
cution end tee and travel start tts multiplied by the look-ahead measure LA(tee) at execution
end. Including execution time quota q(tes, tee) ensures that activities which cannot or can only
be partially executed (e.g. because the shop closes) get a lower discomfort reduction density.
Normalizing with the travel duration ensures that locations which are further away from the
current location or need a long time to reach because of traffic congestions receive a smaller dis-
comfort reduction density. This provides for a simplistic location choice procedure with agents
preferring locations close to their current location. Including the look-ahead measure LA(tee)

ensures that activities with fewer execution options in the future receive a higher discomfort
reduction density and are therefore preferred by agents.

5.2 Decision Procedure

The planning heuristic uses a two-step decision procedure to determine the activity-location
pair an agent should execute next. In a first step, it identifies promising activity-location pair
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Figure 3: Illustration of look-ahead measure for shop opening hours with short and long week-
ends.

(a) Look-ahead measure with a kernel of 2 days. The higher the measure the closer the end of the current
shop opening window. The measure is higher before weekends indicating less shopping options in the
near future.

(b) Look-ahead measure with a kernel of 7 days. This kernel can differentiate between short and long
weekends (measure is higher before long weekend). Choosing the right kernel length is important and we
propose a duration of approximately 2 to 3 times the average interval between two activity executions (e.g.
3 · 2 days = 6 days for daily shopping).

candidates. Here, the planning heuristic makes best guesses for values which are expensive
to compute. In a second step, the planning heuristic computes optimal values of promising
candidates and decides to implement the most promising activity-location pair.

5.2.1 First Step

In the first step, the planning heuristic makes the following assumptions to determine promising
activity-location pair candidates:

• It uses the free speed travel time to compute travel durations between locations. Computing
the exact travel time is expensive because it depends on the current time and could include
different computer nodes (we plan to run the simulation on a distributed computation
environment (Charypar et al. (2010))). We reduce deviations between exact travel time
and free speed travel time through a multiplication with a factor. The current version of
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the simulation uses a constant factor (e.g. 1.2) but we consider a learning process for later
versions where agents adapt the factor based on their past experience (e.g. by time-of-day,
type-of-location etc.).

• It uses the reference activity duration of the execution duration guideline (see Section 3.1.2)
as the planned duration. Determining the optimal duration requires a numerical optimiza-
tion which is computationally expensive.

The planning heuristic computes the discomfort reduction density DRD(tts, tes, tee) for all
activity-location pairs using the above mentioned assumptions.

5.2.2 Second Step

In the second step, the planning heuristic uses real travel durations and computes optimal
execution durations (using the discomfort reduction density function DRD(tts, tes, tee)) for the
20% most promising activity-location pair candidates of the first step. The optimization of the
execution duration is done numerically using Brent’s method from Press et al. (2007).

Since the optimization is computationally expensive, the heuristic tries to reduce the range of
valid execution durations before it starts the optimization. The ratio of the guidelines percentage

of time and frequency defines the average execution duration (see Fig. 4). When an agent decides
to execute an activity, this ratio instantaneously drops and recovers during activity execution.
The time to recover into the bandwidth of the duration guideline (see Section 3.1.2) yields lower
and upper duration bounds.

Effectiveness guidelines (see Section 3.1.3) can further narrow valid upper duration bounds.

duration−boundupper =

{
feffect(y)

−1 if feffect(y)−1 < duration− boundupper

duration− boundupper otherwise
(8)

The upper duration bound is updated with the time feffect(y)−1 when the effectiveness guideline
drops below a predefined value y (e.g. to 0 because shops close), if this time is earlier than the
current upper duration bound.

Finally, the planning heuristic searches the optimal execution duration within the lower and
upper duration bound and implements the activity-location pair that yields the highest discomfort
improvement density.
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Figure 4: Illustration of average execution duration

(a) The average execution duration instantaneously drops when
an agent decides to execute an activity. The time to recover
into the bandwidth of the duration guideline specifies lower
and upper duration bounds

6 Outlook

The next task is to finalize the implementation of the proposed concepts. We program in
C++ since performance is important and we can build on existing code from Märki et al.

(forthcoming). In the first validation phase, we will focus on the heuristic and calibrate its
parameters to see if it is able to produce realistic behavior. This includes reoccurring activities
and activities modeled through projects. Results will show the necessity of a heuristic adaptation.
In a second phase, we will validate our model by comparing simulation data with analyses of
two existing six-week continuous travel diaries (Axhausen et al. (2002), Löchl et al. (2005) and
Schönfelder (2006)).

7 Conclusion

This paper proposes a microscopic travel demand simulation that can continuously simulate
agent’s behavior and resulting movements. Behavioral guidelines are central for the proposed
behavioral model. These guidelines are closely related to statistical data provided by vari-
ous sources (e.g. Swiss Federal Statistical Office (2006)), simplifying model utilization for
practitioners. We illustrate different guidelines and their parameters. Some guidelines have ob-
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servation windows enabling performance tracking over different time horizons. Time-dependent
effectiveness guidelines model various effects like shop opening hours or social and cultural
norms. We propose using projects to model non-recurring tasks. Projects are limited to a
specific time period during which they influence behavioral guidelines. Agents keep track of
their performance and compare it to behavioral guidelines. Deviations cause discomfort which
is conveyed to a planning heuristic, making on the fly decisions about upcoming activities agents
should execute.
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