NEW DIRECTIONS IN OPTIMIZING HAZARDOUS MATERIALS TRANSPORTATION DECISIONS

BY

PROFESSOR KONSTANTINOS G. ZOGRAFOS

TRANSPORTATION SYSTEMS AND LOGISTICS LABORATORY (TRANSLOG)
DEPARTMENT OF MANAGEMENT SCIENCE AND TECHNOLOGY
ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

kostas.zografos@aueb.gr

12th SWISS TRANSPORT RESEARCH CONFERENCE (STRC)
MONTE VERITA, ASCONA (TICINO), MAY 2-4, 2012
TABLE OF CONTENTS

- INTRODUCTION
- PRESENTATION OBJECTIVES
- OVERVIEW OF HAZARDOUS MATERIALS TRANSPORTATION AND DISTRIBUTION MODELS
- PROBLEM DEFINITION
- TRAVEL TIME MODEL
- TRANSPORTATION RISK
- MATHEMATICAL FORMULATION
- SOLUTION ALGORITHM
- COMPUTATIONAL PERFORMANCE
- CONCLUDING REMARKS
- FUTURE RESEARCH DIRECTIONS
INTRODUCTION (1/6)

➢ HAZARDOUS MATERIALS DEFINITION

“HAZARDOUS MATERIAL: A SUBSTANCE OR MATERIAL […] BEING CAPABLE OF POSING AN UNREASONABLE RISK TO HEALTH, SAFETY, OR PROPERTY WHEN TRANSPORTED IN COMMERCE […]”

➢ HAZARDOUS MATERIALS TRANSPORTATION IS AN ACTIVITY OF SIGNIFICANT ECONOMIC IMPORTANCE (2.23 x 10^9 TONS OR 18% OF TOTAL GOODS TRANSPORTED)

➢ HIGH RISK IS ASSOCIATED WITH THEIR ACCIDENTAL RELEASE WHILE TRANSPORTED

INTRODUCTION (2/6)

- U.S. Code of Federal Regulations, 49CFR ("Transportation"), 105
INTRODUCTION (3/6)

- **Date**: May 24, 2004
- **Location**: 50 km northeast of Bucharest, Romania
- **Type of Accident**: truck overturn, explosion
- **Material**: more than 22t of “nitrous fertilizers”
- **Consequences**: 20 killed (including 7 military firefighters, 2 journalists, 3 local people watching the fire, and 5 people who stopped their cars to watch the fire)

INTRODUCTION (4/6)

- **Date**: April 22, 2004
- **Location**: Ryongchon, North Korea
- **Type of Accident**: two train wagons came into contact during shunting operations at the city railway station, massive explosion
- **Material**: each wagon containing 44t of AN (ammonium nitrate)
- **Consequences**: 54 killed, appr. 1,300 injured, town severely damaged (leveling everything in a 500-m radius)

http://gmfranci.wordpress.com/category/railroads-2/
INTRODUCTION (5/6)

✓ RISK = ACCIDENT PROBABILITY x CONSEQUENCE

✓ TRUCK ROUTING IS CONSIDERED A MAJOR PROACTIVE RISK MITIGATION MEASURE
 ▪ REDUCE ACCIDENT PROBABILITY
 ▪ REDUCE ACCIDENT CONSEQUENCE
INTRODUCTION (6/6)

➢ CONSIDERABLE RESEARCH EFFORT

- 7 books. ¹

- Appr. 10 journal papers per annum on average.

➢ NOT ALL REAL WORLD ASPECTS OF THE PROBLEM HAVE BEEN INCORPORATED IN EXISTING MODELS

PRESENTATION OBJECTIVES

➢ TO PRESENT THE EVOLUTION AND CHARACTERISTICS OF HAZARDOUS MATERIALS TRANSPORTATION AND DISTRIBUTION MODELS

➢ TO FORMULATE AND SOLVE A NEW MODEL FOR HAZARDOUS MATERIALS DISTRIBUTION

➢ TO PROVIDE RECOMMENDATIONS FOR FUTURE RESEARCH
Classification and Evolution of Hazmat Models (1/3)

| O-D Predefined | - Yes
<table>
<thead>
<tr>
<th></th>
<th>- No</th>
</tr>
</thead>
</table>
| Type of Transportation | - FTL
| | - LTL |
| Time Restrictions | - No
| | - Yes
| Intermediate Stops | - No
| | - Yes
| Number of Objectives | - Single
| | - Multiple |
| Type of Objectives | - Time
| | - Accident Probabilities
| | - Exposure - Different Measures
| | - Risk
| | - Equitable Distribution of Risk
| Link Attributes | - Dynamic
| | - Static
| | - Deterministic
| | - Stochastic
| | - Capacity Constraints

Classifications and Evolution of Hazmat Models

- **O-D Predefined**: Indicates whether the origin and destination are predefined or not.
- **Type of Transportation**: Differentiates between Full Truck Load (FTL) and Less Than Truck Load (LTL).
- **Time Restrictions**: Specifies if time windows, curfews, or delivery waiting times are applicable.
- **Intermediate Stops**: Determines if intermediate stops are allowed.
- **Number of Objectives**: Specifies whether a single or multiple objectives are considered.
- **Type of Objectives**: Determines the type of objectives, including time, accident probabilities, risk, equitable distribution of risk, dynamic, static, deterministic, stochastic, and capacity constraints.
- **Link Attributes**: Identifies link attributes such as deterministic, stochastic, static, and dynamic.
CLASSIFICATION AND EVOLUTION OF HAZMAT MODELS (2/3)

MAJOR CATEGORIES OF PROBLEMS

- LOCATION – ROUTING
- ROUTING – FTL
- ROUTING AND SCHEDULING FTL
- ROUTING AND SCHEDULING LTL-VRP
- NETWORK DESIGN
CLASSIFICATION AND EVOLUTION OF HAZMAT MODELS (3/3)

MAJOR CATEGORIES OF PROBLEMS

- CAPACITATED
- STOCHASTIC
- TIME-DEPENDENT
- DETERMINISTIC
- STATIC

OBJECTIVES
- SINGLE
- MULTIPLE

LINK ATTRIBUTES
- ROUTING - FTL
- ROUTING AND SCHEDULING - FTL
- ROUTING AND SCHEDULING - LTL-VRP
- NETWORK DESIGN

TYPE OF PROBLEM
PROBLEM DEFINITION (1/5)

Top 10 Commodities 2005-09 ranked by Weighted High-Impact Casualties

- Gasoline: 33.56%
- Chlorine: 24.56%
- Diesel fuel: 15.69%
- Propylene: 4.94%
- Fireworks: 4.19%
- Liquefied Petroleum Gas (LPG): 4.00%
- Carbon dioxide, refrigerated liquid: 3.56%
- Sulfuric acid: 3.31%
- Propane: 3.00%
- Argon, refrigerated liquid: 3.00%

- U.S. Department of Transportation, 2011
PROBLEM DEFINITION (2/5)

- A HIGH PERCENTAGE OF THESE COMMODITIES ARE DISTRIBUTED BY TRUCK
- DISTRIBUTION OF SUCH COMMODITIES IS BASED ON LTTL
- URBAN ENVIRONMENT

- U.S. Department of Transportation, 2011
PROBLEM DEFINITION (3/5)

- **CRITERIA**: TRAVEL TIME AND TRANSPORTATION RISK
- **LINK PROPERTIES**: ROADWAY NETWORK WITH TIME-DEPENDENT TRAVEL TIME AND RISK
- **DEMAND**: KNOWN IN ADVANCE
- **FLEET COMPOSITION**: NON-HOMOGENEOUS
- **GOAL**: IDENTIFY EFFICIENT ROUTES (TRAVEL TIME, RISK) FOR SERVICING A SET OF SPECIFIED ORDERS OF HAZARDOUS MATERIALS
- **SERVICE CONSTRAINTS**: TIME WINDOWS FOR CUSTOMERS AND DEPOT
PROBLEM DEFINITION (4/5)

MAJOR CATEGORIES OF PROBLEMS

- NETWORK DESIGN
- ROUTING - FTL
- ROUTING AND SCHEDULING - FTL
- ROUTING AND SCHEDULING - LTL-VRP
- Type of Problem
 - Single
 - Multiple
 - Static
 - Deterministic
 - Time-dependent
 - Stochastic
 - Capacitated
- Link Attributes
PROBLEM DEFINITION (5/5)

- BI-OBJECTIVE TIME DEPENDENT
- LOAD DEPENDENT RISK
TRAVEL TIME MODEL (1/5)

- CENTRAL ISSUE TRAVEL TIME MODELING:
 - ACCURACY, WHICH AFFECTS THE FEASIBILITY AND OPTIMALITY OF THE ROUTES
 - COMPUTATIONALLY EFFICIENT CALCULATION
TRAVEL TIME MODEL (2/5)

- Travel Time (i-j)
 - Non-FIFO

- Time of day
 - Instant change of travel speed

- Departure Time
 - Smooth travel speed
 - Horn, M (2000)

- Travel Speed
 - Converts the Non-FIFO piecewise constant travel time to piecewise linear function satisfying the FIFO conditions
TRAVEL TIME MODEL (3/5)

- THE TRAVEL TIME MODEL (WITH TRAVEL SPEED EXPRESSED THROUGH A PIECEWISE LINEAR FUNCTION OF THE TIME OF THE DAY) IS SELECTED:
 - IT IS MORE ACCURATE SINCE IT TAKES INTO ACCOUNT TRAVEL SPEED VARIATIONS.
 - THE ESTIMATION OF TRAVEL TIME IS MORE COMPUTATIONALLY INTENSIVE.

- A NEW EFFICIENT COMPUTATIONAL PROCEDURE IS PROPOSED.
TRAVEL TIME MODEL (4/5)

Departure Time (min)	Arrival Time (min)
0 | 0
5 | 5.8
10 | 10.2
15 | 15

\[
0 \leq Dd \leq 4.75 \rightarrow D\alpha
\]

\[
S = \left(\frac{1}{2} \right) (0.6)(\frac{5}{60})^2
\]

Since \(s < L \) then set \(L = 2 - 1.668 = 0.332 \)

Calculate distance \(s \) traveled from 0→5 min, i.e., \(s = 1.668 \) km through formula \(S = (\frac{1}{2})(0.6)(\frac{5}{60})^2 \)

Calculate distance \(s \) traveled from 5→10 min, i.e., \(s = 1.916 \) km. Since \(s > L \) then: calculate how much time is needed in order to travel 0.332 km in period 5-10 min. The result is: 0.8 min.
TRAVEL TIME MODEL (5/5)

Knowing the arrival time for a single departure time \((\tau_d) \), a closed form solution has been derived that can estimate arrival time \((\tau_a) \) at next node for any other departure time.

\[
A(\tau_d + \Delta d) = \tau_a + \left(\frac{1}{g_{ij}(\tau_{k+m})} \right) \left\{ -\left[g^{k+m}_{ij} [\tau_a - \tau_{k+m}] + \nu^{k+m}_{ij} \right] + \left\{ g^{k+m}_{ij} [\tau_a - \tau_{k+m}] + \nu^{k+m}_{ij} \right\}^2 + 2 g^{k+m}_{ij} \left[\frac{1}{2} g^k_{ij} \Delta d^2 + \left\{ g^k_{ij} [\tau_d - \tau_k] + \nu^k_{ij} \right\} \Delta d \right] \right\}^{1/2} \]

\[
A(\tau_d + \Delta d) = \tau_a + \frac{1}{\nu_{ij}(\tau_{k+m})} \left\{ \frac{1}{2} g_{ij}(\tau_k) \Delta d^2 + \left\{ g_{ij}(\tau_k)[\tau_d - \tau_k] + \nu_{ij}(\tau_k) \right\} \Delta d \right\}
\]
TRANSPORTATION RISK (1/5)

- Zografos and Davis (1989)
TRANSPORTATION RISK (2/5)

- **Probability of a Hazardous Materials Accident** is affected by **Traffic Flow Intensity**, **Prevailing Meteorological Conditions**, and **Roadway Network Characteristics**.

- **The consequences of an accident** are estimated based on:
 - **The area of impact**: It depends on the prevailing meteorological conditions and the intensity of the accident (explosion, fire, or contamination).
 - **The population density** of the areas exposed to transportation risk which also varies during different parts of the day.
TRANSPORTATION RISK (3/5)

http://www.truckaccidents360.com/
TRANSPORTATION RISK (4/5)

- **The intensity of the accident depends (among others) on the quantity transported at the time of the accident.**

- **The sequence of the stops affects the total transportation risk.**

- **Time-dependent**

- **FIFO assumption does not hold**
TRANSPORTATION RISK (5/5)

➢ HAZMAT ACCIDENT PROBABILITY MODEL

\[\pi_{ij} := P[A_{ij}]P[R_m | A_{ij}]P[I_m | R_m] \]

- Probability of a truck accident.
- Probability of release given a truck accident.
- Probability of incident (e.g., fire, explosion) given a release.

➢ TRANSPORTATION RISK ON ANY ARC (i-j)

\[R_{ij}^\tau (q) = \pi_{ij}^\tau P op_{ij}^\tau (q) \tau \in T, q \in [m_k, m_{k+1}] \]

q: THE QUANTITY TRANSPORTED THROUGH LINK (i,j)
MATHEMATICAL FORMULATION (1/6)

- Any route is expressed as a scheduled path (route-path) which connects an origin with a destination (depot) and passes through a series of stops.

- More than one route path may pass from any node hosting a customer.
MATHEMATICAL FORMULATION (2/6)

- A DUMMY NODE IS CREATED AND LINKED TO THE ORIGINAL NETWORK FOR EVERY NODE THAT HOSTS A STOP

- THE CUSTOMER IS ASSUMED TO BE HOSTED IN THE DUMMY NODE
MATHEMATICAL FORMULATION (3/6)

S SET OF STOPS (CUSTOMERS)

N SET OF NODES OF THE NETWORK

A SET OF ARCS OF THE NETWORK

d_j DEMAND AT NODE j

$x_{ijv}^\tau \in \{0,1\}$ IT TAKES VALUE 1 IF VEHICLE v ENTERS LINK (i,j) AT TIME τ

$t^s(s_k)$ SERVICE TIME FOR STOP s_k

$[\alpha_{s_k}^e, \alpha_{s_k}^l]$ SERVICE TIME WINDOW FOR STOP s_k

$\Gamma^{-1}(s) := \{i \in N : (i,s) \in A\}$

$D_i(s_k) := \{\tau : \alpha_{s_k}^e \leq \tau + c_{(i,s_k)}^l(\tau) \leq \alpha_{s_k}^l\}$

$\Gamma^{+1}(s) := \{i \in N : (s,i) \in A\}$

$A_j(s_k) := \{\tau : \tau - t_{s_k}^s \leq \alpha_{s_k}^l\}$
MATHEMATICAL FORMULATION (4/6)

\[\text{Min}(Z_1, Z_2) \]

\[Z_1 := \sum_{\tau \in T} \sum_{i \in \Gamma^{-1}(s_{n+1})} \sum_{v \in V} (\tau x_{i,s_{n+1},v}^\tau) - \sum_{\tau \in T} \sum_{j \in \Gamma^+1(s_0)} \sum_{v \in V} (\tau x_{s_0,j,v}^\tau) \]

\[Z_2 := \sum_{\tau \in T} \sum_{(i,j) \in A} \sum_{v \in V} (R_{ij}^\tau (\varphi_{ij,v}^\tau)) \]

\[\text{Subject to:} \]

\[\sum_{\tau \in T} \sum_{i \in N} \sum_{v \in V} x_{i,s,v}^\tau = 1 \quad s \in S \]

\[\sum_{\tau \in T} \sum_{j \in N} x_{i,j,v}^\tau - \sum_{\tau \in T} \sum_{j \in N} x_{j,i,v}^\tau = 0 \quad v \in V \quad i \in N\backslash\{s_0, s_{n+1}\} \]

\[\sum_{\tau \in T} \sum_{j \in N} x_{s_0,j,v}^\tau = 1 \quad v \in V \]

- **Total travel time**
- **Total Risk**
- **Each stop is serviced only once**
- **If a vehicle enters a node, it should also leave the node**
- **Each truck v leaves the origin s_o**
MATHEMATICAL FORMULATION (5/6)

\[
\sum_{\tau \in T} \sum_{j \in N} x_{s0jv}^\tau - \sum_{\tau \in T} \sum_{j \in N} x_{sn+1jv}^\tau = 0 \quad v \in V
\]

Any vehicle leaving the origin should arrive at a destination.

\[
\sum_{i \in I_j^{-1}} \sum_{\tau' \in \{l : l + c_{i,j}(l) = \tau - t_j^s\}} x_{ijv}^{\tau'} - \sum_{k \in I_j^+} x_{kvj}^{\tau} = 0 \quad \tau \in T, j \in N \quad \text{where} \quad I_j^+ := \{i \in N : (j, i) \in A\}
\]

If a truck leaves a node at time \(\tau\) then it should arrive at that node at a time \(\tau\) minus the service time at that node.

\[
\sum_{\tau \in D_i(s)} \sum_{v \in V} \sum_{i \in I_s^{-1}} x_{isv}^\tau = 1 \quad s \in S
\]

Any stop \(s\) is visited by a truck no later than the corresponding latest service start time \(\alpha^l_s\).

\[
\sum_{\tau \in A_j(s)} \sum_{v \in V} \sum_{j \in I_s^{-1}} x_{sjv}^\tau = 1 \quad s \in S
\]

The truck can depart between an earliest and a latest departure time (defined by the earliest and latest service start time of the visited customer).
MATHEMATICAL FORMULATION (6/6)

\[\omega_{iv}^{\tau} - \omega_{jv}^{\tau'} + (1 - x_{ijv}^{\tau})M \geq d_j \quad (i,j) \in A, i \neq s_n, v \in V, \quad \tau' = \tau + c_{(i,j)}^{1}(\tau) + t_j^{s} \]

\[\varphi_{ijv}^{\tau} + (1 - x_{ijv}^{\tau})M \geq \omega_{iv}^{\tau} \]

If a truck uses link \((i,j)\) then the change of the load when leaving node \(i\) from the load when leaving node \(j\) is \(d_j\) (demand in node \(j\)) at least.

Definition of the load of the truck \((v)\) when traversing link \((i,j)\) at time \(\tau\)

\[\omega_{s0v}^{\tau} \leq K_v \]

The total demand covered by each truck \(v\) should not exceed its capacity \(K_v\)

\[\omega_{sn+1v}^{\tau} = 0 \]

Every truck must arrive empty at the destination

\[x_{ijv}^{\tau} \in \{0,1\} \quad \omega_{iv}^{\tau} \geq 0, \quad \varphi_{ijv}^{\tau} \geq 0 \]
SOLUTION ALGORITHM (1/9)

- THE PROBLEM UNDER STUDY CAN BE EXPRESSED BY A BI-CRITERION TIME DEPENDENT VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

- THE WEIGHTING METHOD IS APPLIED WHICH LEADS TO A SERIES OF SINGLE OBJECTIVE (TIME-DEPENDENT) VRP WITH TIME WINDOWS AIMING TO OPTIMIZE THE WEIGHTED SUM OF TRAVEL TIME AND RISK

\[C(R; \bar{w}) = \sum_{j=1}^{2} w_j c_j(R) \]

where \(w_j \in [0,1] \)

and \(\sum_{j=1}^{2} w_j = 1 \)

- Ehrgott, 2005.
SOLUTION ALGORITHM (2/9)

- The classic single-criterion VRP (time-dependent or not) is defined on a complete graph where each link denotes an a priori selected path.

- This convention does not work for the VRPTW problems arising from the application of the weighting method:
 - Different combination of weights in the objective function may lead to different shortest paths between any pair of stops for different departure times.
 - For any pair of stops, it is burdensome to calculate in advance the list of shortest paths for any possible combination of weights and departure times.
SOLUTION ALGORITHM (3/9)

- THEREFORE WE SHOULD DEAL SIMULTANEOUSLY WITH TWO PROBLEMS
 - SPECIFY SEQUENCE OF STOPS (ROUTE)
 - FIND PATH BETWEEN ANY TWO CONSECUTIVE STOPS

- SEQUENTIAL ROUTE CONSTRUCTION HEURISTIC WHERE EACH NEW CUSTOMER IS INSERTED AT THE BEGINNING OF THE ROUTE (1ST CANDIDATE POSITION)
SOLUTION ALGORITHM (4/9)

1. FOR EACH CANDIDATE CUSTOMER (LOAD FEASIBLE), WE CALCULATE TDSP FOR ALL POSSIBLE DEPARTURE TIMES

 ▪ ASSOCIATED TRAVEL TIMES ARE CALCULATED USING THE IMPROVED QUADRATIC TRAVEL MODEL
Required Path Finding Calculations for \((s_0, s_{\text{new}}, s_1)\)
- Find shortest paths from \(s_{\text{new}} \rightarrow s_{n+1}\) through
\(\{s_1, s_2, s_3, s_4, s_5, s_6\}\), by applying the label setting algorithm
from \(s_{\text{new}}\) to \(s_1\)

- Find shortest paths from \(s_0 \rightarrow s_{n+1}\) through
\(\{s_{\text{new}}, s_1, s_2, s_3, s_4, s_5, s_6\}\), by applying the label setting
algorithm from \(s_0\) to \(s_{\text{new}}\)

Required Path Finding Calculations for \((s_2, s_{\text{new}}, s_3)\)
- Find shortest paths from \(s_{\text{new}} \rightarrow s_{n+1}\) through
\(\{s_3, s_4, s_5, s_6\}\), by applying the label setting algorithm from \(s_{\text{new}}\) to \(s_3\)

- Find shortest paths from \(s_2 \rightarrow s_{n+1}\) through
\(\{s_{\text{new}}, s_3, s_4, s_5, s_6\}\), by applying the label setting algorithm from \(s_2\) to \(s_{\text{new}}\)

- Find shortest paths from \(s_1 \rightarrow s_{n+1}\) through
\(\{s_2, s_{\text{new}}, s_3, s_4, s_5, s_6\}\), by applying the label setting algorithm from \(s_1\) to \(s_2\)

- Find shortest paths from \(s_0 \rightarrow s_{n+1}\) through
\(\{s_1, s_2, s_{\text{new}}, s_3, s_4, s_5, s_6\}\), by applying the label setting algorithm from \(s_0\) to \(s_1\)
SOLUTION ALGORITHM (6/9)

2. INSERT A CUSTOMER AND ESTIMATE

\[\eta(s_0, s_i, s_1; \bar{w}) = \left(\sum_{\tau=\tau^e}^{\tau^l} \theta_r(s_i; w_1, w_2) \right) \cdot \frac{a^l_{s_{n+1}} - a^l_{s_i}}{a^e_{s_1} - \tau^e} \]

3. INSERT CUSTOMER WITH THE LOWER INSERTION COST
SOLUTION ALGORITHM (7/9)

4. IF VEHICLE CAPACITY IS VIOLATED OR NO NEW CUSTOMER CAN BE INSERTED, CLOSE CURRENT ROUTE

6. IF ALL CUSTOMERS ARE ROUTED, TERMINATE. OTHERWISE START A NEW ROUTE AND REPEAT
SOLUTION ALGORITHM (8/9)
SOLUTION
ALGORITHM (9/9)
COMPUTATIONAL PERFORMANCE (1/5)

TESTING ACCURACY

- SMALL TEST PROBLEMS
- COMPLY WITH STRUCTURE OF A REAL-LIFE PROBLEM
- SOLVABLE BY A MIXED INTEGER PROGRAMMING (MIP) SOLVER
- TIME-DEPENDENT LOAD-INVARIANT RISK VALUES
- 49 NODES
- GRID-LIKE NETWORK
- FIVE CUSTOMERS
COMPUTATIONAL PERFORMANCE (2/5)

- DEMAND RANDOMLY SPECIFIED / RANGE: 2-4 TONS
- TRUCK CAPACITY: 10 TONS
- DIFFERENT ORIGIN / DESTINATION
- EARLIEST DEPARTURE – LATEST ARRIVAL: 60 min.
- TIME WINDOW: 10 min.
- 168 LINKS
- RANDOM LINK LENGTH 600-900m
COMPUTATIONAL PERFORMANCE (3/5)

ES: Exact Solution
HS: Heuristics Solution

Risk

Travel Time

ES-1
ES-2
ES-3
ES-4
COMPUTATIONAL PERFORMANCE (4/5)

- Heuristic solutions were compared to exact (using the exact solution with the minimum Euclidean distance) solutions by calculating the percentage difference of travel time and risk.

- Travel time difference: 11.1%
- Risk difference: 14.6%
- Worst heuristic travel time: 36.4%
- Worst heuristic risk: 48.3%

- Substantial differences in computational time (15 sec. Vs. 5,000 sec)
COMPUTATIONAL PERFORMANCE (5/5)

- COMPUTATIONAL TIME INCREASES WITH TIME WINDOW WIDTH AND NUMBER OF CUSTOMERS

<table>
<thead>
<tr>
<th>Test Problem</th>
<th>Number of customers</th>
<th>Depot Time window (min)</th>
<th>Average Number of Problems Solved</th>
<th>Average number of solutions</th>
<th>Average Computational Time (in sec)</th>
<th>Average Comp. Time per problem solved (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>120</td>
<td>17</td>
<td>7</td>
<td>104.5</td>
<td>5.9</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>180</td>
<td>18</td>
<td>7</td>
<td>233.8</td>
<td>12.8</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>120</td>
<td>20</td>
<td>5</td>
<td>281.4</td>
<td>13.9</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>180</td>
<td>20</td>
<td>8</td>
<td>512.75</td>
<td>25.2</td>
</tr>
</tbody>
</table>
CONCLUDING REMARKS

- BI-OBJECTIVE TIME-DEPENDENT VRP WITH TIME WINDOWS
- SIMULTANEOUS PATH FINDING AND SCHEDULING
- USE OF PIECE-WISE LINEAR TRAVEL SPEED ENHANCED RELIABILITY IN SATISFYING SERVICE TIME WINDOWS
- RISK MODEL
 - TIME-DEPENDENT ACCIDENT PROBABILITIES
 - LOAD-DEPENDENT POPULATION EXPOSURE
FUTURE RESEARCH DIRECTIONS

- SIMILAR MODEL AND SOLUTION ALGORITHM CAN BE USED FOR THE TIME DEPENDENT AND LOAD DEPENDENT POLLUTION-ROUTING PROBLEM
 - TRAVEL TIME
 - CO\textsubscript{2} EMISSIONS

- METAHEURISTICS (ANT COLONY SYSTEM) CAN BE USED TO IMPROVE SOLUTION QUALITY

- DEVELOP METHODOLOGIES FOR ESTIMATING TIME AND LOAD DEPENDENT RISK VALUES
ACKNOWLEDGMENTS

This work was partially supported by the Research Center of the Athens University of Economics and Business (AUEB-RC) through the project EP-1809-01
REFERENCES (1/2)

REFERENCES (2/2)

