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Abstract

This study provides a theoretical framework to investigate the efficiency of different airport ca-
pacity allocation schemes under congestion externalities and imperfect competition. Its innova-
tion is to consider a dominant network carrier at a hub airport, that endogenously differentiates
its product based on passenger benefits from network density. The aim is to formally capture
this currently prevailing market structure at large network airports, in order to determine the am-
biguities in allocation efficiency that arise with market power and congestion externalities. The
results are not expected to strictly favor recently proposed alternative allocation instruments.
Hence this study might suggest to unfocus on the latter, but rather investigate a transfer of
monopoly regulation schemes known from other network industry sectors. Within the current
perspective on the airport capacity allocation problem from previous work, this consideration
has not yet received major attention.
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Executive Summary

While major airports still suffer from runway congestion, the current administrative regulation
to allocate scarce airport capacity to the airlines has been criticized to be both inefficient and
inequitable. Theoretical studies therefore have proposed alternative economic allocation instru-
ments, and shown their efficiency at least for perfectly competitive markets. But when airlines
have market power, these results become ambiguous: As imperfect competition already alters
output and prices away from efficient levels, additional externalities from congestion lead to
a dual distortion in the resource allocation. Consequently, allocation instruments can have an
adverse impact on efficiency, if the second-order effect from market power dominates. This
may occur with both congestion pricing and secondary trading schemes.
The current market structure at major airports seems to be characterized rather by large, domi-
nant network airlines than by perfect competition. Now, if these dominant airlines can differen-
tiate their products based on network economies, their market power increases, and competition
is reduced. On the one hand, this gives rise to the above ambiguity from congestion external-
ities and market power. But on the other hand, network effects have also been discussed to
create additional benefits for passengers. This suggests that the impact of regulation policy
on allocation efficiency becomes increasingly complex, when network effects are accounted
for. But while quite a number of studies have already analyzed alternative allocation schemes
for airport capacity, only few account for airline market power, and mostly with homogeneous
goods only. Asymmetries have been considered based on cost differences, but not on demand
heterogeneities. And finally, network density benefits for passengers have been discussed, but
rarely been formally captured in recent theoretical frameworks. Conclusively, the efficiency of
different regulation policies has not yet been illuminated for the case where the natural market
structure is characterized by network airlines.
This study provides a theoretical framework to investigate the efficiency of different airport
capacity allocation schemes under congestion externalities and imperfect competition. The in-
novation is that it formally captures the currently prevailing market structure at large network
airports: a dominant network carrier, that endogenously differentiates its product based on pas-
senger benefits from network density. The objective is to determine the ambiguities in capacity
allocation efficiency, that arise with market power and product heterogeneity.
The results do not favor the proposed alternative allocation instruments. Instead, they suggest
further research to focus on monopoly regulation, as known from other industry sectors with
networks (e.g. railway infrastructure, power grids, telecommunications or public transport).
A tempting idea were to investigate the implementation of network operating licenses, that
allowed density benefits to fully develop, both at fair costs for the passengers and at fair privi-
leges for the network airlines. Within the current perspective on the airport capacity allocation
problem, this idea has not received attention yet.
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1 Introduction

At major airports, excess demand for operational runway infrastructure has induced congestion

(Matthews and Menaz, 2008, p.22). This airport congestion has been recognized as a gen-

uine problem (Brueckner, 2009b, p.11), leading to flight delays that impose significant costs

to airlines and passengers (Cook, 2007, p.97). 1 Hence, the “efficient allocation” of the “in-

creasingly scarce airport capacity” has been judged as “one of the key economic issues” in

the industry (De Wit and Burghouwt, 2008, p.148). And as most major airports are home to

large, dominant carriers, and as large airlines focus on networks (Holloway, 2002, pp.23-24),

it seems reasonable to suggest that to a large extent this problem concerns large network hub

airports.2 Because most of the congestion that airlines impose on airport-operations is likely to

represent an externality, regulation has been implemented to limit flight volume by means of

capacity constraints. Allocation efficiency then presupposes that the level of the constraint is

optimally chosen, and that capacity is allocated to the flights according to their overall social

value (Matthews and Menaz, 2008, p.25). Both these tasks, however, seem not to be as sim-

ple in practice: Determining the optimum number of quota is everything but straightforward

(Ulrich, 2008, p.11), and perfect knowledge of all costs, benefits and the social value of all

potential flights to be allocated seems to be too strong an assumption (De Wit and Burghouwt,

2008, pp.152). It seems not surprising, therefore, that recent literature has criticized the cur-

rent, administrative capacity allocation scheme to be both inefficient and inequitable (cf. e.g.

Matthews and Menaz, 2008, pp.24).

1 Operational limitations may concern different parts of the operational infrastructure, but mostly involve runway
capacity (Natalie McCaughey and Starkie, 2008, see). Whalen et al. (2007, p.7) expect 27 US-airports to be
capacity constrained by 2025, and Majumdar (2007, p.65) suspects sixty European airports to be congested
as of 2020. Eurocontrol estimates year 2025 European air traffic to reach up to 210 percent of the 2005
volume (EUROCONTROL, 2008, pp.1). (Cook, 2007, p.97) regards congestion costs for both passengers and
airlines as “real, large, but poorly understood quantitatively”, and dissociates tactical and strategic costs of
delay for airlines. Tactical costs represent irregularity costs that occur due to actual delays, where strategic
costs arise from contingency planning that aim to minimize the impact of actual delays. For passengers, delay
costs amounted mainly to the time costs from late arrivals and missed connections. Generally, Donohue and
Zellweger (2001, p.7) emphasize that the constrained aviation system had a large negative effect on both US
and EU economic growth. Quantitatively, Morrison (2005, p.418) estimates annual congestion in the US to
decrease economic welfare by 4 billion USD in 1988, and Whalen et al. (2007, p.6) compute US travelers’
time costs for the first quarter of 2007 to amount to 239 million USD.

2Based on rudimentary empirical data, Natalie McCaughey and Starkie (2008) shows that at most major slot-
constrained airports worldwide, the market share of the main carriers generally reaches 40 to 60 percent in
terms of flight movements.





      

Consequently, a considerable number of studies offers alternative solutions to this classical eco-

nomic allocation problem. Most prominently, they propose allocation schemes based on market

instruments, and internalization of congestion by means of taxation (cf. e.g. Brueckner, 2009a,

p.682). In theoretical, perfect competition models, optimality can be shown for all of these

alternatives. This is in-line with economic theory, where in absence of market distortions, both

internalization of an externality, as well as a market-based allocation equivalently reproduce

efficiency (Mas-Colell et al., 1995, pp.356). However, when competition is imperfect, capacity

allocation also affects market concentration, and thus the degree of market power among com-

petitors. This, in turn, directly induces second-order effects on efficiency, which may offset or

even overcompensate the positive welfare impact of regulation. So, as Starkie (2008b, p.135)

puts it, “economic regulation introduces its own distortions, and at the end of the day, there is a

trade-off to be made between imperfect competition and imperfect regulation”. In other words,

if allocation efficiency is compromised not only by externalities, but also by market power,

the assessment of allocation instruments needs to account for their competitive impact, too.

Considering this gap between theory and practice, thus, it seems not surprising that no unified

view has been found on the airport capacity allocation problem yet, and that so far alternative

policies have rarely been implemented in practice (Madas and Zografos, 2010, p.275). The

question hence still seems to be about „the facets of the problem that we have been missing.“

(Lave, 1995 in Rietveld and Verhoef, 1998, p.285). As this study argues, one of these facets

are that competition at large network hub airports is driven by product differentiation based on

network density benefits. This implies that their market structure may justifiably be character-

ized as an asymmetric oligopoly. As mentioned above, the resulting market power should be

expected to affect allocation efficiency under all allocation schemes. As laid out below, how-

ever, this suggestion has not yet been reflected in theoretical models within the current airport

capacity allocation discussion.

Considering capacity allocation at hubs of dominant network airlines, two major gaps attract

attention within recent theoretical work in the field:

First, the majority of studies provide perfect competition settings, or at least deliberately ab-

stract from elastic demand. Although this allows to focus on the analysis of the instruments,

evidently market-power effects and their second-order impact on efficiency are suppressed. In

contrast, the few studies that consider imperfect competition, as suspected, do find potentially





      

adverse welfare effects from allocation instruments in conjunction with market power. But

although they reflect endogenous pricing and allow for second-order effects, still most of the

latter only consider flights as homogenous products. This means that there is only one market

price, that is determined by total industry output, and is identical across all firms (Vives, 2001,

p.94). And as Berry (1990, p.394) puts it, this only represents “traditional market power” that

yields profits “by restricting output and driving up prices”. Such traditional market power is

implemented in Brueckner (2002a), Brueckner (2002b), Basso and Zhang (2010) and Verhoef

(2010). But as Gillen and Morrison (2008, pp.178) point out, the airline industry is likely one

of product heterogeneities. And as O’Connell (2006, p.54) states, modern airline competition

is based on differentiation strategies, where successful airlines strategies are able to imple-

ment competitive advantages. These, in turn, translate into higher markups, and thus allow

airlines to outperform their competitors (Holloway, 2002, pp.23-24). Thus, at a large network

hub, product differentiation may justifiably be characterized as a driver of competition that en-

dogenously affects market power. This would mean that, as Berry (1990, p.394) argues, “both

simple cost-reducing and naive market power stories are inappropriate for the airline industry”.

But although already Brueckner (2002a) mentions the need to account for airline asymme-

tries other than cost-side differences, market-power that allows for endogenously differentiated

prices based on demand-side heterogeneities (Berry, 1990, p.394) has not been reflected in re-

cent oligopoly models.

And second, despite the fact that the business model of the hub-and-spoke network airline has

faced “near-universal adoption” (Oum et al., 2012, p.432) for multiple decades (Burghouwt,

2007, Zhang et al., 2011, p.803), large network airlines that exploit network density effects have

not yet been reflected in recent models of airport capacity allocation discussion. But as com-

petitive advantages depend on the market structure (Holloway, 2002, pp.23-24), and a network

can be shown to be a dominant strategy in oligopoly competition (Oum et al., 2012, p.432), one

might think of network airlines to differentiate their products against competitors based on net-

work density effects (Starkie, 2008a, p.197). This would formally capture the idea that networks

provide “superior connectivity and wider market coverage” (O’Connell, 2006, p.60), with hub

connectivity having a “tremendous commercial impact” (Goedeking, 2010, p.21). With density

economics being the basic rationale for the prevailing hub-and-spoke structures (Brueckner,

2002b, pp.10-11), competitive advantages on the production side might then be based on net-

work density (Jäggi, 2000, p.271). And because network synergies based on such network





      

density are recognized as revenue related economies (Jäggi, 2000, pp.61), for network airlines

airport access rights become key business assets (idem, p.272).The notion that network density

effects, based on higher market concentration, may constitute heterogeneities that translate into

higher markups is strengthened by Aguirregabiria and Ho (2010, p.1), who empirically find

differences in prices and hub sizes across airlines, when profit functions account for comple-

mentarity. But although network density effects are accounted for in a few models , none of

these relate them to competitive advantages, let alone product differentiation. Also Langner

(1996, p.15ff.) opinionates that suggestions for alternative instruments did not account for the

“network characteristics of flight services”, and Aguirregabiria and Ho (2010, p.1) stress that

the consideration of airline networks in the context of entry deterrence had been neglected. But

following the above reasoning, density benefits as drivers of comparative advantages for net-

work airlines may reasonably be considered to contribute to the “socially ambiguous nature of

much of product differentiation in this industry”, which makes “welfare analysis particularly

difficult” (Berry, 1990, p.398). The above arguments thus clearly point out the need for a theo-

retical model that appropriately captures the market structure of a large network hub, by taking

into account product differentiation based on network density effects.

This study aims to cover this gap in the theoretical analysis of scarce airport capacity allocation.

On this purpose, it proposes a conceptional framework for a theoretical partial equilibrium

model of an airport-airline network, that allows for product differentiation based on network

density effects. Horizontal differentiation is based on the idea of distinct product quality, that

affects the passengers’ customer value from flights with the network airline. Heterogeneous

product quality is introduced by means of indirect passenger benefits, that arise from the net-

work density of the network airline. This leads to a demand-side asymmetry in an imperfect

airline competition case with market power. Product heterogeneity by airline-specific network

density ultimately allows for endogenous pricing, that enables market concentration “to affect

both costs and demand” (Berry, 1990, p.394). Specifically, the model is based on Brueckner

(2002a)’s discrete choice model with symmetric airlines, and further developed according to

the general foundations for network goods of Belleflame and Peitz (2010). In general, it re-

flects the following situation: One airline is supposed to be a network airline, where customers

enjoy indirect network benefits from flight frequency. The other airline is to reflect a straight

point-to-point airline, that simply offers transportation, without network benefits. Thus, while





      

the network airline endogenously controls market power by horizontal product differentiation

and creates network density benefits for passengers, the other airline only provides flights as

a homogeneous good. Network density benefits are supposed to represent utility from a high

connectivity of the network airline, through the number of destinations and the flight frequency

on routes. This connectivity is depicted by network density in the model, which in turn is sim-

ply represented by the business airline’s flight volume during peak times. Admittedly this is a

very basic implementation of the complex concept of network benefits. Nevertheless, it serves

for the most simplistic illustration of the case, while it helps to focus on the basic issue of the

asymmetry of the airlines. Product differentiation comes along with heterogeneous consumer

taste, which is captured by distinct preferences for peak versus off-peak-travel and for network

density benefits. This reflects business and leisure travelers. Indirect utility from network den-

sity thus only arises from the number of flights of the business airline, and only peak-travel

sensitive passengers are willing to pay for these benefits. Because network density is based on

flight volume, both product differentiation and pricing are endogenous to the output decision of

the network airline. Ultimately, thus, endogenous network density represents a product hetero-

geneity that yields indirect benefits for passengers. In that, it becomes a comparative advantage

that creates endogenous market power for the network airline, and thus also affects airport de-

mand. Hence, it affects allocation efficiency by its potential impact both on congestion and on

market concentration.

The innovation of the model thus is that flights are assumed to be imperfect substitutes, and

that their degree of differentiation is endogenous. This reflects quantity competition with dif-

ferentiated prices in oligopoly. Its unique contribution thus is the introduction of endogenous

product differentiation, that allows to study asymmetric airport demand with a network airline.

Subsequently the model is used to investigate the impact of different airport capacity allocation

schemes on efficiency. As the dual distortion considerably complicates regulation policy, this

setup allows to assess whether current and proposed instruments are appropriate for the natural

market structure at the large network airlines’ hub airports.

The study supports the result from previous imperfect competition models, that the welfare

effects of alternative allocation schemes are ambiguous. As the model only reflects generic

functions, however, these ambiguities ultimately cannot be resolved. Still, theoretical consider-

ations strongly point towards severe welfare caveats of both a market allocation of constraints,





      

as well as of a tax-based internalization of congestion. One possible implication of this might

be that in a network hub context, instead of allocation instruments for individual flights, natu-

ral monopoly regulation might have to be considered, that would enable the internalization of

externalities while at the same time accounting for market-power problems. Future research

therefore might investigate a transfer of monopoly regulation from other sectors to the net-

work airline case, especially from industries that also rely on network structures, such as e.g.

telecommunications networks, rail infrastructure, power grids or public ground transport. A

tempting proposition were network operating licenses, that allowed the network company to

fully develop the network benefits for the customers, while its price might relate to the market

power that it provides. At least under the current perspective on the airport capacity allocation

problem, such an approach has not yet been considered. In order to emphasize the above the-

oretical arguments, however, the model should be evaluated for different specific functions, in

order to show explicit conditions for the above welfare effects. Moreover, the model parame-

ters could be estimated and calibrated in a real-world context to yield quantitative results. This

could be envisioned by further development of this study.

One sensitive issue concerning the market power context of this model should, however, be

considered: From a perspective limited to one single market centered around the considered

hub airport, it seems natural that the network airline enjoys market power against the leisure

airline. However, one might think of other competitors that also offer network benefits from

their flights, while being based at other hub airports than the one concerned. So, in a global

market, the networks and their dominant airlines themselves would enter into competition,

because all non-direct flights between two arbitrary points on earth simply differ by the place

where connection is made. Then, apart from other quality differences among distinct networks

and carriers, the comparative advantage based on network benefits would in general also be

subject to competition. Hence, global competition between networks should be considered

within the capacity allocation problem, too, although it remains unclear how it relates to market

power and to airport demand of a carrier in its network hub.





      

2 Background and Literature

In Europe and most other world regions, access to large congested airports is restricted by

means of airport quota (Ulrich, 2008, p.9). These so-called Airport slots constitute access

rights, based on an IATA (International Air Transport Association) policy, and legally estab-

lished by European law. 3 Airport slot allocation takes place in semi-annual, strategic coordina-

tion conferences with all airports and airlines concerned. It is mainly based on grand-fathering

rights of established participants, and on reserving a marginal share for market entrants or ex-

panding airlines (Ulrich, 2008, pp.10). 4 In the US, airport capacity is generally available on

a first-come, first-served basis (Madas and Zografos, 2010, p.275). In practice, the administra-

tive allocation process is described as “extremely successful” (Ulrich, 2008, p.10), and found

to ensure transparency, fairness and non-discrimination (Bauer, 2008, p.152). However, recent

literature has raised severe criticism that it was both inefficient and inequitable (cf. Matthews

and Menaz, 2008, pp.24, or De Wit and Burghouwt, 2008, pp.148): The privilege of estab-

lished airlines implied entry barriers for business rivals and thus reduced competition (Daniel,

2009b, p.22), and were opposed to the general infrastructure policy goals. 5 On this matter,

also legal concerns in terms of commercial freedom of action and equal opportunities are raised

(Kost, 2003, pp.108). From an economic perspective, two market distortions arise within the

oligopoly context of this study: market power and congestion as an externality: First, market

power causes the market size to decrease from the social optimum. This induces a deadweight

loss and excess profits for the firms. Moreover, it determines to what extent congestion is inter-

nalized. Second, the congestion externality c.p. leads to a higher output than socially optimal,

because only part of the congestion costs are accounted for in the airlines profit-maximizing

rationale. In the present context, the impact of market power and the congestion externality on

market size are opposed to each other. As at least one of the two is always present, one may

3 Airport slots must not be confused with tactical "slot" times imposed by air traffic control for operational flow
management in case of capacity disturbances during daily operations, technically labeled as CTOT (Calculated
Take-Off Time; see Tanner, 2007, p.35).

4 Grandfathering rights refer to the principle that air routes operated regularly during one period are granted
airport access at first priority during the next period (Ulrich, 2008, p.12). In general, thus, established con-
nections have priority over the expansion plans of airlines (De Wit and Burghouwt, 2008, p.150). Sieg (2010)
thus refers to grandfathering as to quasi-property rights for airports access.

5EU infrastructure policy requires air traffic constraints to be non-discriminating, and externalities to be borne
according to the user-pays-principle (Van Reeven, 2005, pp.711).





      

refer to this as to a dual distortion. It is depicted in Figure 1, and has the following effect: 6

Figure 1: Congestion Externality (CE) and residual Market Power (RMP) [Source: own illustra-
tion]

The graph represents the welfare level that can be reached with different degrees of market

concentration θ. An increasing market concentration means higher residual market power

(RMP) but lower congestion externalities (CE). The extreme to the right is a non-discriminating

monopoly, that fully internalizes congestion but causes a large deadweight loss. The other ex-

treme, at the left, is a perfectly competitive market. It suffers from excessive congestion, as

congestion costs are fully external, but is not concerned with market power. The net welfare

curve depicts the welfare levels that can be reached by market solutions. The first-best welfare

level corresponds to the social optimum, where by definition congestion is internalized and

output is not distorted by market power. As the graph shows, it can never be reached with a

market solution, because the latter always suffers from at least one of both distortions.7

In other words, any non-discriminating pricing market equilibrium is inefficient. But because

regulation can correct for the congestion externality, at least it can be second-best. Depending

on the relative size of the two effects, however, it may also increase the market power distortion,

and in sum cause an overall negative welfare effect.

6This is an own illustration, based on the properties of Brueckner (2002a)’s equilibrium results in his homoge-
nous products model. The functional forms in the graph are arbitrary and for illustration purposes only.

7The only exception to this is a perfect price discriminating monopoly. It can replicate the social optimum, be-
cause it both fully internalizes congestion, and removes the market power distortion at the same time, because
there is no deadweight loss. Perfect price discrimination, however, is not treated in here.





      

Both the actual scheme and the proposed alternative instruments for airport capacity alloca-

tion are founded on the three general economic instruments to compensate for external effects:

quota, taxation and decentral bargaining (cf. Mas-Colell et al., 1995, pp.351). Quota reduce

externalities to a socially optimal level by restricting the activity from which they are caused.

With taxation, the costs of an activity are adjusted so that they include the external effects

caused. Such tax needs to equal the marginal costs of the externality. Finally, decentral bar-

gaining is e.g. implemented by perfect competition in a classical, free market allocation.

In theory, quota, taxes as well as a market solution are all equally efficient, if markets are

perfectly competitive, and costs and benefits are fully known to the regulator or the market

participants, respectively (Mas-Colell et al., 1995, pp.356). The fact that perfect information is

a strong requirement, however, already makes evident that efficiency might be difficult to reach

in an administrative allocation process. 8

According to their occurrence in recent studies, the externality taxation scheme known as con-

gestion pricing and the market-based allocation of airport slots by means of secondary trading

are the two most prominent propositions Brueckner (2009a, p.682). As mentioned above, Con-

gestion pricing internalizes the congestion externality by means of taxation. Secondary trading,

in contrast, introduces opportunity costs for slots, which should reflect proper costs of infras-

tructure scarcity, and thereby also lower barriers of entry and increase competition at the benefit

of the consumers (e.g. Gillen and Morrison, 2008, p.174).

As explained above, however, in oligopoly with market power their effects become ambiguous:

In his theoretical model, Brueckner (2002a) shows that a congestion tax can actually deterio-

rate efficiency, if output is already distorted by market power: As the congestion externality

tends to increase output, but market power decreases flight volume against the social optimum,

the two distortions are opposed to each other. 9 Consequently, taxation of excess flights works

in the same direction as market power. Now, if if the market power distortion is large in rela-

tion to the congestion externality, it already offsets most of the congestion distortion in terms

8This argument strictly refers to the allocation of quota, but not to the determination of their optimal size. Other-
wise, one might argue that also for optimal taxation, the monetary equivalent of the externalities were difficult
to obtain, and that with decentral bargaining, all preferences needed to be known to the market participants.
Thus, although incomplete information may preclude an efficient solution with all three above options at the
quantification stage (Mas-Colell et al., 1995, pp.368), this study only considers the allocation problem of
pre-determined constraints or externalities, respectively.

9 Formally, the direction of the residual market power effect depends on the assumptions about consumers’
benefits. Brueckner (2002a)’s model requires marginal flight benefits to be higher for business than for leisure
travelers, which sounds fairly reasonable. In accordance with the latter, therefore, also in this study market
power is presumed to be strictly output decreasing.





      

of output. A further reduction of output by the congestion tax then might shift the equilibrium

further away from the social optimum than without regulation. If, in contrast, the congestion

externality is more important relative to the market power distortion, the volume-decreasing

effect of the tax still had a positive impact on social welfare. In conclusion, the ambiguity of

congestion pricing under market power depends on the size of the residual market power effect

relative to the congestion externality (Brueckner, 2002a, p.1368). In an asymmetric duopoly

with product differentiation, however, market power may justifiably expected to be large. But

also with secondary trading, market power might constitute a caveat to efficiency: In order

to increase market concentration through entry deterrence, network airlines might be willing

to afford higher prices for access rights than their smaller competitors (Matthews and Menaz,

2008, p.36). This would allow them to achieve network density, and thus scarcity rents based

on hub premiums (e.g. Starkie, 1998, p.114 or 2008b, pp.171). 10 But again in contrast to

this, the associated network benefits might make passengers willing to pay a network premium,

and in terms of welfare offset the hub premium (Berry, 1990, p.394). In other words, both

airlines and passengers might profit from “hub networks based on network density benefits”

(Starkie, 2008a, pp.193). This conjunction of network benefits and market concentration hence

also have ambiguous effects on welfare, and has therefore been brought up as the dilemma of

airport concentration (Starkie, 2008a). Both market power as well as network density benefits,

hence, also disguise the welfare impact of secondary trading. Asymmetries, in turn, might even

completely prevent trading opportunities at positive prices. In literature, empirical evidence

shows only much limited trading in historical market approaches (Fukui, 2010, Starkie, 2008a

and De Wit and Burghouwt, 2008), and adoptions of a congestion pricing mechanism have

rarely been reported so far. Moreover, the recent theoretical contributions illustrate the above

ambiguities:

In perfect competition models of single airports, Daniel (1995), (2001) and (2009a) find so-

cially efficient results for airport congestion pricing compared to administratively allocated

slots. For airport networks, Hong and Harker (1992) also report positive welfare effects of

market-based airport capacity allocation, and Brueckner (2002b) as well as Czerny (2006),

(2007) and (2010) find welfare benefits of optimal congestion charges against a slot allocation.

As comparative studies, Brueckner (2008), Brueckner (2009a) and Basso and Zhang (2010)

find that both congestion pricing and secondary trading schemes may provide first-best allo-

10 (Morrison, 2005) finds empirical evidence for hub premiums at large network airports.





      

cation efficiency, but only if strategic airline behavior was ruled out. Although the latter two

claim imperfect competition settings, they actually abstract from market power by assuming

inelastic demand, and thus face the perfect-competition aggregate output.

In contrast to the above studies, however, Brueckner (2002a), Barbot (2004), (2005) and Ver-

hoef (2010) account for market power. As expected, they find ambiguous results for alternative

instruments:

As already mentioned, Brueckner (2002a) shows that a congestion tax can have adverse wel-

fare effects, if the market power distortion is large relative to the congestion externality. Barbot

(2004) finds a welfare-decrease after a market re-allocation of airport access rights, because

airlines engaged in higher price differentiation, and Barbot (2005) finds that in her setting, con-

gestion charges actually decreased welfare. And finally, Verhoef (2010) both confirms Brueck-

ner (2002a)’s above result for congestion pricing, and finds that for secondary trading with a

high degree of market power, aggregate demand may be too low to allow trading at positive

prices. When the congestion externality is important than market power, in contrast, he shows

that the less efficient airline is driven out of the market, yielding a monopoly, which he claims

to be potentially worse than no regulation at all. Hence, also a secondary trading scheme can

not be claimed to unambiguously yield an efficient allocation, when market power is present.

Still, also the above market-power studies consider flights as homogenous and airlines as sym-

metric. Only Verhoef (2010) provides an asymmetric airline case and moreover includes market

power. His heterogeneity, however, is based on different marginal costs.

Therefore, although the above results point towards potentially hazardous results with alter-

native schemes, the welfare effect of an airline asymmetry based on demand driven product

differentiation by means of passenger network benefits remains to be investigated.

Indirect benefits from network goods have been described and generically formalized in eco-

nomic network theory (e.g. Belleflame and Peitz, 2010, pp.550). According to their nature,

they may be put as to correspond to the prominent concept of customer value from the busi-

ness administration literature. It describes the overall value of a product to the customer that

not only includes utility from consumption, but also from product attributes (Woodruff, 1997,

p.142). The integration of customer value into the concept of economic utility had already been

brought up by Wichers (1996)’s theory of individual behavior, and product attributes that enter

the utility function had been introduced by Dixit and Stiglitz (1977) and Krugman (1980) in the





      

monopolistic competition literature. Customer Value as a competitive advantage against com-

petitors has been mentioned by Woodruff (1997), and now is a standard argument in marketing

theory (Shankar and Carpenter, 2012, cf. e.g. ). Horizontal product differentiation, in turn,

may thus be stated as its well-known foundation from economics (see e.g. Woeckner, 2011,

pp.15). In order to stress the above causality concerning product differentiation and competi-

tive advantages, in the model I refer to the passengers’ overall indirect utility from flight and

network benefits as to the Customer Value. This also helps to avoid confusion between indirect

utility referring to network density benefits, while at the same time denoting the formal concept

for partial equilibrium analysis.

In contrast to theory, network density benefits as comparative advantage have not been con-

sidered in any of the above studies: Czerny (2010) introduces indirect flight benefits based on

airline flight frequency. In his case, however, benefits depend on the overall flight volume at an

airport. And although both Brueckner (2002b) and Hong and Harker (1992) extend their anal-

ysis to airport networks, they admittedly neither account for network density effects. However,

both Brueckner and Zhang (2001) and Aguirregabiria and Ho (2010) provide formalizations

of the central argument of this study: Brueckner and Zhang (2001) explicitly model passenger

benefits from flight-frequency within a network structure. They investigate a single monopolis-

tic airline’s choice problem of network type and design in a flight-fare versus frequency context.

Aguirregabiria and Ho (2010) provide a model of a network airline’s profit function, that re-

flects the complementarity of market entry and exit decisions across different routes. With this

what they call supermodular profit function, they enable the model to „incorporate the entry

deterrence motive“ for networks. Both these studies thus provide theoretical support for this

study. Nevertheless, both only consider network effects as an optimization problem for one

single airline, and thus abstract from competition and from regulation.

3 Model

In the following, first, a simple but innovative, single-airport two-airline model is presented.

The model is based on Brueckner (2002a), but is modified to allow for product differentiation

between the two airlines. More specifically, product heterogeneity is introduced by means of

additional, indirect passenger benefits from network density of one airline. Because this modi-





      

fication enables to capture network density effects, the model is then used to investigate differ-

ent airport capacity allocation schemes, for the case where airlines are asymmetric, and one of

which is a network carrier. The goal of this model is to capture the basic properties of product

heterogeneities based on network density benefits in a stylized airport-airline model, in order to

explain airport demand with a network airline. Its unique contribution thus is to introduce hor-

izontal product differentiation motivated by product quality, that ultimately leads to an airline

asymmetry based on demand, rather than on cost heterogeneities. This, in turn, enables this

study to theoretically investigate the efficiency of different airport capacity allocation schemes

at a stylized network airline’s hub airport. The analysis thus takes a systemic-economic per-

spective. The allocation instruments considered are selected from recent studies on this topic,

and are laid out in the second subsection of this chapter. Subsequently, a table is provided that

summarizes all model variables on one single page for quick reference. The model equilibrium

and the results of the analysis are presented in Section 4.

3.1 Setting

3.1.1 Network Structure

The model adopts the simple, stylized network structure from Brueckner (2002a), and is shown

in Figure 2. It reflects one congested hub airport, which connects to several unspecified, un-

congested destinations:





      

Figure 2: The Network Structure [Source: own]

The hub airport is served by two airlines, which operate on all routes between the hub and the

destination airports. As the destinations are not specified, neither are the routes, and the number

of flights of each airline is simply measured by its flight volume. In contrast to Brueckner

(2002a), however, the two airlines are asymmetric: One is to reflect a network carrier that

is able to exploit network density benefits for passengers. It is therefore supposed to target

business travelers and thus denoted as business airline B. The other airline is thought of as a

simple point-to-point, no-frill carrier, which does not offer advantages from network density.

As it is supposed to target leisure travelers - that is, passengers with low schedule preferences

- this airline is denoted as leisure airline L. The specification of the network density effects

is given below. But to start with, one might think of the network airline to provide full travel

flexibility, e.g. by allowing for free short-term re-booking across all its flights on the route or

in the network, whereas the leisure airline e.g. allowed for travel on the single booked flight

only. The introduction of this airline asymmetry based on network density effects represents

the main innovation of this study, and it’s unique contribution to recent literature.

Congestion occurs at the hub airport only, whereas all destination airports are assumed to be

free of flight delays. As Brueckner (2002a, p.1360) points out, this assumption is crucial in

order to abstract from cross-effects of congestion at other airports. Also, in order to investigate





      

the allocation of flights between congested and uncongested periods, the model adapts Brueck-

ner (2002a)’s notion that the congested hub has peak and off-peak periods: In the peak period,

flights are subject to congestion and thus to delays. Delay is assumed to cause time costs to the

passengers and congestion costs to the airlines, and is an increasing function in total peak-flight

volume at the hub. In contrast to this, during the off-peak period flights do not encounter de-

lays. Hence, for these off-peak flights, no additional costs other than operating costs accrue to

the airline. This allows to observe how airlines shift their flights between periods, rather than

simply going in and out of the market or adjusting total flight volume.

The investigation then is focused on the hub airport, with flight volume per period and per

airline as the unit of analysis. For simplicity, thus, the model does not distinguish whether

multiple flights reflect frequency on one single route, or whether every flight serves one sin-

gle destination and thus their multitude represents destination choice. This simplification is

maintained in order to focus on the asymmetry and to keep traceability. It could, however, be

removed by model extension if desired so, allowing to analyze the airlines’ choice of increasing

flight frequency on one route, versus expanding its number of destination.

Of course there might be objections on how to exactly justify such a market separation in

today’s world, where low-cost airlines have also been engaging into network structures and tar-

geting business travelers, and therefore traditional business models and new entrants’ strategies

have partly become intermixed.11 But in fact, the interpretation of the leisure airline is left open

to some extent: it may reflect a competing low-cost airline, a leisure air carrier, or a small air-

line operating to remote destinations. Or, for the sake of this model, it may even be interpreted

as residual supply from multiple airlines, that offer a homogenous product which only contrasts

to the business airline’s networking flights: If each would be serving a part of the market on a

route basis, this would reflect imperfect competition against the network-airline, but with dif-

ferent flights from distinct but identical airlines, and thus with residual supply as a homogenous

product without network effects. Thus, while this issue generally is of importance, it might be

abstracted from in this model by the before mentioned residual supply assumption. This is also

valid for flights that connect at the hub to serve a destination pair, and face competition from

airlines serving the same destination pair but on a route connecting at its own hub outside of

11I would like to thank referee Sven Maertens from DLR for this comment at the GARS student researchers
workshop 2012 in Bremen.





      

the model, or even by a direct flight, if imperfect competition is assumed on a route basis with-

out those flights actually being reflected within the model. The micro-foundation of air travel

supply and demand is explained in the following subsection.

3.1.2 Supply

Flight Volumes As shown in Figure 2 above, the peak- and off-peak flights of the two air-

lines are denoted by subscript o and p, respectively. With uppercase letters used for aggregate

variables across airlines, the number of flights during the peak period then is

Np = nB
p + nL

p, (1)

where nB
p and nL

p denote the individual number of flights of each airline during that period.

Accordingly, the aggregate off-peak flight volume is

No = nB
o + nL

o . (2)

Flight volume relates to output in terms of the number of passenger by introducing s as the

number of seats per flight. Then, total peak and off-peak-passenger volumes are

s · No and s · Np. (3)

For simplicity, the seat load factor assumed to be 100%,12 and the number of seats per aircraft

is held constant and symmetric (as in Brueckner, 2002a). For the equilibrium analysis, then,

it can be normalized to unity without loss of insight. Relaxing these restrictions would allow

consideration of the airlines’ choice problem of flight frequency versus aircraft size, and letting

s differ across airlines would enhance the airline asymmetry. However, for traceability of the

analysis and to focus on the newly introduced airline asymmetry in the first place, I abstract

from these interesting complications.

12The seat load factor determines the occupancy of the seats offered per aircraft. This condition ante-cedes the
market clearing assumption in the equilibrium computation section (cf. 4.1).





      

Airline Profits The two airlines behave as profit maximisers. The formulation of airline

i’s profits Πi is straightforward and also follows Brueckner (2002a). Modified for the current

notation, for i = {B, L} it involves s as the number of seats per aircraft, f i
o and f i

p as the flight

fare dissociated by airline and by period, and generic functions Ci(N i) for operating costs and

G(Np) for total congestion costs, and yields

Πi = s · ( fo · ni
o + f i

p · n
i
p) −Ci(ni

o + ni
p) − ni

p ·G(ni
p + n j

p) for i, j ∈ {B, L} . (4)

With heterogeneous goods, fares not only differ between the peak- and off-peak periods, but

also across airlines. Still, the profit functions are symmetric, as the network density benefits

arise from demand. Congestion costs depend on the overall volume of peak traffic, but only

affect the airline via its own peak-flights. In order to concentrate on the network benefits and

not to get distracted with different functional specifications for operating costs, let assume

constant and symmetrical marginal costs C′i (n
i
o + ni

p) = c for i = {B, L}, and thus Ci(ni
o + ni

p) =

c · (ni
o + ni

p).13

The supply-side first-order conditions for the equilibrium are then the respective partial deriva-

tives of the airlines’ profit functions for peak and off-peak flights. Notice, however, that the

equilibrium conditions depend on the assumption about the market structure: In a perfect com-

petition situation, airlines optimize their output taking market prices as given. With market

power, however, their output also endogenously affects the flight fares, and thus price-elasticity

of demand needs to be taken into account (see 4.1).

3.1.3 Demand

Above all, passengers are assumed to be utility maximizers. They are presumed to maximize

utility from flight services, and from residual consumption of a numéraire good. This ab-

straction follows Brueckner (2002a) and most theoretical models in the field (e.g. Brueckner,

2002b, Zhang and Zhang, 2006, Czerny, 2010, Verhoef, 2010). The justification is that with

one numéraire and one remaining good, demand for the latter only depends on its own price,
13Whether airline operations may exhibit economies or dis-economies of scale is controversially discussed in

literature. Therefore, increasing and decreasing marginal costs would provide an interesting topic for further
research, and their impact could actually be investigated with this model, simply by putting up the correspond-
ing assumptions about the form of the generic cost function.





      

and on consumer income (Jehle and Reny, 2011, p.50). This means that for the analysis, we

obtain the indirect utility function that only contains prices and flight benefits, but is not con-

cerned with explicit utility levels. This substantially simplifies the analysis, as the indirect

utility captures the relation between relative prices and income under the premise that utility is

maximized. That is, it represents a „maximum-value function corresponding to the consumer’s

utility maximization problem“ (Jehle and Reny, 2011, p.28).14 With residual consumption as

a single numéraire good, however, the model is simplified to a reflect partial equilibrium only.

This means that it does not consider the general equilibrium of the economy as a whole, but

only of this sector. Of course, the intention behind this is to obtain a traceable analysis of the

problem at hand. Simplicity is achieved because this abstraction suspends substitution effects

across other sectors of the economy, and makes the entire income effects to be captured by

the numéraire good only. The main objective of this is that the consumer surplus becomes

an „appropriate measure of welfare change“, as it „corresponds directly to the indirect utility

function“ (Vives, 2001, p.77). Of course, this advantage comes at the cost of reduced preci-

sion. However, as Vives (2001, p.77) points out, partial equilibrium analysis of an industry is

justified, if its corresponding share of the consumer’s budget is small. Then, income effects

are justifiably assumed to be negligible. This, in turn, justifies a utility function that is linear

in income, as well as the representation of the remainder of the economy as an „aggregate

numéraire“ good. In other words, linear utility and an aggregate numéraire justify partial equi-

librium analysis (Vives, 2001, p.145). With the setting from above, evidently both is the case

here, and the negligence of cross-sectoral substitution effects seems acceptable in relation to

the reduced complexity of the analysis.

Consumer Taste To account for product differentiation, first of all it is essential to reflect

heterogeneous consumer tastes in demand. The travel demand rationale thus is based on the dis-

crete choice model as introduced in Brueckner (2002a), as it already accounts for such demand

heterogeneities. Discrete choice models represent demand by „the collection of choices made

by individuals“ across a „finite set of mutually exclusive and collectively exhaustive alterna-

14Formally, if u(x) is the utility function, that is maximized under condition that consumption of goods x at prices
p cannot exceed income I, p · x ≤ I, then the indirect utility function is the maximum value function v(I, p)
that is defined as: v(I, p) ≡ max u(x) s.t. p · x ≤ I. One might think of v(I, p) as of yielding the highest
possible indifference curve (and thus utility level) that can be achieved when prices are p and income is I
(Jehle and Reny, 2011, p.28). Vives (2001, p.145) refers to this indirect utility as to subutility.





      

tives“, and thus allow to capture how and why consumers take particular decisions - in contrast

to aggregate or statistical demand quantities (Garrow, 2010, p.15). Although discrete choice

models are usually used to predict decision behavior based on empirical data [Garrow, 2010,

p.15, Ben-Akiva and Lerman, 1985, pp.2], also the analytical solution of Brueckner (2002a)’s

model allows to investigate passenger demand under different conditions.15 Finally, to adopt

the basic idea of this study, Brueckner (2002a)’s demand structure is extended for network

density benefits. The passengers’ choices according to the general setting of this model are to

travel during peak times, to travel during off-peak times, or not to travel at all. Moreover, due to

the newly introduced airline asymmetry, passengers also choose which airline they fly. While

both airlines generally operate during both periods, they are assumed to differ both in travel

benefits and in flight fares. In order for peak travel preferences to be reflected in travel demand,

consumer taste is denoted by a variable θ. Its value range denotes all the different consumers,

and is defined as a continuum in interval [0, 1]. Thus, formally, θ ∈ [0, 1]. The density of

θ ∈ [0, 1] is assumed to be uniform, which means that the total number of passengers in the

model is unity. The meaning of consumer taste then is the following: As Brueckner (2002b,

p.6) puts it, low values of θ correspond to leisure travelers, that are indifferent about their travel

period. In contrast, high values of θ pertain to business passengers, which valuate peak travel

higher than off-peak travel, precisely due to the business nature of their trips.

Indirect Utility To setup the demand structure as sketched above, I first follow Brueckner

(2002b, p.5)’s definition of utility, which is stated as U = x+ B. B denotes gross travel benefits,

and x denotes residual consumption of the numéraire good. Because the numéraire good has

price unity, then, for any given income I residual consumption corresponds to x = I − f , where

f denotes the flight fare. Substituting this term into the utility equation from above yields

U = I − f + B. Then, if income is treated as constant, for the analysis it is sufficient to consider

the terms of the gross travel benefits and the flight fare, B − f . This term then corresponds to

the indirect utility function, and the setting allows for partial equilibrium analysis (as explained

above). In contrast to Brueckner (2002a), however, gross flight benefits B in this indirect utility

15As Garrow (2010, p.3) points out, discrete choice models have become increasingly important in aviation ap-
plications, since they reflect clear-cut alternatives of choice for individuals. Methodically, Brueckner (2002a)
represents a multinomial logit (MNL) choice model, as it considers three exclusive choices for each customer
(cf. Garrow, 2010, pp.46). Product differentiation then adds a fourth option of choice by distinguishing peak-
flights between the two airlines, but does not change the model type on methodical grounds.





      

term now include both direct an indirect benefits. In order to capture the entire width of utility

from flights in this particular model, and according to the foundations from literature as pointed

out above, the indirect utility term is referred to as Customer Value. With indices left out at first

for simplicity, customer value is hence defined as:

CV ≡ B − f . (5)

Gross Travel Benefits Now, as already briefly stated above, the particularity of this model

is that gross travel benefits from flight services as reflected in eq. (5) include two components:

a direct and an indirect one. On the one hand, benefits to the passengers arise from the bare

transportation services of a flight. This type of benefits is straightforward, and is referred to as

direct flight benefits. On the other hand, travelers are supposed to have indirect benefits from the

network density of their airline. This means that they obtain additional utility from the supply

of multiple flights at short time intervals on the same route (or, more generally, in the network).

Within the simple network structure of this model, this feature can simply be captured by the

flight frequency on a route. Simply put, this corresponds to the number of flights of an airline

during one period. A high frequency then allows both a wide choice of flights for booking

before travel, and moreover a flexible schedule change during the day of travel. The latter may

be attractive if there are irregularities that require to change flights, or simply if travel plans

change on short notice. The important point is that those indirect benefits from network density

are presumed to matter only to passengers that are schedule-sensitive, i.e. that are assumed

to have a high value of time and distinctive schedule preferences. In this setting, these two

characteristics are not modeled specifically, but reflected by increasing benefits from travel at

peak times. Also, only the business airline is presumed to be able to provide such benefits from

network density, because by assumption it is the only carrier to reflect a network structure.

Although the network is of course stylized to the limit in this model, one might argue that the

leisure airline by definition targets leisure rather than business travelers (see above), and thus

does not try to optimize its schedule with respect to flight frequency. Moreover, one might

argue that in the latter case, travelers were detained from changing flights on short notice by

high penalty fees, or simply not allowed to re-book.

The conception of gross travel benefits B in (5) therefore is supposed to be as follows: On the





      

one hand, they consist of direct flight benefits that arise from the „consumption“ of flights. But

on the other hand, as well they should include indirect benefits from network density. While

direct flight benefits are replicated from Brueckner (2002a)’s original model, indirect benefits

from network density are not accounted for in the latter, and thus need to be introduced on

grounds of this model. The direct and indirect travel benefits are specified in the following.

Direct Flight Benefits Let first consider direct flight benefits. Direct travel benefits differ

across the two periods, and are defined as a function bi(θ) of consumer taste θ, where index

i = {o, p} denotes the respective period. The two direct travel benefit functions bo(θ) and

bp(θ) are depicted in Figure 3 below.16 First, the graph shows that both functions increase with

consumer’s preference for peak travel. Second, it shows that business travelers (associated with

a high θ) value peak travel more than off-peak travel - and that the opposite is true for leisure

travelers. This depicts Brueckner (2002b, p.6)’s notion that business travel were a „crucial

job requirement“, and therefore „both peak and off-peak travel benefits should be high“ for

business relative to leisure travelers. Moreover, it shows the property that peak travel benefits

have to increase relative to the off-peak benefits, when θ is increased. This is because business

travel had „to occur during the early and late peak hours to avoid disruption of the work day“.

Formally, these characteristics of the direct travel benefits are put down by Brueckner (2002a,

p.1361) as the two assumptions b′p, b′o > 0, and b′p > b′o (for all θ). The latter is referred to as the

„single crossing assumption“, which gives rise to the „natural property“ that high-θ-individuals

travel at peak times, whereas low-θ-passengers are off-peak travelers. As Brueckner (2002a,

p.1366) puts it, the importance of the relation b′p R b′o is as follows: For b′p > b′o, the marginal

increase of direct flight benefits is larger for peak than for off-peak flights. With b′p < b′o, the

reverse is true. The latter case were somewhat counter-intuitive, as the passengers’ increasing

preference for peak travel would reverse, in the way that preferential peak-travelers would

prefer off-peak-travel and vice-versa. For b′p = b′o, the peak-/off-peak assignment of passengers

were a „matter of indifference“. This model thus takes over the assumption b′p > b′o which

seems more plausible.

16For this example, linear functions are chosen, although linearity is not required in the conditions imposed below.





      

Figure 3: Direct Travel Benefits from Brueckner (2002a) [linear example; own illustration]

From the functions in Figure 3 and the corresponding assumptions from above, we can graphi-

cally infer the characteristic values of consumer taste θ: θ∗ depicts the „relevant“ consumer that

travels at peak, and θ depicts a lower bound below which individuals do not travel at all. Due

to condition b′p, b′o > 0, it follows that all passengers between θ and θ∗ strictly travel off-peak,

where those to the right of θ∗ strictly travel at peak (Brueckner, 2002a, p.1362).

Indirect Flight Benefits As Belleflame and Peitz (2010, p.554) put it, „a good exhibits

positive network effects when a consumer’s willingness to pay for the good depends positively

on the size of the corresponding network“. Therefore, indirect passenger benefits are presumed

to arise from network density of the business airline, where density is simply represented by

it’s peak-flight volume. To model network effects, Belleflame and Peitz (2010, p.554) propose

a generic function of the form Ui j = ai + fi(n j). In this term, Ui j is the „utility to consumer i

from belonging to network j“, and this utility is assumed to be composed of the two following,

additively separable benefits: Variable a denotes the so-called stand-alone benefit that arises

from „immediate use“ of the good. Function f denotes the network benefit, that is assumed

to be zero for a zero-size network, and rise with the number of network users n j. Formally,

thus, f (0) = 0 and f ′ > 0. It is also important to notice that all variables are indexed with

the consumer index i, which means that both of these benefits can differ across users. That

is, both the stand-alone benefit and the network benefit can depend on consumer taste. Now,





      

the above generic term can be equivalently rewritten to fit this model’s variables as ui = bi +

di(n j). This makes immediately evident two features: First, the first part of this generic term

corresponds to the specification of indirect utility from above, where b directly refers to the

direct flight benefits from above, and index i signifies that flight benefits and thus indirect

utility depend on consumers’ heterogeneous tastes. Second, it shows that network benefits can

be included in that indirect utility function by adding them as a separable term, as suggested by

Belleflame and Peitz (2010, p.554), withdi(n j) denoting the projected indirect network benefits,

that depends both on consumer taste and on network density n j. Recalling that heterogeneous

taste is explicitly allowed to affect both the stand-alone and the network benefit, it also seems

plausible that customers that increasingly like peak travel should also increasingly like network

density benefits. And as network density in this model is approximated by the business airline’s

peak flight volume, n j exactly corresponds to nB
p in this model. Finally, consumer index i can

equivalently be replaced by consumer taste θ without change the meaning of the equation at all.

Thus, the above generic function can be translated to fit the notation of this model as

uB
p(θ) = bp(θ) + d(θ, nB

p) (6)

where index p denotes the peak travel period and superscript B denotes travel with the business

airline. In other words, thus, enjoying network benefits in this model means being a user of

the business airline’s network of peak-period flights. This, in turn, is simply achieved by buy-

ing any of the business airline’s peak-flight tickets. In order to account for the discrete-choice

heterogeneous demand, thus, a third critical consumer θD is introduced. It denotes the trav-

eler that is indifferent between peak travel from the business airline with density benefits (but

presumably at a higher price), and a peak flight from the leisure airline without density bene-

fits. Notice that indirect density benefits are not included in the direct flight benefits function.

Therefore, evidently, θD cannot be inferred from the direct flight benefits function, and is thus

not depicted in Figure 3. The concept of network density and its corresponding functions are

further developed in subsequent Section 3.1.4.

Specification of Gross Travel Benefits Let now relate these direct and indirect travel

benefits to the gross travel benefits as presented in eq. (5). Because congestion only occurs

in the peak period by assumption, gross travel benefits need to be distinguished between the





      

peak and the off-peak period. In that, this model again follows Brueckner (2002a). During the

off-peak period, congestion does not occur. Therefore, no time costs arise to the passengers.

Moreover, airlines do not dissociate. Therefore, for travel during the off-peak period, gross

travel benefits are simply equivalent to direct flight benefits:

Bo(θ) ≡ bo(θ). (7)

In contrast, peak-period gross travel benefits dissociate from the off-peak based on two ad-

ditional components: First, during the peak-period, flights are subject to airport congestion.

Congestion directly translates into flight delays, and the latter is in turn assumed to cause pas-

senger time costs. This model adopts Brueckner (2002a)’s specification where time costs are

non-decreasing and convex, and have a „positive range“ that is „relevant“. Time costs are

denoted as a function t(Np) that directly depend on the aggregate number of flights during

the peak period, Np. Notice, however, that time costs do not depend on consumer taste, and

thus are identical both across passengers and across airlines.17 Gross travel benefits from the

leisure airline’s flights during the peak period thus are composed of direct travel benefits from

transportation minus time costs from congestion and read

BL
p(θ,Np) ≡ bp(θ) − t(Np). (8)

Second, as already put down above, the peak flight supply of the business airline is supposed

to create additional, indirect travel benefits. This, in turn, means that gross travel benefits

dissociate by airline during the peak period. Use of the above specification of the indirect flight

benefits then yields the gross travel benefits for passengers of the business airline as:

BB
p(θ,Np, nB

p) ≡ bp(θ) − t(Np) + d(θ, nB
p). (9)

This again makes clear that airlines do not dissociate by direct travel benefits, but only by

presence (or absence) of network density benefits.

17This assumption might be considered as too simple. But as Brueckner (2002b) points out, variable time costs
(according to consumer tastes) do not add to understanding of the problem, while they increasingly complicate
the analysis. Brueckner (2002a, p.1370) considers non-separable time costs and finds these to „temper the re-
sults of the analysis without overturning its main lesson“. Nevertheless, more realistic time costs differentiated
across travelers might be added later as an extension.





      

Linking Supply and Demand The respective flight volumes that accommodate demand of

the above three traveler groups can be rewritten in terms of flight volume by use of the speci-

fication from (1) to (3). The discrete variables of flight output directly relate to the continuous

spectrum of consumer taste θ ∈ [0, 1] as:

s · nB
p = 1 − θD, s · nL

p = θD − θ∗ and s · No ≡ s · (nB
o + nL

o) = θ∗ − θ. (10)

Re-arranging these equations then yields the three characteristic values of consumer taste, θ,

θ∗ and θD, in terms of flight volume as:

θD = 1 − nB
p · s, θ∗ = 1 − s · (nB

p + nL
p), and θ = 1 − s · (nB

o + nL
o + nB

p + nL
p) (11)

with nB
o + nL

o + nB
p + nL

p = N. These equivalences will be needed when relating flight volume

supply to the characteristic consumers, and will enhance understanding of endogenous demand

within the network density effects functions.

3.1.4 Network Density Effects

In order to realize the above concept of Network Density Effects (NDE) as sketched in the

introduction, I define three consecutive functions: the network density function, the density

benefits function, and the network value function. The first two functions are depicted in the

graph in Figure 4. The network value function is explored below. For linearity, a graphical

representation is shown later in Figure 5.

First, at the airline level, the network density function denotes network density of the business

airline in relation to its number of peak flights. It is defined as

D(nB
p) ∈ [0, δ] (12)

and depends directly on its peak flight volume. The value range of network density is defined as

[0, δ]. The rationale behind this function again is the following: The business airline’s network





      

density is determined by its peak flight volume. Network density ranges from 0 if peak-flight

volume is zero, to a parametric maximum valueδ, that is achieved when the business airline

holds the entire market share of peak flights. The function D(nB
p) is assumed to be monotonous,

continuously differentiable and strictly increasing in its argument nB
p . Formally thus D′(nB

p) > 0.

Notice that although nB
p is not theoretically limited, network density is only defined over the

interval of θD ∈ [θ∗, 1], because it is applicable to peak flights only. For this, notice that due to

the equivalence θD = 1 − nB
p · s from eq. (11), network density can also be written as D(1−θD

s ).

This makes clear that the domain of definition for D(nB
p) corresponds to the possible range of

θD. It is thus is naturally restricted to θD ∈ [θ∗, 1], and network density obviously is zero for

θD = 1.

Second, the indirect network density benefits that arise to the passengers from the business air-

line’s network are accounted for, based on the generic density benefits function (6) from above.

On behalf of this, I define the Density Benefits Function for passengers as a two-dimensional

function

d (θ,D) ∈ [0,D], (13)

that depends both on consumer taste θ and on the business airline’s network density function

D(nB
p) from above, which itself is a function of θD. Let also assume that each dimension of this

function is still continuously differentiable, monotonous and strictly increasing in its arguments.

The two above functions are represented in Fig.4, and their interpretation is the following:

While D(nB
p) denotes network density, d(θ,D) denotes the value that accrues to the passengers

from this network density. This value depends both on the network size of the business airline’s

peak flights, and on the respective consumer’s preference for peak travel. More precisely, the

value that the passengers acclaim from this function starts at a fraction of D(nB
p) for the first

passenger that travels peak-business. Further on, it increases with peak-travel preference θ

to the full value D(nB
p) within the range [0, δ] for the highest-θ-passenger, as determined by

(12). From a game-theoretic perspective, thus, once the maximum level of network density is

determined, its value to the passengers then reduces to a one-dimensional function increasing

with θ. In other words, network density and thus maximum density benefits are fixed once

the business airline has determined its peak flight volume. This is the reason why, formally,

network density benefits to the passengers in (13) are no longer written as a function D(nB
p)





      

but as a value D. Notice that D only depends on the business airline’s peak flight volume, and

therefore function (13) is consistent with its generic predecessor from (6). Notice that d(θ)

Figure 4: Travel Benefits and Customer Value with Network Density Effects
[linear case; own illustration]

increases with θ, but that D(nB
p) increases with the number of peak flights and is thus decreases

in θ by definition. Therefore, these two functions are inversely related in the graph. Overall,

the two network effect functions integrate the concept of network density effects into the partial

equilibrium model with heterogeneous goods as intended by this study.

Third, again from the airline perspective, these density benefits create additional customer value

that is used for pricing of the peak-flights. For this, I introduce a network value function, that

expresses the value of the passengers’ network density benefits in terms of the business airlines’

potential pricing markup. This function is defined as

V(θD) ≡ d(θD,D) for all θD ∈ [θ∗, 1]. (14)

In other words, this value function denotes the amount of the density benefit to the passengers

at each potential peak flight volume that θD that the airline might choose. This is important

because, as we will see later in eq. (22), with endogenous pricing the peak flight premium is

determined by the density benefit of the traveler at θD, and therefore ultimately by the business

airline’s peak flight volume. Thus, (14) is the objective function to maximize the business

airline’s peak premium. It therefore designates the market value of the network density to





      

the business airline. This simply means that the density benefits function is evaluated for its

maximum, based on the choice of θD . This reduces its dimensionality to unity, because for this

problem the condition is θ = θD. Notice that the network benefit for all peak-density travelers

strictly increases to the right of θD. This part of the benefit, however, is part of the consumer

rent. Hence, with discretionary pricing, it cannot be commercialized by the airline. The value

function is left out in Figure 4 for clarity, but is explicitly shown and analyzed in Figure 5.

3.1.5 Network Density Effects under Linearity

Under the assumption that all relevant functions are strictly linear, some calculus can be per-

formed to reveal parametric solutions for the network effects functions. This serves to illustrate

the basic properties of the network density effects. For this, the graph in Figure 4 shows how

the two network effects functions can be expressed in terms of the characteristic values of con-

sumer taste. As already mentioned, this requires that the direct travel benefits function, the

network density function as well as the density benefits function are strictly linear, exactly as

drawn in the sketch of Figure 4. Then, simply by applying the basic theorem of intersecting

lines, it is straightforward to express the network density function as

D(θD) = δ ·
1 − θD

1 − θ∗
. (15)

Consequently, the network density benefits function can be written as

d(θ,D) =
θ − θ∗

1 − θ∗
· D(θD). (16)

This shows that the linear density benefits function has the constant slope d′(θ,D) = ∂d
∂θ

=

1
1−θ∗ · D(θD), which by substituting 15 becomes d′(θ,D) = δ · 1−θD

(1−θ∗)2 . Moreover, under the above

assumption of linearity, also the value function can be specified and expressed in terms of the

characteristic θ’s. By use of (16) in (14), and imposing condition θ = θD, the value function

becomes

V(θD) = d(θD,D) = δ ·

(
1 − θD

) (
θD − θ∗

)
(1 − θ∗)2 . (17)





      

Now, the functional form of the value function can be explored by basic analysis. Its general

properties are depicted in Figure 5:

Figure 5: Value Function of Network Density Benefits [linear case; own illustration]

As eq. (17) shows, the network value is a quadratic and thus quasi-concave function of θD. The

local maximum of the network value function is determined by ∂V∂θD = δ · 1−2θD+θ∗

(1−θ∗)2 = 0, where

solving this equation for θD yields the argument that maximizes the value function as

θD
Vmax ≡ argmax

θD
V(θD) =

1 + θ∗

2

In other words, the maximum network value is achieved when θD = 1+θ∗

2 . Recall that the

network value at θDis equivalent to the peak-density premium for the business airline. Hence,

substituting this value into eq. 17 then yields this maximum network value, which is

Vmax ≡ V(θD
Vmax) =

δ

4
.

This means that despite the maximum network density than can be achieved in the model is δ,

which is reached when θD = θ∗, the highest value in monetary terms that the airline can extract

from its customers based on network density is δ/4. If the airline chooses a lower θD than θD
Vmax,

then it increases network density, but the density benefit for the critical passenger θD falls, and





      

with it the peak-premium. Similarly, if it chooses to increase θD by lowering its peak-flight

volume, it reaches a critical customer with a higher willingness-to-pay, but at the sime time

network density decreases, which more than offsets the price-elasticity of demand. Thus, also

in this case, the peak premium falls. Nonetheless, the airlines’ overall objective function are

total profits rather than the network value. And the former also depend on the direct flight

benefits and on time and congestion costs, and on flight volume in terms of output. In other

words, the local maximum of network value of course only maximizes the business airline’s

peak premium, but not necessarily its total profits.

Still, these results show two fundamental properties of the product differentiation model with

network density effects: First, they show that the maximum markup is achieved at θD = 1+θ∗

2 ,

which is not halfway between the peak-off-peak and the peak density split but at some arbitrary,

asymmetric value. And because the function is quasi-concave, it is reasonable to assume that

this is an interior solution. In other words, the specification of the network effects from above is

able to produce an asymmetric equilibrium with an interior solution. Abstracting from linearity,

of course the maximum value may shift. For „reasonable“ functions that refrain from showing

extreme non-linearities, however, it should be reasonable to assume that both the asymmetry

and the interiority of the equilibrium remain. Second, the results show that the maximum

network value that the airline can potentially commercialize is one fourth of the maximum

possible network density. In this model where network density incurs no other costs than direct

operational costs for the peak flights, this seems less important. However, imagine a situation

where network costs occur to install and maintain the network services. Then this might make

it questionable whether offering network services might be worthwhile at all, at least under the

current network benefit specifications.

3.1.6 Customer Value

Ultimately, the specification of the Customer Value-Function as described in (5) is achieved as

follows: Dissociating for peak and off-peak travel, substituting travel benefits B for Brueckner

(2002a)’s respective direct travel benefit-Functions bp(θ) and bo(θ) from above yields off-peak





      

customer value function

CVo(θ, fo) ≡ bo(θ) − fo. (18)

As explained above, the off-peak customer value function is quite simple because there are

neither congestion nor density effects, and because off-peak flights are homogenous products

with the single off-peak travel fare f0. Furthermore adding time costs t(Np) and the network

benefits function d(θ, nB
p) from above, and dissociating travel fares f L

p and f B
p for the peak flights

of the two asymmetric airlines yields

CV
L

p(θ, nL
p,n

B
p , f L

p ) ≡ bp(θ) − t(Np) − f L
p (19)

and

CV
B

p(θ, nL
p,n

B
p , f B

p ) ≡ bp(θ) − t(Np) − f B
p + d(θ, nB

p). (20)

These terms denote the Customer Values for peak-flights as functions of consumer taste, flight

fares, and flight volumes of both airlines in both periods. As explained above, Np = nL
p + nB

p is

the total volume of peak flights and is important for congestion and time costs. Note that bp(θ)

is not distinguished by airline, as it denotes the direct flight benefits for passengers during the

peak, which are identical for both firms and only depend on the consumer taste. Equations (18)

to (20) thus represent a demand system of discrete choice under heterogeneous tastes.

Notice how the network density benefits now create an airline asymmetry: They introduce

product differentiation, in that the network airline (in contrast to the direct airline) can offer in-

direct density benefits to its customers. Moreover, this differentiation is endogenous, by means

that the network airline can endogenously choose the size of this network effect, based on its

flight frequency during the peak period. This heterogeneity, in turn, implies that travel prices

differentiate away from the single, uniform market price that were to prevail under a homo-

geneous goods case. Consequently, also the Customer Value functions need to be dissociated

with regard to peak fares and indirect density benefits. Evidently, hence, at this point the model

substantially departs from Brueckner (2002a)’s original contribution, by introducing network

effects and thus generating an airline asymmetry - following the latter’s own proposition of a





      

„useful“ extension for future research.

A graphical representation of customer value that relates to the flight and network density

benefits is depicted above in Figure 4. As the indifference conditions imply (see below), it is

a continuous function that strictly increases with θ. However, as the graph shows, due to the

demand system characteristics of the discrete choice model, it is not continuously differentiable.

This problem will be addressed just below. That is, with each additional benefit, its gradient

increases exogenously: First, the low gradient on the left reflects direct benefits from off-peak

travel. When characteristic consumer θ∗ switches to peak-travel, the steeper peak-travel benefits

come into play. But obviously, the customer value function needs to be continuous in θ∗, as this

traveler is exactly indifferent between peak and off-peak travel. In other words, the higher

benefits at this point need to be compensated away by both a higher flight fare and higher

time costs. The same pattern repeats at point θD, where density benefits are introduced to

peak-business travelers - but are compensated away by an even higher flight fare - the density

premium for the business airline.

3.1.7 Equilibrium Conditions from Demand

In models with a continuous and strictly quasi-concave utility function, the indirect utility or

value function is well defined, and a unique solution exists to the consumer’s utility maximising

problem (Jehle and Reny, 2011, p.28). Notice that with discrete choice, however, the analytical

derivation of the demand functions and their extremes is not helpful. This is because demand

consists of multiple utility functions, and thus is not continuously differentiable, due to the dis-

continuities at the indifference points between two adjacent options of choice (Ben-Akiva and

Lerman, 1985, p.44). This can easily be seen by referring to the demand system, eqs. (20) to

(18) eq:CVo. In contrast, the equilibrium conditions from demand are found by determining the

„critical“ consumers, which correspond to the characteristical values of consumer taste. This,

in turn, is achieved by considering the indifference conditions between two adjacent options of

choice.

Starting from the left in the θ ∈ [0, 1]-continuum, let first consider the lower bound θ which

determines the lowest-θ passenger. Most evidently, as soon as there is a positive customer





      

value in conjunction with buying a flight, an individual will travel. Hence, the lower bound is

determined by CVo(θ, f0) ≥ 0. Let now in addition assume, that if an individual is indifferent

between travelling and not travelling, because both yields zero customer value, it will travel.

Then, equation (18) implies that the equilibrium condition for θ is

bo(θ) = fo. (21)

This relation is depicted in Figure 3. Recall that all passengers to the right of θ will also travel

and have a customer value larger than zero, and individuals to the left will not travel, because

their direct travel benefit in monetary terms is less than the flight fare. Next is the „relevant

consumer“ θ∗ that will switch from off-peak to peak-travel, because to him peak-travel offers a

higher customer value, despite eventual congestion and possibly a higher flight fare. Obviously,

this passenger is determined by his/her indifference between peak and off-peak-travel. Now as

this model differentiates peak-flights between the leisure and the business airline, because the

latter in addition offers network density benefits (and thus most probably can charge a higher

flight fare), θ∗is defined as the boundary between off-peak travel and peak travel with the leisure

airline.The condition to be fulfilled therefore is CVo(θ∗) = CVp(θ∗), and equating (18) to (19)

and re-arranging yields

bp(θ∗) − bo(θ∗) = f L
p − fo + t(Np). (22)

With bp(θ∗)−bo(θ∗) as the surplus between the two direct travel benefit functions for the relevant

peak/off-peak passenger. As Figure 3 depicts, this term indicates the vertical distance between

the two direct-travel-benefit functions bo and bp at θ∗. Then the right side of (22) makes clear

that the higher direct flight benefit from peak travel must at least compensate for the higher

peak flight fare and the time costs. Ultimately, θD denotes the peak-period passenger that is

indifferent between a flight with the leisure airline without density benefits, and a flight in the

network of the business airline. This indifference is stated in demand terms as CVL
p (θD) =

CVB
p (θD), and from equating (19) to (20) it follows that

d(θD,D) = f B
p − f L

p . (23)

This shows that with positive network density benefits for passengers, there is a positive mark-





      

up for density travel against peak-leisure flights. In the following this is referred to as the peak

premium. Notice that network density benefits to not enter the direct flight benefits function.

Therefore, they cancel each other out and do not appear in eq. (23), as opposed to eq. (22).

Moreover notice that time costs do not enter the demand condition for peak-density travel. This

awes to the fact that the density-travel decision is subject to the peak travel decision, and does

not directly affect the total number of peak flights, and thus congestion. Indirectly, however,

density travel demand might affect the leisure peak-fare, and with it the overall number of peak

travelers. This is reflected in (22).

Based on the above considerations, in the following, individuals [θD, 1] are referred to as peak-

density travelers, as they will fly in the peak with the business airline that offers density benefits.

Passengers [θ∗, θD] also travel on peak but with the leisure airline. To avoid confusion, they will

be called peak-leisure travelers. Last, off-peak passengers simply remain that way, as they are

not distinguished by airline. Consequently, let moreover denote the fare difference f L
p − fo

between peak-leisure and off-peak flights as the „peak premium“, and f B
p − f L

p between peak-

leisure and peak-density flights as the „density premium“.

As already mentioned above, the following consideration arises with equilibrium condition

(23): Notice that b only denotes direct travel benefits, and that indirect network density benefits

d are additively separable and thus do not directly affect b. This means that a density traveler is

willing to pay the density premium, even if his direct travel benefits are not higher than from a

comparable peak-leisure flight. Notwithstanding, it is assumed that the higher the passengers’

preference for peak travel (i.e. his θ), the more he will also like - and be willing to pay for -

density travel. However, if the density premium f B
p − f L

p is excessive (i.e. if it is not compensated

with an appropriate density benefit d, the peak-time traveler will refuse to fly with the business

airline but rather buy a less expensive peak-leisure ticket with the leisure airline. In contrast,

if the fare difference is not important compared to the network density benefits (according to

(23)), then the peak traveller will choose the peak-density flight from the business airline.

The above issue invokes the question whether it is possible that all peak demand will go to

the business airline. For this, let first consider whether b(θD) − b(θ∗) could also turn out to be

negative in the model. As eq. (23) shows, this were the case if network benefits were larger

than the density premium (or, at the extreme, a zero premium and a positive benefit). Then,





      

density travel would shift to the left of peak-leisure travel θ∗. This, however, made no sense,

as by model assumption the leisure travelers do not valuate network density, but are only sen-

sitive to the travel prices and to time costs. In other words, θ∗ then would shift left with θD.

Passengers to the left of peak-density demand would then simply switch to the off-peak. In

other words, by model definition, θD ≥ θ∗ is assured. Moreover, from (23) and the assumption

b′p > 0 from above, it then follows that b(θD) − b(θ∗) ≥ 0, and thus that f B
p − f L

p ≥ d(θ,D).

This also implies that with D(·) ≥ 0, peak-density flights will never be cheaper than peak-

leisure flights. Nevertheless, the business airline can decrease its peak-density fare in order to

attract more leisure passengers, down to the peak-leisure fare. Then, it would receive all peak

demand, because peak-density flights offered density benefits at the same price of the straight

peak-leisure flights. And because density benefits are an increasing function of consumer taste,

starting at zero for the critical peak-passenger, all travelers right of θD prefer peak-business

over peak-leisure flights. But as pricing is non-discriminate, this would mean that the busi-

ness airline’s peak premium would reduce to zero. In order to maximise profits, hence, it is

reasonable to conclude that it is worthwile to charge at least a slightly positive peak premium,

loose some customers, but earn more from the entire rest of them. Formally, assuming that the

airline’s network value function exhibits some degree of concavity assures a non-degenerate,

internal solution where θD > θ∗ is strictly valid. This is granted because density benefits are

non-negative and start with d(θ∗) = 0 for the critical peak-passenger. Then, concavity of the

network value function d(θD,D) requires that at θ∗ = θD, d′(θD,D) > d′(θ). Now, because

d′(θD) determines the change of the peak-premium, and d′(θ) the marginal utility from den-

sity benefits, this means that the price-elasticity of peak-density demand at d(θ∗) is such that a

price increase overcompensates the output contraction, and thus increases the business airline’s

profit. This is valid until d′(θD,D) = d′(θ). Recall that for higher values of θD, that target

high-θ-passengers, the network density further decreases. Thus, at the upper end, despite the

passengers’ high preference for peak-travel, the network benefit again collapses, and with it

the peak premium. With concavity, hence, an interior solution is granted. And, as the analysis

in section 3.1.5 shows, even a simple linear specification of network density and passenger

density benefits yields a concave network value function.

Last but not least, the three above equations allow for some basic comparative statics concern-

ing the properties of the individuals’ travel choices: Other things equal (ceteris paribus), (22)





      

shows that θ∗ increases (i.e. less people travel during the peak) with an increase in the peak pre-

mium or in time costs. In contrast, as explained above, the change in θD with d(θ,D) depends

on the relative change of the density premium. Moreover, as explained above, density benefits

cannot directly increase the share of peak travelers. However, if density benefits motivate the

leisure airline to decrease its peak-fare, the total number of peak travelers might increase (de-

pending on congestion), and so they still might have an indirect effect on θ∗. The lower bound

θ, in contrast, only depends on off-peak travel-fare f0. Still, the number of off-peak-travelers

θ∗ − θ is also a function of the above peak-period variables, but in the opposite sense.

3.2 Allocation Instruments

3.2.1 Quota (Airport Slots)

As already pointed out, quota regulation requires both the determination of the optimal output

quantity, and the allocation of the constrained resources to the different stakeholders. And

of course, optimality requires an assumption about the target function to be maximized. In-

line with recent literature, this study assumes that the airport coordinator sets the number of

constraints, and that his goal is to maximize socio-economic welfare.18 Given this assumption,

the optimal number of access rights is determined by welfare maximization with respect to total

output as an argument. Czerny (2010, p.373) denotes this problem as

Nopt
p = argmax

Np

[W(N)] (24)

where Nopt
p is the optimum number of slots, and W(N) is social welfare as a function of total

output N = No + Np.19 Recalling that in this model, only the peak period is congested, quota

regulation only applies to the latter. Airport access in the off-peak period remains unregulated,

as it does not lead to congestion. The solution to the above optimization problem simply is the

social optimum, as it gives the efficient overall number of peak flights. Notice, however, that
18This presumption of course abstracts from the political economy debate, that questions whether the regulating

agency and/or it’s political supervisors rather pursuit their own interests instead of public welfare (see e.g.
Button, 2005).

19Czerny (2010) denotes the optimal number of slots as q̂, which has correspondingly be changed to Nopt
P in this

model. Moreover, he applies the expected value operator to welfare, because he introduces uncertainty. This
is neither necessary nor suitable here, and has been left out.





      

in contrast to a homogenous goods, symmetric case, now also the allocation of the quota to the

airlines has a potential welfare effect. The investigation of the quota solution is provided in

4.1.1.

3.2.2 Secondary Trading

As Verhoef (2010, p.326) points out, the necessary premise for trading to take place is that

the total number of available access rights is lower than aggregate demand. Otherwise, supply

exceeds demand, and market prices are zero.20 But under imperfect competition, the mar-

ket power distortion may cause output to fall short of the social optimum. Therefore, in an

oligopoly setting, we will most likely be confronted with this aggregate demand-problem. This

means that under the above consideration, secondary trading might not take place. If, however,

the initial quota endowment of the airlines does not reflect the natural market structure, trading

may nevertheless occur. Thus, also the initial allocation of slots determines the existence of

trading opportunities, as it may considerably deviate from the natural market structure. This

may especially arise when airlines exhibit asymmetries, and means that even under imperfect

competition, market prices need not be zero. One might think of a symmetric initial allocation

but asymmetric airport demand, or an asymmetric initial allocation. Another possibility for the

existence of a market equilibrium despite market power is, that aggregate output in absence of

constraints is actually above the social optimum. This may happen if the congestion externality

is large, and thus more important than the market power distortion. It is, however, unlikely

to appear in a duopoly, as the analysis of Brueckner (2002a) shows (see Appendix). As far

as the initial allocation is concerned, airport access rights can either be sold or auctioned to

the airlines, or be allocated for free before trading (eg. Verhoef, 2010). This study adopts the

presumption of a free allocation, and abstracts from an initial slot sale or auction.

Verhoef (2010) solves the aggregate demand problem by simply assuming that the regulator

were interested to reduce total output. This is achieved by releasing an arbitrary number of

slots that is lower than aggregate peak demand in the unconstrained market equilibrium. Con-

sequently, the regulated total flight volume is below the optimal output of the social planner,

and the existence of a trading equilibrium is assured. Notice, however, that this implies that

20Negative prices are ruled out, as long as unused slots can be handed back for free (Verhoef, 2010, p.326).





      

the number of slots is not optimally chosen - unless the target function differs from the maxi-

mization of social welfare. Therefore, from an allocation perspective, this study refrains from

modeling such an arbitrary scheme.

Following the discussion above, secondary trading is investigated under the following premise:

Assume that a constraint is introduced at the size of the optimum peak flight volume Nopt
p ,

which is derived from social welfare condition (24). In this case, as discussed above, aggregate

demand may either be lower or higher than the constraint: If the market power distortion is

prevailing, then Nopt
p > nB

p + nL
p. Exchange at a positive price then only takes place if the

initial endowment differs from the natural market structure. In this case, we are hence left with

the endowment problem. If, in contrast, the congestion externality exceeds the market power

effect, total equilibrium output is above the social optimum, hence Nopt
p < nB

p +nL
p. Then, airport

demand assigns a positive value to the access rights in any case. The latter is, however, not a

very likely outcome in the current setting, because network density benefits do not increase

peak-demand above the socially efficient level, but rather raise the optimal output.

3.2.3 Congestion Pricing

In general, an efficient congestion toll should equal the marginal externality at the optimum. It

is important to notice that airlines take the toll as exogenous, which is deemed as „consistent

with Cournot behavior“ (Brueckner, 2002a, p.1367). If the tax were accounted for in the profit

maximizing problem, the behavior then would simply correspond to full internalization. Now

notice that the congestion externality is additively separable in the profit function (see eq. (4)).

This means that it is straightforward to quantify the marginal externality, once the first-order

conditions for the equilibrium under the respective market form is computed. Notice, however,

that this study refrains from including the market power distortion into the congestion tax, in

contrast to Verhoef (2010). Although by doing so, the latter is able to reproduce a second-

best solution, this study’s approach exactly aims at separating and investigating the interplay

between market power and congestion. Following Brueckner (2002a)’s notation, hence, the

congestion toll for i ∈ {B, L} is denoted as

Ri(ni
p). (25)





      

In-line with recent literature, it is designed to equal the marginal congestion costs in equilib-

rium, and it is allowed to differ across airlines. Marginal congestion costs can simply be taken

from the subsequent equilibrium conditions.





      

3.3 Table of Variables (Quick Reference)

Variables Explanation Reference Page

Supply

Np = nB
p + nL

p Total number (N) of peak flights (p), as the sum of business

(B) and leisure (L) airlines’ peak flights.

eq. (1) 16

No = nB
o + nL

o Total number of off-peak flights, as the sum of business and

leisure airline off-peak flights.

eq. (2) 16

ΠL,ΠB Net Profit of business and leisure airline, respectively eq.(4) 17

s Seat number per aircraft (normalized to unity) ” ”

C(NL), C(NB) Airlines’ direct operating costs, as a function of each airlines

total flight volume

” ”

G(Np) Airlines’ congestion costs, depending on total peak flight

volume

” ”

D(nB
p) Network Density, as a function of business airline peak flights eq.(12) 25

Demand

θ Consumer taste, in continuum [0, 1] with unit density 18

Bp(θ,Np) Gross travel benefits during peak period, as a function of

consumer taste and total number of peak flights

eq.(8) 24

Bo(θ) Gross travel benefits during off-peak period, as a function of

consumer taste

eq.(7) 24

bp(θ) , bo(θ) Direct flight benefits (peak and off-peak), as functions of

consumer taste

Fig. 3 22

t(Np) Passengers’ time costs, depending on total peak flight volume eq.(20) 31

d(θ,D) Passengers’ network density benefits as function of consumer

taste and of business airline’s network density, with

D = D(θD)

eq.(13) 26

f L
p , f B

p Peak flight fares from the leisure and the business airline

fo Off-peak flight fare (identical for both airlines)

CV
B

p , CV
L

p Customer Value, from peak flights of business and leisure

airline, respectively

eq.(20),

(19)

31

CVo Customer Value from off-peak flights (symmetric for both

airlines)

eq.(18) 31

Allocation Instruments

Nopt
p Socially optimal constraint on total peak flight volume eq.(24) 36

Ri(ni
p) Congestion toll for airline i as a function of its peak flight

volume

eq.(25) 38

Table 1: Table of Variables (Quick Reference)





      

4 Results

In the following, first, a partial equilibrium analysis of this study’s model with heterogeneous

products is provided. The general properties of the model are explored by computing both

the social optimum and the Cournot duopoly equilibrium. The results are then compared to

the homogenous product, symmetric equilibrium, in order to recognize the effects of product

differentiation with network effects on the market structure. On this purpose, the symmetric

results from Brueckner (2002a)’s model are briefly reviewed in the Appendix. In the second

Subsection, the above results are used to investigate the impact of the different capacity al-

location schemes on efficiency and competition. Because the model so far draws on generic

functions, this will leave us with general conditions regarding the ambiguities from the dual

distortion.

In the following analysis, for the sake of traceability, two major simplification are taken. These

have already been discussed in the presentation of the model in the previous section. First,

airlines’ production costs are assumed to be linear, in order to yield constant marginal costs.

Second, aircraft sizes are presumed to be fixed and symmetric. Thus, the model abstracts from

the airline’s choice of aircraft size versus flight frequency. Therefore, for simplicity but without

loss of insight, the seat number per aircraft can be normalized to unity.

4.1 Equilibria

4.1.1 Social Optimum

The social optimum is determined by maximising the social welfare function. According to

the Marshallian welfare concept, welfare consists of aggregate consumer surplus and firms’ net

profits (Vives, 2001, p.101).21 Now, consumer surplus exactly consists of the customer value

as expressed in (20), (19) and (18), and firms’ net profits are already given in (4). Therefore,

21As Vives (2001, p.83) points out, the Marshallian consumper surplus is only a „good approximation“ of the
„true measure of welfare change“, which is the Hicksian consumer. Nevertheless, he comments that if only
one price changes, the error is small and in the additive separable case amounts to 1

n in percents, for n as
the number of goods. This error increases, however, when multiple prices change, because the Marshallian
consumer surplus depends on the sequence of price changes (Vives, 2001, pp.89).





      

the function for aggregate social welfare amounts to

W =

θ∗∫
θ

CVo(θ)dθ +

θD∫
θ∗

CVL
p (θ)dθ +

1∫
θD

CVB
p (θ)dθ + ΠL + ΠB.

Because the flight fares from the customer value and the airline profit functions cancel each

other out in the above term, with s normalized to unity the welfare function simplifies to

W =

θ∗∫
θ

bo(θ)dθ+

1∫
θ∗

bp(θ)dθ+

1∫
θD

d(θ,D)dθ− (1− θ∗) · [t (1 − θ∗) + G (1 − θ∗)]−C(1− θ), (26)

with the equivalences of flight numbers and characteristic θ’s from (11), i.e. 1 − θ∗ = Np and

1 − θD = nB
p . Flight volumes are expressed in θ rather than in n to stress that the social planner

would determine all three critical consumer taste values in order to maximize welfare. Notice

that both functions t(·) and G(·) are not concerned with the integral operator, because they are

fixed values evaluated at θ∗ and thus no further vary with θ across the consumer continuum.

The social optimum is then computed by the three partial derivatives of the above welfare

function to the three characteristic θ’s and equaling them to zero. With constant marginal

costs C′(·) = c, they determine the social optimum as follows: First, the derivative for the

characteristic threshold between off-peak travel and non-travel is

∂W
∂θ

= b0(θ) − c = 0. (27)

Because θ is non-negative by definition, θ ≥ 0. The above condition hence states that with

marginal costs higher than the lowest θ’s direct flight benefit, i.e. c > b0(0), there is an interior

solution to the lowest characetristic theta θ > 0, that is determined by marginal costs as

b0(θ) = c.

If marginal costs were below the lowest θ’s direct flight benefit, i.e. c < b0(0), then (27)

showed that welfare increased with decreasing θ throughout the entire range of b0(θ). This

would dictate a corner solution where all individuals travelled, as a local maximum within the

defined range of θ of the welfare function with regard to θ. In order to yield an internal solution,

we therefore stick to the assumption c > b0(0). Second, the social welfare derivative for the





      

critical peak-offpeak-split is

∂W
∂θ∗

= b0(θ∗) − bp(θ∗) − t(Np) − Np ·
[
t′(Np) + G′(Np)

]
−G(Np) = 0. (28)

Here, congestion and time costs are again denoted in terms of flight volumes rather than in

consumer taste for notational simplicity. This term means that at the margin, the difference

of direct travel benefits between peak and off-peak travel needs to compensate the marginal

congestion and time costs from a switch between the two periods. An interior solution θ < θ∗ <

1, where peak-passengers are a positive fraction (but not equal to the number) of total travelers,

is warranted if the following two assumptions are satisfied (see Brueckner, 2002a, pp.1362):

On the one hand, functions bp and bo need to intercept at a value θ < 1. Otherwise off-peak

travel is always more attractive. On the other hand, also bo(θ) > bp(θ) must be satisfied. Else

the welfare derivative were negative at the point θ∗ = θ where all passengers would travel on

peak, indicating a corner solution where letting some passengers travel during off-peak (and

thus let θ∗ rise) were welfare decreasing.

Third and new to the model is the welfare derivative to density travel,

∂W
∂θD = d

[
θD,D(θD)

]
= 0. (29)

This simply means that the passengers’ network density benefit, evaluated at θD, must equal

zero. Although this condition may seem odd at first sight, it denotes the two intuitive local

extremes of the density benefits function. Namely, the latter equals zero in two cases: First,

when the business airline holds the entire peak flight share, so that θD = θ∗. And second, when

only the leisure airline operates in the peak period, because then θD = 1. Both cases then yield

d = 0. This means that either all peak passengers have to travel on the business airline, or

that the market share of the business airline during peak has to be zero. The explanation and

dissociation of these two solutions is straightforward: Because all flights during peak cause

congestion, but the density flights of the business airline offer additional density benefits at

the same costs, social welfare is maximised when all peak flights are operated by the business

airline. In the opposite case, none of the peak-time travellers enjoys density benefits, and thus

welfare is minimized. In other words, the social optimum is reached if the business airlines

offers all peak-flights, while the leisure airline operates in the off-peak period only.





      

Notice that in a market solution, product differentiation yields market power to the airlines and

lets them set prices asymmetrically for their peak-flights. Because then density travel causes

higher costs for the passengers than peak-leisure travel, it is very likely that the peak-flight

share of the leisure airline is not zero. Consequently, a duopoly market solution is not expected

to replicate this social maximum. It is explored in the following.

4.1.2 Market Equilibrium: Cournot Duopoly

Cournot competition in general reflects a market with a small number of firms, that indepen-

dently determine their output quantities. In other words, the airlines consider each other’s

output as given. As this model specifically represents a duopoly situation, this assumption

seems to be easily warranted. The consumers, instead, behave passively according to inverse

demand, so market clearing occurs by assumption. This simply means that all flights are fully

booked, and thus all offered seats are consumed. Then, the situation corresponds to classical

demand theory in oligopoly (cf. e.g. Vives, 2001, p.93). Let assume that the firms behave as

profit maximizers. In an oligopoly situation, their output has an effect on the market prices.

Thus, airlines take into account the price elasticity of demand when determining their output

quantities. In other words, the price effect of total output quantity is reflected in airlines’ profit

maximization. This is achieved by relating the flight output variables from supply side eq. (4)

to the characteristic values of consumer taste from the demand side, by substituting the respec-

tive terms from equations (11). The optimization problem of the two airlines i ∈ {B, L} thus

reads:

max Πi

ni
o,ni

p

s.t. fo = fo(ni
o, n

i
p) and f i

p = fp(ni
o, n

i
p). (30)

In order to compute the equilibrium, thus, beforehand the price functions of demand are de-

rived. These express market prices as functions of the output quantity. For this, demand func-





      

tions in eq. (21) to (23) are inverted, re-arranged and cross-substituted to yield:

f0(θ) = b0(θ)

f L
p (θ∗) = bp(θ∗) − bo(θ∗) + f0(θ) − t(Np)

f B
p (θD) = d(θD,D) − f L

p (θ∗) (31)

Then, for the derivation of the profit functions that includes price elasticity of demand, the char-

acteristic values of θ in the above equations are rewritten in terms of airlines’ output variables

ni
o, n

i
p for i = {B, L}. Thus, substitution of conditions (11) in (31) yields the inverted demand

functions that describe flight fares as endogenous variables of output. These are equivalent to

31 but notationally more cumbersome, and therefore not shown . Subsequently, inverted de-

mand is substituted into the airline profit functions from (4). This yields airline profits with

endogenous prices, Πi
[
ni

o, n
i
p, f i

0(ni
o, n

i
p, ), f i

p(ni
o, n

i
p, )

]
for i = {B, L} (not shown). Moreover, for

the derivation of these profit functions with respect to production quantities, it is also helpful to

express the density benefits in terms of flight volumes by help of (11) as

d(θD,D) = d
[
1 − s · nB

p ,D(nB
p)
]
.

Finally, under profit maximization with endogenous pricing, the first-order equilibrium condi-

tions for the airlines’ flight volumes are given by the partial derivatives of these airline profit

functions with regard to peak- and offpeak-flights, respectively, set equal to zero: ∂πi

∂ni
o

= 0 and
∂πi

∂ni
p

= 0. Obviously, in the off-peak period, flights are homogeneous because there are no den-

sity benefits. With constant and identical marginal costs C′(N i) = c, the partial derivatives thus

are symmetric across airlines i = {B, L} and read:

bo(θ) − s ·
[
ni

o + ni
p

]
· b′o(θ) = c/s (32)

In contrast, during the peak period, airlines’ flights are heterogenous products, because for

the business airline they include network benefits d(θ,D). Thus, firms become asymmetric and

their partial derivatives to peak-flight volume are distinct. Substituting the above condition (32)

into these partial derivatives, using the equivalences s · nB
p = (1 − θD) and s · nL

p = (θD − θ∗) and

rearranging then yields the two implicit first-order conditions for peak flight volume of the two





      

airlines as

[
bp(θ∗) − t(Np) − bo(θ∗)

]
− nL

p · t
′(Np) −

1
s
·
[
g(Np) + nL

p · g
′(Np)

]
− (θD − θ∗)

[
b′p(θ∗) − b′o(θ∗)

]
= 0. (33)

for the leisure airline, and

[
bp(θ∗) − t(Np) − bo(θ∗) + d(θD,D)

]
− nB

p · t
′(Np) −

1
s
·
[
g(Np) + nB

p · g
′(Np)

]
− (1 − θD)

[
b′p(θ∗) − b′o(θ∗)

]
− (1 − θD) · d′

[
θD,D

]
= 0 (34)

for the business airline.

4.1.3 Summary: heterogeneous vs. homogeneous Cournot Duopoly

Comparing the above generic equilibrium conditions to the results from Brueckner (2002a)’s

homogeneous products model shows some basic properties of product differentiation in the

asymmetric model with network density benefits: The two above equations show that in equi-

librium, again the impact of direct flight benefits is opposed to the respective time and con-

gestion costs for each airline’s peak travel demand. Moreover, in contrast to the social opti-

mum, now also market power affects the number of peak flights: It is reflected by the term

b′p(θ∗) − b′o(θ∗), which denotes the marginal gain of direct benefits between peak- and off-peak

travel. Under current assumptions, this term is always positive and thus has a negatively en-

ters the equilibrium condition. Although the marginal benefit term itself is identical for both

airlines, it is multiplied with each carrier’s peak flight volume, and therefore depends on the

individual market shares. This means that it works in the same direction as time costs, and

thus tends to decrease each airline’s peak flight volume in equilibrium. Thus, the market power

terms in (33) and (34) represent the „traditional“ market power effect.

For the business airline, the network density benefits again enter in the same direction as the

direct flight benefits: As they increase the value that passengers receive from a peak-business

flight, they tend to increase the business airline’s peak flight volume. Moreover, eq. (31) shows

that density benefits also allow the business airline to charge a higher flight fare than the leisure





      

airline at the same flight volume. Notice, however, that for the airline’s profit maximization,

only the density benefit for the critical passenger at θD is important. As the airline cannot

discriminate prices but has to stick to one single posted peak-flight price, it has to optimize

it’s network density in a way to render network benefits at θD to be profit maximizing, both in

terms of flight volume and flight fares. If network benefits are higher to the right of θD, they

only add to the consumer surplus for density travelers, but are not accessible for the airline to be

turned into excess profits. This again reminds that the airline’s target function for optimization

is the network value function (14), and not the passengers’ network density benefits function.

Now, recall that marginal density benefits are positive by assumption. Then, d′(θ) in (34) enters

positively, due to the inverted relationship between θ and nB
p . This means that density benefits

are increasingly counter-balanced when the peak-business market-share grows, and thus reflects

the concavity network value function.22

For the leisure airline, an output expansion of peak-business flights ceteris paribus would re-

sult in a smaller peak market share. This means that in (33), the market power term as well

as marginal congestion and time costs would decrease. For the equilibrium to hold, thus, the

business airline’s additional peak-flights cannot replace the leisure airline’s peak flights on a

one-to-one basis. Rather, the total number of peak travelers needs to be larger than under sym-

metry, so that θ∗decreases and allows the relevant direct flight benefits at the left side of (33)

to become smaller and thus balance the equilibrium condition. Notice, however, that as a sec-

ondary effect, a higher overall peak flight volume also means higher congestion. Other things

equal, this opposing effect can only be compensated if the peak-leisure flight volume is again

reduced for both airlines. This means that overall, the leisure airline ends up with a slightly

lower peak-flight volume than under symmetry, in order to compensate for the overall higher

peak-flight volume and subsequent higher congestion. Consequently, equation (31) reveals that

both the increase of overall peak-flight volume and the subsequent higher time costs will cause

leisure-peak travel fares to fall.

Generally, thus, we can constitute that positive network benefits tend to increase both the busi-

ness airline’s peak flight volume and peak flight fare, versus the homogenous goods case as

well as versus the leisure airline without density benefits. This shows that the introduction

22Concavity is shown in 3.1.5, but for linearity only. Due to the nature of the optimization problem, however, it
may be generally assumed.





      

of network density benefits causes market power to rise for the business airline - in-line with

economic theory, according to which product differentiation decreases competition and hence

increases market-power. Notice that this effect contrasts to the „normal“ market-power mech-

anism, where a higher output causes prices to fall. This is because the introduction of the

heterogeneity corresponds to an exogenous shock. Once network density benefits have been

introduced, the subsequent output changes again are endogenous and follow the „traditional“

market-power mechanism, where prices increase when output falls.

Last but not least, two important conclusion arises from offpeak-condition (32): First, as prod-

ucts are not distinguished by airline within this period, flight fares are determined by bo(θ) and

are thus identical across airlines. With c/s constant and identical across firms, (32) in turn,

requires that the total output of both firms is the same, that is

nL
o + nL

p = nB
o + nB

p .

This means that in the unconstrained, first-come, first-served Cournot equilibrium, the output

across both periods needs to be equal for both airlines, at half the overall market size. Although

market concentration during the peak-period is allowed to differ, and is of main interest for the

analysis, this represents a major limiting property of this model. Second, in order for (32) to

be fulfilled for both airlines, each airline’s output change in the peak period must have an exact

corresponding offset of output in the off-peak period. Due to this balancing effect, total output

across periods and airlines remains constant. This means that θ remains the same relative to

the homogeneous case, and consequently, also the off-peak fare determined by bo(θ) in (31)

remains unchanged.

Under the above conditions, the conclusion about airline profits is also straightforward: Over-

all, peak-density output from the business airline is higher, and peak-leisure flights from the

leisure airline is lower than under symmetry. At the same time, each airline offsets its output

change one-to-one across periods. Moreover, the peak-density fare is higher and the peak-

leasure fare is lower than under the previous symmetric case. This means that the business

airline sells a higher number of flights at the peak price, which in addition is higher than in

symmetry, and thus increases total profits. In contrast, the leisure airline suffers both from a

lower mark-up as well as a lower peak-leisure airfare, and thus ends up with a lower overall





      

profit. Overall, thus, the presented model seems to succeed in illustrating the central argument

of this study: Endogenous market power due to product differentiation based on network den-

sity benefits, that creates an airline asymmetry with a micro-foundation from the demand side.

Comparing the above Cournot duopoly market equilibrium to the social optimum from 4.1.1

shows that both the peak and the off-peak flight volumes are distorted by market power. From

this, the following can be inferred: First, due to the market power terms, the joint peak output

thus is lower than under the social optimum. This means that the corresponding characteristic

θ’s are higher than justified by congestion and time costs alone. This makes the differential

direct flight benefits of the critical passengers increase. Moreover, as the resulting flight fares

determined by (31) are above marginal costs, they yield a premium for both airlines. Second,

also direct benefits for the critical off-peak passenger are higher, and according to (32), also

the off-peak flight-fare is higher than marginal costs. And third, as the critical peak-density

passenger is expected to be an interior solution, also the leisure airline offers at least some peak

flights. Thus, as general market theory predicts, market power results in both lower overall

peak- and off-peak output than in the social optimum. Consequently, all flight fares are above

marginal costs and contain a markup. Moreover, the peak-period is not exclusively served by

the business airline. Therefore, as expected, the Cournot duopoly market solution does not

replicate the socially optimal corner solution as described by (29).

4.2 Regulation

4.2.1 Quota

Given the assumption that the airport coordinator maximizes social welfare, the optimum num-

ber of slots according to eq. (4.1.1) is simply given by solving for the social optimum. This

means that Nopt
p = N soc

p , where N soc
p is the overall number of peak flights as revealed by eq. (28)

in 4.1.1. Unfortunately, the generic terms from Section 4.1 do not yield explicit solutions for

the dependent variables. Nevertheless, from comparison of the social optimum to the Cournot

market equilibrium in (33) and (34), we know that the overall Cournot equilibrium peak output

is lower than in the social optimum. Formally, thus, θ∗S oc.Opt. < θ∗Cournot. This means that the

quota as a quantity constraint is not binding regarding the overall peak-flight volume.





      

As already mentioned before, in the asymmetric case, this should turn our attention to the

allocation of the quota to the airlines. In general, we can say that any arbitrary assignment of

the quota is equivalently fine, as long as it does not infringe the Cournot equilibrium output. If,

however, the business airline is constrained in peak-output below its equilibrium market share,

welfare is compellingly reduced. This is because congestion is not reduced if business flights

are substituted by leisure flights in the peak period. In contrast, customer value decreases due

to the decline in network density, which reduces the density benefits for the passengers - at the

same congestion and time costs. Even if the total peak flight volume would decrease, because

the leisure airline would not use the additional slots received, we know from (29) in 4.1.1 that

in the social optimum, the business airline should operate all flights during the peak period.

This ultimately means that any decrease of peak-business flights below the social optimum is

welfare decreasing. In contrast, recall that the overall equilibrium output is lower than the total

number of quota, and that the quota represents a quantity constraint that can only limit, but not

increase an airline’s output. Therefore, even if all airport slots are allocated to the business

airline, the quota solution cannot restore efficiency in the asymmetric Cournot duopoly.

Conclusively, under the current asymmetric setting with network density benefits, airport quota

cannot increase allocation efficiency. At best, they simply allow to replicate the oligopoly

market equilibrium. The danger is, however, that they decrease welfare not only below the

social optimum but also below the market solution. This happens if their assignment to the

airlines does not allow the natural market structure to evolve.

4.2.2 Congestion Pricing

Marginal congestion costs in the Cournot equilibrium are identified by looking for the first

derivatives of time and congestion costs in (33) and (34). And because airlines only internalize

marginal costs that are represented in the first-order equilibrium conditions, following Brueck-

ner (2002a), the internalized portion of congestion caused by the respective airline can directly

be extracted from these equations as ni
p ·

[
t′(Np) +

g′(Np)
s

]
for i ∈ {B, L}. The correct congestion

toll to internalize the external part of delay therefore needs to amount to the remaining marginal

congestion costs, that are not accounted for in each airline’s profit rationale. With Np = nB
p +nL

p,





      

the toll for airline i with competitor j thus amounts to

Ri(ni
p) = n j

p ·

[
t′(Np) +

g′(Np)
s

]
.

With s · nB
p = (1 − θD) and s · nL

p = (θD − θ∗), and s normalized to unity, the tolls for the two

airlines then can be denoted in terms of the characteristic θ’s as

RB(nB
p) = (θD − θ∗) ·

[
t′ + g′

]
(35)

and

RL(nL
p) = (1 − θD) ·

[
t′ + g′

]
. (36)

This means that each airlines faces the above toll after having chosen its optimal output, and

thus fully internalizes congestion. At this point it is repeated that the airlines do not take

the toll into account in their profit maximization, because if they would, they already perfectly

internalized congestion in their output choice. Under the above assumption, then, the tax simply

enters the airlines profit function as an additional operating cost for peak flights. And because

the tax is exogenous, it can directly be included in the equilibrium conditions as an additively

separable term. As designed, then, it increases the congestion costs accounted for in the airline

profits to their full amount, so that the marginal congestion terms in both equilibrium conditions

equivalently become

Np(t′ + g′). (37)

As already stressed, the efficiency impact of these congestion tolls now depends on their rela-

tive size versus the market power distortion. Unfortunately, the implicit equilibrium and social

optimum conditions cannot be directly compared. But looking at social optimum condition

(28), and comparing this to equilibrium condition (33) nevertheless reveals two features. First,

with congestion costs as in (37), the two equations only differ by the market power term. Sec-

ondly, the latter only vanishes if peak-leisure flight volume is reduced to zero due to the tax, so

that θD = θ∗. This, however, is not plausible, as an interior solution might rather be expected.

But even if this were the case, condition (34) would still need to be fulfilled in a market equi-





      

librium. Then at θD = θ∗but θ∗ < 1, even with (37) the social optimum condition (28) were not

replicated. Rather, as can be seen easily, output of the peak airline were further depressed be-

low the Cournot equilibrium by the congestion tax, which is already below the social optimum,

and thus welfare were decreased.

Some complexity to this is introduced from the leisure airline due to the asymmetry, however.

Namely, as (29) dictates, the leisure airline’s peak-flight share needs to vanish in the optimum.

As we saw above, even if this was the case, the optimum were not replicated by the tax. But in

contrast to the business airline, the leisure airline’s peak output reduction by the congestion tax

works towards its socially optimal peak-flight volume, and not away from it. So, congestion

in fact is reduced while the allocation takes a small step towards the optimum, at least from

this side. Because in oligopoly, however, this still means that the flight fare is increases, it is

highly questionable whether this effect has a substantial offsetting effect on the negative welfare

impact of the tax on the business airline, and on overall peak-flight volume.

In sum, we can conclude that based on the implicit equilibrium conditions, the congestion tax

is most likely to be welfare decreasing in this setting. This is also confirmed by the expec-

tations from recent theoretical studies. Nevertheless, in order to get an ultimate confirmation

and a quantitative result, the equilibrium needed to be made explicit, by replacing the generic

functions with specific ones. A simple yet illuminating approach were to assume linearity, as

depicted in Figure 4. This should be foreseen as an integral extension of this work.

4.2.3 Secondary Trading

As found out above, in the current duopoly setting with network density benefits, a quota

solution can only maintain or infer the welfare level as reached in the market equilibrium.

This has the direct implication that a Secondary Trading scheme for airport slots can only have

two outcomes:

Either, as a first possibility, it can restore the potential welfare loss of a mis-allocation, if the

initial endowment of the airlines did not allow to replicate the natural market structure. Recall

that this can only be the case if the business airline’s peak output is constrained below the

Cournot equilibrium. Because the market equilibrium is the profit-maximizing solution for





      

both airlines, an exchange at positive prices will happen until the market equilibrium is reached.

The leisure airline will always be willing to sell capacity until the business airline reaches its

unconstrained peak-period market share, because with an excess number of slots, it is always

able to produce its own unconstrained, profit-maximizing output. Of course, a slot exchange

at positive prices would have a distributional impact on the total profits of the airlines, which

depended on their initial endowment, and thus bring up a sensitive political-economy issue

about distributional equity. Nevertheless, welfare were not impaired by these distributional

effects. Rather, the welfare level of the natural market structure could be restored against an

initial mis-allocation. As with a quota solution in general, however, the social optimum could

neither be replicated.

Or, as a second option, the initial endowment of the airlines were already such that the oligopoly

equilibrium were not constrained. Then, trading would simply not occur, because none of the

airline had a motivation to actually spend money on buying airport access rights that exceeded

their profit maximizing output.

Notice, however, that the two above results crucially depend on the assumption that the airlines

are subject to a service obligation of the slots held. If, in contrast, airlines were free to hold

unused slots, then the secondary trading market might offer opportunities for strategic behavior.

Namely, it might be more worthwhile for such an airline to hold slots unused at an opportunity

cost, than selling it to its competitor, if its own commercial position could be strengthened. In

the current oligopoly setting, this would be the case if the potentially slot-selling airline could

increase its profitability not by restricting its own output, but by decreasing the competitor’s

flight volume. In the current model, this were the case if the peak-leisure flight fare would

increase with a reduction of the peak-business output, while at the same time the peak-leisure

flight volume might be maintained - or, vice-versa, for the business airline. Notice that Cournot

behavior requires firms to take the output decision of their competitors as given. In this case,

however, the airlines would actually have control over the output of their competitor. Thus,

Cournot assumptions should not to be impaired. Moreover, notice that even with an effective

service obligation in place, strategic behavior might occur. This were the case if restricting

the competitor’s output were profitable, even if the slot-holding airline would have to increase

its own output above the profit-maximizing, unconstrained market equilibrium, on purpose of

utilizing the excess slot. At least, such behavior is suspected to occur in practice.





      

Although such an investigation were hence crucial for the assessment of secondary trading

scheme with market power, its outcomes would essentially depend on the initial endowment

of the airlines. Therefore, an extensive analysis of multiple scenarios were necessary. The

current framework, however, would need to be enriched in order to enable the airlines’ profit

maximization, while endogenously restricting their competitor’s output subject to their own

airport slot holdings. Nonetheless, this should be foreseen as a high priority extension of this

study.

5 Conclusion

This study presents an airline-airport model that captures a hub airport of a large network air-

line, that differentiates its flight network from the other airline’s flights based on network den-

sity benefits. Subsequently, it investigates a quota scheme, congestion pricing and a secondary

trading market equilibrium to allocate airport capacity, in this asymmetric Cournot duopoly

setting with demand-side heterogeneity. The results are the following:

On the one hand, the network density benefits offset part of the congestion costs, and thus the

efficient peak flight volume is higher than in a symmetric case. On the other hand, however,

product differentiation increases market power. With a high internalized fraction of congestion,

then peak-flight volume in the market equilibrium is nevertheless below the social optimum.

This means that the residual market power effect is important relative to the congestion exter-

nality. Under these conditions, congestion pricing is likely to be welfare decreasing. With a

low overall peak-flight volume, a quota constraint, in contrast, would not be binding. hence,

it had no effect on welfare, unless the initial endowment of the airlines would not allow the

natural market structure to evolve. Under asymmetry, the latter represents a welfare caveat, and

thus still underlines the need to focus on the allocation of the quota to the airlines. In such a

case, a secondary trading scheme might help to restore the natural market structure. However,

the existence of an equilibrium at positive prices would depend on the initial quota assignment

to the airlines. Moreover, trading might cause a considerable distributional impact on the two

airlines, depending on their initial endowment.





      

Overall, the above considerations make clear that even if one of the above schemes can replicate

the natural market structure, the network still remains overpriced and too small, impeding the

passengers’ customer value to flourish to its maximum extent. Notice that this were also true

if there was no regulation at all. Consequently, in an asymmetric oligopoly setting, regulation

less likely needs to be concerned with congestion externalities than with market power. This,

in turn, indicates the need for a shift the perspective on the airport capacity allocation problem:

Instead of considering economic allocation instruments to lower congestion, one might have

to think of regulating mechanisms for the monopolistic market structure of the network good.

This might allow to reach maximum density benefits, at fair distributional consequences for

both the passengers and the airlines involved.

There are, however, some important limitations to this model: First of all, a confirmation of the

results from the implicit equilibrium conditions with calculations from explicit values would

substantially help to make the results more transparent. This could be done by replacing the

generic functions with specific ones, most easily with a linear version, as already undertaken

in the analysis of the network density benefits. Second, the impact of strategic behavior of the

airlines should also be reflected in the analysis of the secondary trading equilibrium, both in or-

der to investigate a potential welfare caveat as well as the distributional impact of this scheme.

These two issues should certainly have priority in the further development of this study.

Moreover, as mentioned in the introduction, the model does not consider global competition

across network airlines through different hub airports. This might decrease the market power

from product differentiation, and thus affect the efficiency results, possibly reinstating a posi-

tive welfare effect of the allocation instruments considered. And last, the model is considerably

simplified with constant marginal costs, and a fixed, symmetric aircraft size. Regarding costs,

this helps to keep the model traceable. But because there is a controversial debate whether

airline operations exhibit economies of scale, especially in a network context, an analysis with

decreasing marginal costs would be interesting. This might include the attempt to differenti-

ate costs between the two airlines, because identical costs for both the network airline and its

non-networking competitor might be deemed unrealistic. Last but not least, a variable aircraft

size would allow to study the airlines’ choices of aircraft size versus flight frequency. Such an

extension had already been proposed by Brueckner (2002a, p.1368), but judged there to require

a „richer framework, where passenger valuation of flight frequency is explicitly considered“.





      

This model would, however, provide a framework rich enough to allow this modification. Re-

solving some of the above shortcomings with appropriate modifications certainly provides a

strong motivation for further research.
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A Results from Brueckner (2002a)

In order to compare product differentiation equilibria to previous results with symmetric air-

lines, this Section presents the main results of Brueckner (2002a).23 Flights are homogeneous

across firms, and firms are symmetric, and thus there are no firm-specific indices in the equi-

librium conditions. Otherwise, the setup is identical to the model presented in Section 3. In

the first subsection, the social optimum and market equilibria for monopoly, Cournot oligopoly

and perfect competition are shown. In the second subsection, efficiency results for a conges-

tion pricing scheme are shown. Although other instruments are not analyzed, a prediction of

expected results for a quota solution is attempted.

The key findings from these results are the following: First, either market power or conges-

tion externalities always distort the allocation in a market solution. But Cournot oligopoly is

the only market form concerned with both distortions at the same time. Second, in Cournot

oligopoly a congestion tax may deteriorate welfare, when the market power distortion is large

in relation to the externality.

A.1 Equilibria

A.1.1 Social Optimum

The social optimum is developed by maximizing overall welfare, that equals net passenger

benefits B(θ, np) = b(θ) − t(np), consisting of direct travel benefits and time costs, minus total

airline costs C(no,np) = n · c + g(np). Variable c denotes constant direct operating costs per

aircraft, and g(np) congestion costs to the airline. The first-order conditions (FOC) for the

social optimum are:

b0(θ) ≥ c/s (38)

23Assumptions, formulas, results and interpretations are quoted from Brueckner (2002a) and are not further ref-
erenced.





      

[
bp(θ∗) − t(np) − bo(θ∗)

]
− np · t′(np) −

1
s

[
g(np) + np · g′(np)

]
= 0 (39)

with np = (1 − θ∗)/s. Condition (38) determines the lower bound of travelers (on the θ- scale),

that is: the market size or the overall quantity of people who travel. The inequality shows the

dependency of the lower bound of θ from the size of marginal cost per seat: With constant

marginal costs, the assumption that marginal costs are higher than the direct travel benefit for

the individual at the low end of the θ-scale implies c/s > bo(0). In this case, it follows from

(38) and b′o > 0 that θ > 0. Then, the equality is binding, i.e. b0(θ) = c/s. With c/s < bo(0), we

get θ = 0 and have the inequality binding. Then the flight fare is anywhere between marginal

cost and marginal benefit, depending on the market structure.

Equation (39) determines the number of peak travelers, or equivalently, the peak-offpeak-split.

It dictates that the marginal benefit of the passenger switching from off-peak to peak travel (the

left square bracket) must equal the additional (i.e. marginal) time cost for all passengers (the

middle term) plus the airlines’ congestion costs arising from the additional peak flight volume

caused by this user (the right bracket). The most important implication from (38) follows from

recalling that θ = 1 − s · (np + no), where np + no is the total market size. This illustrates that

there is a one-to-one substitution between peak- and off-peak flights. Thus, the market size is

only determined by the marginal costs per seat.

Flight fares are also determined by above conditions (38) and (39): As the willingness-to-pay

for the lowest off-peak traveler cannot exceed his benefit under utility maximization, and his

benefit cannot be below marginal costs, the off-peak-fare thus must equal marginal costs:

fo = c/s. (40)

The peak-flight fare follows from the indifference condition, which states that the fare differ-

ence between peak- and offpeak-travel must equal the marginal benefit achieved, minus the

associated costs incurred:

fp − fo =
[
bp(θ∗) − t(np) − bo(θ∗)

]
. (41)





      

Then, from (39) in (41) and rearrangement, it follows that

fp = c/s + np · t′(np) +
1
s

[
g(np) + np · g′(np)

]
. (42)

The peak-flight fare thus includes a surcharge over the off-peak fare that exactly equals the

marginal time cost and the marginal and total congestion costs caused by one additional peak

traveler. This just reflects the complete internalization of congestion costs in the social opti-

mum.

A.1.2 Perfect Competition

Under perfect competition, prices equal marginal costs by standard assumption. Thus, flight

fares are determined exogenously as fp =
[
c + g(np)

]
/s and fo = c/s. The first-order condition

for θ equals the social optimum condition in (38), with the equality binding. Hence, the overall

market size is efficient also under perfect competition. In contrast, the equilibrium condition

for the peak-offpeak-split becomes

[
bp(θ∗) − t(np) − bo(θ∗)

]
−

1
s
· g(np) = 0. (43)

In comparison to equation (39), the terms for the marginal time and congestion costs are miss-

ing. This means that an additional peak-traveler does not take into account his impact on the

additional congestion he causes. Therefore, congestion becomes an externality and leads to

overuse of the peak period. This result is in-line with economic theory, which mentions that a

competitive equilibrium in general is not socially optimal when external effects are present (cf.

e.g. Mas-Colell et al., 1995, p.353).

A.1.3 Monopoly

For monopoly, two different cases are distinguished: perfect price discrimination, and a non-

discriminating monopolist. Brueckner (2002a, p.1364) calls perfect discrimination an „admit-

tedly strong“ assumption, „despite the airlines’ well-known skill in this practice“, but serving

well for illustration purposes.





      

The perfectly discriminating equilibrium is identical to the social optimum. With discrimina-

tion, the monopolist can charge all travelers to the full extent of their willingness-to-pay, his

profits are maximized at the social optimum. The flight fares are continuous functions of con-

sumer taste, in order to exactly exhaust travel benefits: fo(θ) = b0(θ) and fp(θ) = bp(θ) − t(np).

There is thus no reason for the monopolist to decrease output in order to yield an excess profit.

Moreover, he fully takes account of congestion, because he is the only one concerned with it.

Therefore, both the market size as well as the peak-off-peak split remain efficient. As a distri-

butional effect with perfect price discrimination, however, the full amount of the economic rent

accrues to the monopolist.

The non-discriminating case is different: The monopolist has to decide on one uniform price

for each period. As known from standard theory, profit maximization with price-setting implies

to set marginal revenue equal to marginal costs. The first-order condition for θ thus becomes

b0(θ) − (1 − θ) · b′0 ≥ c/s. (44)

With b′0 > 0, comparison of (44) to (38) immediately makes clear that θ is higher than in the

social optimum, due to the additional market-power term (1− θ) ·b′0. Therefore, the market size

is less than efficient, which means that less people travel in the non-discriminating monopoly

case. This is because in a uniform price regime, the monopolist needs to decrease output below

the efficient level in order to exploit market power.

For θ∗, the first-order condition reads

[
bp(θ∗) − t(np) − bo(θ∗)

]
−np · t′(np)−

1
s

[
g(np) + np · g′(np)

]
−(1−θ∗)

[
b′p(θ∗) − b′o(θ∗)

]
= 0. (45)

Also this condition dissociates from (39) by the additional market-power term (1− θ∗)[b′p(θ∗)−

b′o(θ∗)]. This means that on the one hand, congestion is still fully internalized. But on the other

hand, market power also distorts the peak/offpeak-split away from its socially efficient level.

For b′p > b′o, the marginal increase of direct flight benefits is larger for peak than for off-peak

flights. In this case the market-power term in (45) is positive, and yields a higher θ∗ than the

social optimum. Thus, the peak period is underused and congestion is lower than optimal.





      

Pursuant to Brueckner (2002a), this output reduction is referred to as to the residual market

power effect (rMPE). Corresponding to the marginal benefit of the lowest-θ passenger and to

the indifference relation, respectively, the non-discriminating, fixed flight fares are f0 = b0(θ)

and fp = f0 + bp(θ∗) − t(np) − b0(θ∗). As both the market size and the peak/off-peak-split are

lower, it is evident that the monopoly prices are higher than socially efficient prices.

From the monopoly case, we can hence conclude the following: Because the monopolist is

concerned with congestion to the full extent, it is completely internalized, regardless of whether

prices are discriminated or not. Consequently, the congestion externality does not occur in

monopoly. Then, the discriminating monopoly is efficient, as it replicates the social optimum.

The non-discriminating monopoly is not efficient, as it reduces the market size in both periods

below optimum. The reason for this inefficiency is the residual market power effect, that aims

at increasing the mark-up’s by decreasing the output.

A.1.4 Cournot Oligopoly

In Cournot oligopoly, there is a number of k firms that maximize their profits. Aggregate output

determines flight fares and the number of travelers. As firms have market-power, they take into

account the effect of the aggregate output on the flight fares. Every firm takes the other firms’

choices as given.24 The difference from the Cournot equilibrium versus the monopoly now is

the following: firms still internalize congestion and take account of the residual market power

effect. However, both of these apply only to each firm’s fraction of congestion and output.

In other words, each airline is only concerned with its self-imposed congestion. Costs from

flight delays that accrue to competitors are not accounted for. Again with the assumption that

c > bo(0) and thus θ > 0 and for symmetry, the equilibrium condition for the market size is

b0(θ) −
1
k
· (1 − θ) · b′0(θ) = c/s. (46)

The term again captures marginal costs, and a price premium from residual market power. It

shows that in oligopoly, the market size depends on the number of firms: For k → ∞, it tends

towards the perfect competition equilibrium, and for k = 1 it corresponds to the monopoly

24From a game-theoretic perspective, this hence represents a Nash-equilibrium. This market form is therefore
also referred to as Cournot or quantity competition, or Cournot-Nash competition (cf. e.g. Friedman, 1983).





      

condition. This means that the market size decreases and market power increases, when the

number of firms diminishes. The FOC for the number of peak-flights reads

[
bp(θ∗) − t(np) − bo(θ∗)

]
−

np

k
· t′(np)−

1
s

[
g(np) +

np

k
· g′(np)

]
−

1
k
· (1−θ∗) ·

[
b′p(θ∗) − b′o(θ∗)

]
= 0.

(47)

It contains the same terms as the monopoly case, but now also dependent on k. The brackets or

single terms from left to right are: marginal peak-flight benefits, marginal time costs, carriers’

congestion costs, and residual market power. The condition shows that the oligopoly equilib-

rium is inefficient due to two opposing distortions: market power and congestion externalities.

With a large number of firms, approaching perfect competition, residual market power is low,

and so is the internalization of congestion. This means that the peak-flight volume is likely to

be higher than in the social optimum. Then, mainly the excessive external congestion decreases

welfare. In contrast, with a small number of firms, congestion is internalized to a large part but

market power increases. Therefore, peak-flight volume tends to be lower than in the social

optimum. In this case, the welfare constraint stems to a large part from the residual market

power effect. Notice that even if the two distortions are balanced to exactly yield the socially

efficient level of peak-flights, welfare is still lower than in the social optimum. This is because

the effects of both distortions remain: market power induces a deadweight loss, and external

congestion is welfare deteriorating.

To derive the flight fares in the oligopoly equilibrium, again the presumption is used that with

market power, marginal benefits for the left-most traveler are exhausted by the flight fare. This

means that the marginal revenue equals marginal flight benefits, as in the non-discriminating

monopoly case from above. Then, fo = bo(θ), and substituting this into (46) and rearranging

yields off-peak flight fare

fo(k) = c/s +
1
k
· (1 − θ) · b′0(θ). (48)

This shows that the off-peak flight fare equals marginal cost plus a mark-up. Excess profits

increase with market concentration, denoted 1
k , and decrease with the number of firms. The





      

peak flight fare is revealed by using (47) and (48) in indifference condition (41) to get:

fp(k) = c/s+
np

k
·t′(np)+

1
s

[
g(np) +

np

k
· g′(np)

]
+

1
k
·(1−θ∗)·[b′p(θ∗)−b′o(θ∗)]+

1
k
·(1−θ)·b′0(θ) (49)

In analogy to the monopoly case, also here the second-last term on the left side represents the

mark-up, weighted with the factor 1
k that denotes market concentration. The output-decreasing

tendency of market power is easily concluded from this term: With b′p > b′o, the expression

in the square bracket evidently increases with a higher θ∗ and thus with a lower peak-flight

share. It is offset by the lower turnover (1 − θ∗), until their product is maximized. Indifference

condition (41) then reveals the relation of flight fares and market power: With a low number of

firms, market power is high and so is θ∗. Then, both because peak-flight benefits grow steeper

than offpeak-benefits, and because time costs decrease with lower peak flight volume, the fare

difference grows. In contrast, with a large number of firms and a high peak flight volume,

both the fares and their difference are lower. Due to the additive separability of the terms in

the indifference condition, the two flight fares change disproportionately. The effect of market

concentration is hence the following: With a low number of firms, pricing converges towards

monopoly mark-ups with a low output volume in both periods. So, the peak is overpriced and

underused relative to the social optimum, because residual market power prevails. With a high

number of firms, pricing tends towards marginal costs, and output volume is high. Then, the

peak is overused but underpriced relative to the efficient level, as the congestion externality

dominates.

A.2 Regulation

A.2.1 Quota / Access Rights

Quota or access rights, as used under the current administrative allocation scheme in practice,

are not explicitly considered in Brueckner (2002a)’s study. Nevertheless, an optimal capacity

allocation by use of quota can implicitly be inferred from the social optimum computation: The

first-order condition for the efficient number of quota is given by equation (24). The optimum

number of slots is therefore implicitly determined by θ∗. Derived from equilibrium condition





      

(39) it reads

Np = (1 − θ∗)/s.

The allocation problem in this case is straightforward: With symmetric airlines, homogeneous

products and constant marginal costs, the quota allocation by the social planner is irrelevant,

as long as the total peak-output remains at (or below) the efficient volume. Thus, Brueckner

(2002a)’s homogenous model is expected to predict the following: In perfect competition with

symmetric firms and constant marginal costs, a quota solution should be efficient, as long as

the number of access rights for the peak-period is correctly chosen, and airlines have a binding

obligation to use them. This is because the quota would constrain peak-output to the social

optimum. In an oligopoly setting, a quota would either reduce congestion to the socially optimal

level, but not be able to correct for the market power distortion (i.e. the deadweight loss).

Or, if output were already below the efficient level, it would simply be useless, because it

would represent a non-binding constraint. These expectations, however, were only valid for a

symmetric equilibrium with identical firms, because then the allocation of the quota would not

matter. Of course, this consideration raises the question whether a symmetric market structure

is anywhere near to realistic. A possible answer to this question as suggested by this study were

that at a large congested hub airport it is presumably not. In such a case, it is rather to resemble

an asymmetric market structure with one dominant network airline. With such an asymmetry,

then, the quota allocation does have an impact on allocation efficiency.

A.2.2 Congestion Pricing (CP)

In-line with economic literature, Brueckner (2002a) imposes a congestion toll R(np) on each

peak flight to internalize the congestion externality. The toll is computed on this premise by

use of the equilibrium conditions from above, and leads to full internalization of the external

congestion effect. As already pointed out, the tax is computed after the airlines have made

their output choices. Otherwise their profit-maximization would replicate fully internalizing

behavior in equilibrium (cf. 3.2.3).





      

Monopoly As both the fully discriminating and the non-discriminating monopoly fully in-

ternalize congestion. The deadweight loss as an inefficiency in the latter case stems from the

residual market power effect only. Hence, there is no externality to be internalized in these

market forms and thus no basis for congestion pricing.

Perfect Competition In perfect competition, the externality corresponds to the sum of marginal

congestion and time costs. Formally, it equals the difference between (39) and (43), so that

RPC(np) = s · np · t′(np) + np · g′(np).

As a result, the peak-flight fare is increased by RCP(np)/s per seat, with the higher price yield-

ing the peak/off-peak split of the social optimum. Because there is no residual market-power

effect in this case, the tax replicates the social optimum and thus renders the allocation efficient

(Brueckner, 2002a, p.1364).

Cournot Oligopoly According to first-order condition (47), the congestion pricing tax in the

symmetric Cournot oligopoly amounts to

ROL(np) =

(
1 −

1
k

) [
s · np · t′(np) + np · g′(np)

]
.

Also this tax fully internalizes congestion. Due to the remaining distortion from the resid-

ual market power effect, however, the allocation is still inefficient. Exactly as in the non-

discriminating monopoly case, the remaining market power distortion is not corrected by the

congestion tax.25 Now, according to the ambiguity of congestion pricing, this toll may actually

deteriorate welfare: Under assumption b′p > b′o the residual market power effect tends toward

underuse of the peak period, while external congestion tends toward overuse of the peak period.

Now, if the market power distortion is large in relation to the congestion externality, the tax

further reduces peak-flights away from the social optimum. Then the effect of the congestion

25Verhoef (2010, p.322) includes the market power distortion in his congestion pricing computation, in order
to „correct for overpricing“, and thus finds congestion pricing to be a first-best solution. This, however, has
nothing to do with congestion pricing in the sense of a Pigouvian Tax. It rather constitutes an competition
instrument to correct for the market power distortion. From an economic point of view, mixing competition
and externality issues within a single defined instrument while naming it a congestion tax, however, should at
least be questioned.





      

tax on welfare is adverse. This is true even if the resulting net output from the two distor-

tions before the tax is above the social optimum, but not sufficiently above. The ambiguity of

congestion pricing hence depends on the direction and size of the market power effect.
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