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Abstract

To date, travel demand generation for microscopic traffic flow simulations and travel demand
models focuses on reproducing daily life behavior. This stands in contrast to the significant part
of traffic volume caused by journeys related to activities not usually undertaken during daily life.

In the case of long distance travel demand it is necessary to simulate a long period of travel
behavior, because long distance trips are usually rare and often last longer than one day. We
use and adapt the Continuous Target-based Activity Planning (C-TAP) simulation in order
to simulate long distance travel demand for a long time period. The adapted model, Long-
Term C-TAP, was used for a simulation of one year. In comparison to other activity driven
microsimulations the activities taken account in the Long-Term C-TAP simulation are highly
abstracted. Besides the main activity called daily life (including home stays, work, daily
shopping etc.) we simulate all stays (e.g. holidays) taking place more than 100km away from
the place of residence.

One of the characteristics of long-term and long-distance travel behavior is the enlarged planning
horizon, i.e. people tend to plan activities in advance. This fact has to be captured in an agent-
based simulation, like Long-Term C-TAP. We will introduce a decision making algorithm based
on the minimization of the discomfort, which values each possible series of activities. Each
series is defined by activity types for each activity, time periods for each activity and (fixed)
travel times between the activities. In order to allow an arbitrary planning horizon the main
objective of this algorithm is scalability.

Keywords
continuous target based model; long term simulation; long distance travel demand; microscopic
travel demand simulation; C-TAP





         

1 Introduction

Microscopic travel demand simulations simulate the (traveling) behavior of virtual agents
individually. One of the well known approaches is the one proposed by Balmer (2007): agents
choose a daily schedule for their behavior and execute it. The execution results are reported and
the agents can re-plan their schedule based on the results of all agents. This procedure is iterated
until a stochastic user equilibrium with consistent travel demand is reached (Nagel and Flötteröd,
2009). Due to high computational complexity and memory issues (all current schedules have to
be maintained) a reasonable simulated period is a single day. This is not sufficient for the task
of long distance travel demand generation, because long distance traffic is a significant part of
todays traffic and short term simulations are not capturing this part.

In case of long distance travel demand it is necessary to simulate a long period of travel behavior,
because long distance trips are usually rare and take more time than short distance trips. We
use and adapt the Continuous Target-based Activity Planning (C-TAP) simulation which is
proposed by Märki (2014). It was shown that this approach is able to reproduce individual
behavior of six weeks (Märki et al., 2012c). We modify this model in order to simulate long
distance trips over an even longer period. The goal of the modified simulation is the generation
of travel demand data for a whole year.
The Long-Term C-TAP simulation is one of the first microsimulations, which provides an
estimation of long-distance travel demand. An estimator for long-distance travel demand is
valuable, because it introduces a new possibility to justify political decisions in this policy
domain. An application might be the evaluation of big infrastructural investments, like new
bridges or tunnels, which is very useful for the cost-benefit analysis of this investments.

One major task within the development of the described simulation is the activity planning. In
case of the Long-Term C-TAP simulation the planning is dynamic, i.e. no complete schedules
are created, but for each agent a decision about his next activity has to be made each time he
finishes his current activity. Nevertheless, the agents have to plan more than one activity at
each decision point as real life people also tend to plan long-distance trips in advance. The
implementation of the decision process is the focus of this paper, in particular the scalability in
the size of the planning horizon has to be ensured.

The remainder of this paper is structured as follows. First, we present the Long-Term C-TAP
model including its main functionality. After that, we focus on the activity planning model and
an analytic description of the arising problem. In the next step an algorithm for a numerical
solution of the problem is presented. We conclude the paper with a consideration on limitations
of the current simulation and an outlook on potential future development.





         

2 Related Work

Agent based simulations have a long tradition in analysis and explanation of social behavior.
Schelling (1971) is often referred to be the first developer of an agent based simulation. Mi-
crosimulations were also used to estimate travel demand ((Pendyala et al., 1997)) or to generate
an activity-based travel forecast (e.g. Bhat et al. (2003) or Miller (1996)). Nowadays agent based
simulations make a notable contribution to the field of transportation research (e.g. Balmer
(2007)).

The target-based approach is related to the need based theory which was introduced by Arentze
and Timmermans (2006). They developed also a model for activity generation with the as-
sumption of utilities described as dynamic function of needs (Arentze and Timmermans, 2009).
Märki proposes to use targets instead of needs as an explanation of human behavior (Märki et al.,
2012b). He validated his model in Märki et al. (2012c) for short distance travel generation using
a six-week continuous travel diary provided by Löchl et al. (2005).

Long distance trips have been also the focus of recent literature. The travel behavior have been
analyzed several times, e.g. for the UK and the Netherlands Limtanakool et al. (2006). Some
statistical long distance travel demand models have been developed (e.g. Erhardt et al. (2007))
as well as used for traffic forecast (e.g. Beser and Algers (2001)). Recently, different surveys
were also analyzed to derive an outlook on the future of long distance travel demand (Frick and
Grimm (2014)).

Finally, the usage of a continuous target-based model for a long term simulation was introduced
recently by Janzen et al. (2014) and Janzen and Axhausen (2015). This adaptation is beneficial,
because the statistical models of long-distance travel behavior focus on the current state of the
world, which is not always sufficient. Thus, there is a need of a tool to predict travel demand
after major infrastructural changes.

3 Continuous Target-Based Model

We introduce a microscopic travel demand model, which is used to generate long-term and
long-distance travel demand. The core of microscopic models is built with agents representing
virtual people. In contrast to iteration-based models (like the one used by Balmer (2007)) a
continuous planning model does not iterate to a steady state, but generates continuously an
activity schedule without a systematic replaning. One of the main advantages is the capability





         

of the simulation to generate arbitrarily long activity plans in linear runtime. Thus, it is a
better basis for the generation of long term, long distance travel demand. Finally, we choose an
event-driven simulation, which is more effective for our issues than a time-driven simulation,
because the action between two events is not crucial to the simulation and maintaining a single
event queue can be implemented simply in our simulation.

The simulation presented in this section was introduced by Märki et al. (2012b) and further
developed by Märki et al. (2012a) and Märki et al. (2013). Finally, the extension to a long-term
simulation was presented by Janzen and Axhausen (2015). We explain in this section the main
ideas of Long-Term C-TAP, i.e. the behavioral targets, the activities and their interaction within
the simulation algorithm.

3.1 Behavioral Targets

The core idea of (Long-Term) C-TAP is the usage of behavioral targets, which represent the
motivation of the agents to perform an activity. Examples of long-distance and long-term
motivations are holidays. In this case an agent might have the motivation to go on holidays for
two weeks twice a year.

There are several options to define targets. In the following we present the types of targets
proposed by Märki (2014):

• percentage-of-time target: indicates how much relative time within an observation window
an agent would like to spend on a specific activity (e.g.the motivation to spend a specific
amount of time on holidays within one year).

• frequency target: indicates how often an agent would like to execute a specific activity
within an observation window (e.g. the motivation to go a specific number of times on
holidays within a year).

• duration target: indicates how much time an agent would like to spent for a single
execution of a specific activity (e.g. the motivation to spend a specific amount of time on
each holiday trip).

Note that the first two target types include the definition of an observation window. But in
case of the simulation presented here it is not necessary to include additional parameters to the
calibration of the simulation, because it is sufficient if the observation window just equals the
simulated time, i.e. one year. Nevertheless, the user can give some of the targets a bigger weight,
if he decreases the observation window.





         

Obviously, the definition of all three targets for a single activity has redundancy as just any
two of the three target types are necessary to fully describe the motivation of the agents for a
single activity. In order to reduce runtime and complexity of the model we use just two of the
three proposed targets. Experiments have shown that the best performance is achieved with the
limitation to duration and percentage-of-time targets.

3.2 Activities and State Values

Activities are necessary to complete the concept of a target-based simulation, because the targets/
motivations described above are satisfied by the execution of a corresponding activity. Activities
also mark the trip purposes. The decision on the executed activities is based on state values. For
each target we define a state value, which is necessary to measure the satisfaction. We need to
introduce two types of state values:

• for targets with observation windows (percentage-of-time and frequency targets): the state
value is the result of a convolution of the activity execution pattern with an exponential
kernel, which is restricted to the length of the observation window. So it increases during
the execution of the relevant activity, respectively decreases during non-execution.

• for duration targets: the state value is defined as the activity duration.

The level of satisfaction now is measured by the quadratic difference of state value and target
value. This measurement is called discomfort and its influence within the model is described in
detail in section 4.1.

3.3 Core Algorithm

We will now shortly present and discuss the main implementation issues of the Long-Term
C-TAP model. The core algorithm of the Long-Term C-TAP simulation has a simple structure
and is shown in algorithm 1.

The main procedure is a continuous, event-driven iteration over discrete points of time. This
iterative process is implemented by the outer while-loop including the incremental computation
of the consecutive time points in lines 7 and 8. Whenever an agent finishes the execution of an
activity, the function MakeDecision (line 4) computes the next activity based on its current
state, which has to be updated before (line 3). After that, the activity is executed until the
computed execution end. Activity execution also includes traveling to the location of the activity.
Recording these trips we obtain the travel demand. The simulation stops after a predefined





         

Algorithm 1 Core C-TAP Algorithm (Pseudo Code)

1: while simulation end not reached do
2: for all agent with no activity do
3: state ← UpdateAgentState(agent)
4: next Activity ← MakeDecision(agent, state)
5: agent.execute(next Activity)
6: end for
7: nextTimeStep = minimum( all execution endpoints)
8: proceed to nextTimeStep

9: end while

stopping condition is reached. This condition is usually a time period, which has to be simulated.
In case of long term simulations a time period of one year is reasonable.

Considering this algorithm there is one important task remaining, namely the implementation of
the MakeDecision function, which describes the activity planning. This challenge is the main
topic of section 4.1. Our object is the generation of long distance travel demand. So we are
not interested in every short trip, but just in those trips with long distances. We propose to use
aggregated activities, e.g. we introduce a single activity representing daily life, which includes
all short daily journeys like traveling to work, shopping, etc. In comparison to Märki (2014) this
is a higher abstraction level of activities.

4 Activity Planning

As mentioned before the main challenge of the continuous agent-based simulations is the
modeling of activity decisions. This is the focus of the following section. We will first describe
the decision model, continue with an analysis of the arising optimization problem and finish the
section with the solution implemented in the simulation.

4.1 Long-Term C-TAP Decision Model

In order to make decisions on the next performed activities one needs a measurement to value
different options of activity performing. This valuation is the core of the decision process and
should be simple and fast to compute. Given this we can compare different activities (and also
different activity durations) and choose the best option. In the case of Long-Term C-TAP the





         

quality of a potential decision is measured by the discomfort value

D(t) =

n∑
k=1

( f k
target (t) − f k

state(t))2 ∗ wk , (1)

where n is the number of targets and wk a bandwidth normalization factor. The function f k
target (t)

describes the target value at a given point of time t, while f k
state(t) describes the state value at t.

For simplicity and without loss of generality we assume that w equals 1.

The decision procedure is the following. Whenever a decision about the next activity of an agent
has to be made, all possible combinations of next activities are computed. The number of planned
activities is called planning horizon and is a parameter of the simulation (value is between 2 and
6). The next step is the calculation of the activity durations minimizing the discomfort value at
the end of the planning horizon. Finally, the first activity of the optimal activity combination is
chosen to be the next executed activity. The crucial part of this procedure is the minimization
of the discomfort value, which is an exponential multi-dimensional optimization problem. We
will describe this arising mathematical problem in detail and afterwards propose an algorithm to
optimize the problem in reasonable runtime.

4.2 Analytic Description of the Discomfort Minimization Problem

The discomfort minimization problem for a specific agent and a fixed planning horizon is
discussed in detail in this subsection. Following the proposition of the last section we assume
that for every activity actk (1 ≤ k ≤ n) there exist two targets, namely a duration target T k

dur ∈ R
and a percentage-of-time target T k

perc ∈ [0,1]. For simplicity we keep both types of T fixed, but
an extension to a function of time would not require big changes in the following.

Given a planning horizon of m activities and a vector t = (t1, · · · , tm) of the respective activity
durations, the discomfort of a single agent for a fixed series of activities acts1 , · · · ,actsm can be
expressed as

D(t) =

n∑
k=1

(T k
perc − vk

m)2

︸              ︷︷              ︸
percentage-of-time targets

+

m∑
j=1

(T s j
dur − t j )2 ∗ ws j︸                    ︷︷                    ︸

duration targets

, (2)

where vk
m is the state value of the percentage-of-time target corresponding to the activity actk

after execution of the last activity actsm . The first sum consists of the discomfort arising from
percentage-of-time targets, while the second part sums the discomfort of the duration targets.
Just the m performed activities generate duration discomfort, because all other activities do not





         

have any execution duration. Note that the series acts1 , · · · ,actsm can also contain an activity
twice or more. In this case there would be multiple duration discomfort values for a single
activity. The first does not include normalization factors, because its parts are already normalized
to the [0,1]-interval.

The remaining question in the discomfort calculation is the computation procedure of the
vk

m-values, i.e. how do the state values change during the execution of the activities. The state
values are described by two exponential functions. First, there is a state value increasing function:

hk (v̂, t̂) = 1 + (v̂ − 1)e−τk ·t̂ . (3)

Second, we define also a state value decreasing function:

dk (v̂, t̂) = v̂ · e−θk ·t̂ . (4)

In both cases v̂ is the state value before the increase or decrease applies. τk and θk are parameters,
which are computed for every activity subject to multiple other variables. These values are not
explained in detail here. Note also that valid values of v are between 0 and 1. Whenever an
activity actk is executed for a duration t̂, the corresponding state value increases by hk (.., t̂),
while any other state value of any activity acto (with o , k) decreases by dk (.., t̂).

Following this rules we can define the v-values for a fixed percentage-of-time target of actk

recursively as follows:

vk
0 = f k

state(t0) (5)

vk
i =




hk (wk
i−1, ti) i f i > 0 and si = k

dk (wk
i−1, ti) i f i > 0 and si , k

(6)

wk
i = dk (vk

i , tri). (7)

The current state value (at t0) is f k
state(t0) and the fixed travel time between an activity actsi

and actsi+1 equals tri. Thus, wk
i describes the state value after traveling to the (i + 1)-th

activity. During traveling all state values decrease, because in that time no activity target can be
satisfied.

You can find an illustration of the state value function for a percentage-of-time target in figure 1.
The state value corresponding to the activity, which is considered to be executed first, increases
during the first execution period t1 and decreases during travel time and the second activity





         

execution period t2 (figure 1 a)). The state value of the second target/activity increases during t2

and decreases otherwise (figure 1 b)). Finally, all other state values decrease during the whole
considered period (figure 1 c)). Though, the value we focus on is not the absolute state value but
the discomfort which is the quadratic difference of the state value and the target. Possible (static)
target values are plotted in the graph as green dotted lines. The sum of all quadratic differences
at the end of the second activity execution is the overall discomfort we want to minimize and
can be identified in the figure as the sum of d2

1, d2
2 and d2

i for all not executed activities i.

Figure 1: Illustration of a state value function for a percentage-of-time target

time

time
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Two important remarks regarding the implementation of any algorithm based on the discomfort
computation have to be made. First, there is an important fact about the nested functions
described above: h(h(v, t1), t2) = h(v, t1 + t2). The same applies to the d-function. This
property simplifies the computation of a single discomfort value. Second, there is one special
activity in the C-TAP model, called daily-life activity. This activity does not have any duration
target, but is just restricted by a lower bound.

After the full description of the discomfort evaluation function the question for a way to minimize
this function remains. The discomfort is a recursively defined, multi-dimensional and non-linear
function. This combination of attributes makes it very hard to find a clean analytic solution to
the optimization problem, which can be implemented in the simulation. Thus, we will propose
and describe a numerical solver to the problem in the next subsection.





         

4.3 Numerical Solution of a single Discomfort Minimizing Problem

The main objectives of an algorithm, which solves the discomfort minimizing problem for a
single agent and a fixed combination of activities, are fast runtime and good scalability for the
planning horizon. These goals ensure that the overall simulation runtime does not increase to an
insufficient level, when the planning horizon is extended.

The discussed problem is a multidimensional non-linear optimization problem. The description
in the last section has shown why an analytic solution is not provided and a numerical solver is
implemented instead. More precise, a direct search method is used. Direct search methods are
advantageous, because they do not need any derivative but just function evaluations.

The direct search method implemented in our case is the Nelder-Mead algorithm, sometimes also
called Downhill-Simplex algorithm (Nelder and Mead, 1965). The structure of the algorithm is
simple and is shown in algorithm 2. The input for a n-dimensional problem contains three parts.
First, n + 1 points in the solution space. In our case a point is a vector of possible durations for
the considered activity combination. Second, the optimized function f has to be provided, which
is in our case the discomfort evaluation function. Finally, the algorithm stops, if the function
values of the considered points do not differ more than a given ∆. This is one of the possible
ways to abort the main loop of the algorithm. One iteration of the Nelder-Mead algorithm for

Figure 2: Illustration of the Nelder-Mead Algorithm
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two dimensions is illustrated in figure 2. After sorting the n + 1 points by their function value
(assume for the figure: f (x1) < f (x2) < f (x3)) the centroid x0 of the first n points is computed.
Following this reflection (→ xr), expansion (→ xe) and contraction (→ xc) is performed. If
none of the new points improves the current set by replacing xn+1, the reduction is performed (all
points are moved towards the best point x1). In summary one iteration just computes different





         

Algorithm 2 Nelder-Mead Algorithm

1: while max (xi) −min (xi) > ∆ do
2: ORDER vertices s.t. f (x1) ≤ f (x2) ≤ · · · ≤ f (xn+1)
3: calculate the centroid x0 of x1, x2 · · · xn

4: REFLECTION: xr = x0 + α(x0 − xn+1)
5: if f (x1) ≤ f (xr ) < f (xn) then
6: xn+1 ← xr

7: else
8: EXPANSION:
9: if f (xr ) < f (x1) then

10: xe ← x0 + γ(x0 − xn+1)
11: if f (xe) < f (xr ) then
12: xn+1 ← xe

13: else
14: xn+1 ← xr

15: end if
16: else
17: CONTRACTION: xc ← x0 + ρ(x0 − xn+1)
18: if f (xc) < f (xn+1) then
19: xn+1 ← xc

20: else
21: REDUCTION:
22: for all xi, with i ∈ {2, · · · ,n + 1} do
23: xi ← σ(xi − x1)
24: end for
25: end if
26: end if
27: end if
28: end while

points looking for improvement of the maintained set of points.

The algorithm is further driven by four parameters (α, γ, ρ and σ). The values α = 1, γ = 2,
ρ = −1

2 and σ = 1
2 are known to be efficient for many problem descriptions (Lagarias et al.,

1998) and are also chosen in our case.

The discomfort minimization problem has one characteristic that influences the implementation.
The activity duration variables are bounded. The lower bound of 0 is obvious, but due to several
reasons there exist also other lower and upper bounds, which reduce the solution space to a





         

simplex. Thus, the algorithm has to be modified at least for the reflection and the expansion steps.
Whenever a new point outside of the solution space is chosen to be added to the current n + 1
points, it is instead projected to the closest point on the surface of the solution simplex (Luersen
et al. (2004); Wolff (2004). Afterwards it is checked whether all points are on the same surface
after the projection. If this is the case, the projected point is moved away from the surface by a
small distance. This step is explained by the fact that given the (α, γ, ρ and σ)-parameter as
presented above the n + 1 points form a non-degenerated simplex after one Nelder-Mead step, if
the initial points did not form a non-degenerated simplex, too. Thus, moving the projected point
further is done to preserve this feature to the considered points.

There are two limitations in the implemented version of the presented numerical solver, which
are not mentioned so far. First, due to runtime issues the value for ∆ cannot be chosen arbitrary
small. This can lead to a solution simplex that does not contain the optimum. Second, the
algorithm might find just an local minimum. Actually, it is even not guaranteed that a local
minimum is found. Thus, we have to restart the solver several times with different initial points
in order to reduce the probability not to find the global minimum.
But one has to keep in mind, that the C-TAP simulation is predicting human behavior, which
is always just an estimation, because human beings are not expected to act optimally. In
addition, the exact numbers of the computed solution are not used in the model, but are just
relative numbers to compare different options within the decision process. Keeping this in
mind an estimation algorithm like the one described here is sufficient for the Long-Term C-TAP
simulation, because it is expected to find fast a reasonable solution.

5 Future Challenges

There is still some work that has to be done in this part of the development of the Long-Term
C-TAP model. First of all, the implementation of the presented Nelder-Mead algorithm has to
be evaluated. Especially the scalability has to be verified. In the next step there is still some
space for improvement within the implementation of the algorithm, e.g. it is not clear how to
choose the best starting points or the best restart procedure. Finally, in order to have comparable
results also other algorithms have to be checked and implemented. Another option to solve
the discomfort minimization problem is the usage of a steepest descent method (Fletcher and
Powell, 1963). These methods use the derivative to iterate towards a local optimum.





         

6 Conclusion

This paper presents the idea to use a continuous target-based activity planing model to simulate
long distance travel demand within a full year. The focus is the activity planning problem, which
contains optimization sub-problems. These sub-problems have been solved by a direct search
method, the Nelder-Mead algorithm. Despite the introduction of a reasonable solver, there are
some future challenges remaining. Nevertheless, the Long-Term C-TAP simulation reached the
next step towards a stable long-term travel demand generator.
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