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Abstract

The aim of this paper is to analyze and to improve the current planning process of the passenger
railway service. At first, the state-of-the-art in research is presented. Given the recent changes
in legislature allowing competitors to enter the railway industry in Europe, also known as
liberalization of railways, the current way of planning does not reflect the situation anymore.
The original planning is based on the accessibility/mobility concept provided by one carrier,
whereas the competitive market consists of several carriers that are driven by the profit.

Moreover, the current practice does not define the ideal timetables (the initial most profitable
timetables) and thus it is assumed that the Train Operating Companies (TOCs) use their historical
data (train occupation, ticket sales, etc.) in order to construct the ideal timetables.

For the first time in this field, we tackle the problem of ideal timetables in railway industry
from the both points of view: TOCs’ and passengers’. We propose the Ideal Train Timetabling
Problem (ITTP) to create a list of train timetables for each TOC separately. The ITTP approach
incorporates the passenger demand in the planning and its aim is to maximize TOCs’ profits while
keeping the passengers’ costs at a certain level. The outcome of the ITTP is the ideal timetables
(including connections between the trains), which then serve as inputs for the traditional Train
Timetabling Problem (TTP). We test our approach on the S-train network of Canton Vaud,
Switzerland.
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1 Introduction

The time of dominance of one rail operating company (usually the national carrier) over the
markets in Europe is reaching to an end. The new EU regulation (EU Directive 91/440)
allows open access to the railway infrastructure to companies other than those who own the
infrastructure, thus allowing the competition to exist in the market.

Up to this point, the national carriers were subsidized by local governments and their purpose
was to offer the accessibility and mobility to the public (passengers). On the other hand, the goal
of the private sector is to generate profit, i.e. to maximize the captured demand.

However, the passenger demand is subject to the human behavior that incorporates several
factors, to list a few: sensitivity to the time of the departure related to the trip purpose (weekday
peak hours for work or school, weekends for leisure, etc.), comfort, perception and others.
Moreover the passenger service has to compete with other transportation modes (car, national
air routes, etc.) and thus faces even higher pressure to create good quality timetables.
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Figure 1: Planning overview of railway operation

If we have a closer look at the planning horizon of the railway passenger service (as described
in Caprara et al. (2007) and visualized on Figure 1), we can see that the issue of ideal departure
times has been neglected in the past. The Train Timetabling Problem (TTP) does take as
input the ideal timetables (in its non-cyclic version), however the procedure of generating such
timetables is missing. Similarly, in the cyclic version of the TTP, the objective function that
would maximize the TOC profit or passenger cost (satisfaction) is undefined.





     

We believe that the lack of the definition of the ideal timetables and how to create them, is a
major gap, caused by the lack of a competition in the previous railway market settings. We
assume that the lack of the passenger input in the planning, lead to the decrease of the railway
mode share in the transportation market.

And thus we propose to insert an additional section in the planning horizon called the Ideal
Train Timetabling Problem (ITTP). In the ITTP, we introduce a definition of the ideal timetable
as follows: the ideal timetable, consists of train departures, such that the profit associated
with each scheduled train is maximal while the passenger cost associated with the timetable
is within predefined limit. Such a timetable would benefit both, passengers and the TOC(s) in
the respective manner: the TOC would set acceptable level of passenger costs, which would
turn forecasted demand into the realized demand and the TOC’s profit, by definition, would be
maximized.
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Figure 2: Modified overview of railway operation

The ITTP is using the output of the Line Planning Problem (LPP) and serves as an input to the
traditional TTP and hence, it is placed between the two respective problems (Figure 2). The
driver of this problem is the profit function of a TOC. The model will allow timetables of the
TOC’s train lines to take the form of the non-cyclic or cyclic schedule. Moreover, we introduce
a demand induced connections. The connections between the trains are not pre-defined, but are
subject to the demand (via passengers’ costs). In the literature the connections are handled only
in the cyclic version of the TTP, where they are always induced, without a proper reasoning.

The structure of the manuscript is as follows: the literature review of the state-of-the-art (Section
2) is followed by a formal definition of a passenger cost (Section 3), leading to a problem
definition and its mathematical formulation (Section 4). The model is tested on a Swiss case
study (Section 5). The paper is finalized by drawing some conclusions and discussion of possible
extensions (Section 6).





     

2 Literature Review

The state-of-the-art literature is mostly focused on the traditional planning problems and consid-
ers the passengers (in the form of hourly demand) only in the initial phase (i.e. the LPP). Due
to the extensiveness of the literature, we focus on reviewing of the classical TTP as the ITTP’s
goal is to provide better information for the TTP using the outcome of the LPP.

The aim of the TTP is to find a feasible (operational) timetable for a whole railway network, i.e.

there are no conflicts of the trains using the tracks. In the non-cyclic version, ideal timetables
with their respective profits serve as the main input. The TTP then shifts the departures for
conflicting trains, such that the losses of the profits are minimized. In the cyclic version, the
model searches for a first feasible timetable given the size of the cycle. The user can create
his/her own objective function, otherwise arbitrary solution will be selected.

2.1 Non-Cyclic TTP

Most of the models, on the non-cyclic timetabling, in the published literature, formulate the
problem either as Mixed Integer Linear Programming (MILP) or Integer Linear Programming
(ILP). The MILP model uses continuous time, whereas the ILP model discretizes the time. Due
to the complexity of the problem, many heuristic approaches are considered.

One of the first TTP papers is Brannlund et al. (1998). The authors discretize the time and
solve the problem using lagrangian relaxation of the track capacity constraints, i.e. the model
is formulated as an ILP. The lagrangian relaxation of the same constraints is used as well in
Caprara et al. (2002, 2006), Fischer et al. (2008) and Cacchiani et al. (2012). On the other
hand, in Cacchiani et al. (2008), column generation approach is tested. This approach tends to
find better bounds than the lagrangian relaxation. Subsequently, several ILP re-formulations
are introduced and compared in Cacchiani et al. (2010a). In Cacchiani et al. (2010b), the ILP
formulation is adjusted, in order to be able to schedule extra freight trains, whilst keeping the
timetables of the passengers’ trains fixed. The dynamic programming approach, to solve the
clique constraints, is used in Cacchiani et al. (2013).

The MILP model has received less attention in the literature. In Carey and Lockwood (1995), a
heuristic, that considers one train at a time and solves the MILP, based on the already scheduled
trains, is introduced. Several more heuristics to solve the MILP model are presented in Higgins
et al. (1997).





     

A few different models exist: Oliveira and Smith (2000) and Burdett and Kozan (2010), re-
formulate the problem as a job-shop scheduling one. Erol (2009), Caprara (2010) and Harrod
(2012), survey different types of models for the TTP.

None of the above formally defines the ideal timetable. The models focus on the feasibility of
the solutions, i.e. the track occupation constraints. Demand is omitted in the formulations.

2.2 Cyclic TTP

One of the first papers, dealing with cyclic timetables is Serafini and Ukovich (1989). The paper
brings up the topic of cyclic scheduling based on the Periodic Event Scheduling Problem (PESP).
The problem is solved with an algorithm using implicit enumeration and network flow theory. In
Nachtigall and Voget (1996) model for minimization of the waiting times in the railway network,
whilst keeping the cyclic timetables (based on PESP), is solved using branch and bound. The
same model is solved using genetic algorithms in Nachtigall (1996). The general PESP model
is solved using constraint generation algorithm in Odijk (1996) and with branch and bound in
Lindner and Zimmermann (2000).

In Kroon and Peeters (2003), variable trip times are considered. Peeters (2003) then further
elaborates on PESP and discusses different forms of the objective function. In Liebchen and
Mohring (2002), the PESP attributes are analyzed on the case study of Berlin’s underground and
in Liebchen (2004) implementation of the symmetry in the PESP model is presented. Lindner
and Zimmermann (2005) propose to use decomposition based branch and bound algorithm to
solve the PESP.

Kroon et al. (2007) and Shafia et al. (2012), deal with robustness of cyclic timetables. Liebchen
and Mohring (2004) propose to integrate network planning, line planning and rolling stock
scheduling into the one periodic timetabling model (based on PESP). Similarly, Kaspi and
Raviv (2013) propose to integrate TTP with LPP. The new objective function is minimizing the
passengers’ total travel time and the TOC’s operating cost (in terms of operating time).

Caimi et al. (2007) and Kroon et al. (2014) introduce flexible PESP – instead of the fixed times
of the events, time windows are provided. Lastly, Chierici et al. (2004) is maximizing the
captured demand using demand estimation (logit model).





     

3 Passenger Cost

In order to find a good timetable from the passenger point of view, we need to take into account
passenger behavior. Such a behavior can be modeled using discrete choice theory (Ben-Akiva
and Lerman (1985)). The base assumption in discrete choice theory is that the passengers
maximize their utility, i.e. minimize the cost associated with each alternative and select the best
one.

We propose the following costs associated with passengers’ ideal timetable:

• in-vehicle-time (VT)
• waiting time (WT)
• number of transfers (NT)
• scheduled delay (SD)

The in-vehicle-time is the (total) time passengers spend on board of (each) train. This time
allows the passengers to distinguish between the “slow” and the “fast” services.

The waiting time is the time passengers spend waiting between two consecutive trains in their
respective transfer points. The cost perception related to the waiting time is evaluated as double
and a half of the in-vehicle-time (see Wardman (2004)).

The transfer(s) aim at distinguishing between direct and interchange services. In literature and
practice, it is by adding extra travel (in-vehicle) time to the overall journey. In our case, we
have followed the example of Dutch Railways (NS), where penalty of 10 minutes per transfer
is applied (see de Keizer et al. (2012)). Even though variety of studies show that number of
interchanges, distance walked, weather, etc. play effect in the process, it is rather difficult
to incorporate in optimization models. Thus using the applied value (by NS) will bring this
research closer to the industry.

The scheduled delay is indicating the time of the day passengers want to travel, i.e. following
the assumption that the demand is time dependent. For example: most of the people have to
be at their workplace at 8 a.m. Since it is impossible to provide service that would secure ideal
arrival time to the destination for everyone, scheduled delay functions are applied (Figure 3).

As shown in Small (1982), the passengers are willing to shift their arrival time by 1 to 2 minutes
earlier, if it will save them 1 minute of the in-vehicle-time, similarly they would shift their arrival
by 1/3 to 1 minute later for the same in-vehicle-time saving. If we would consider the boundary
case, the lateness ( f1 = 1) is perceived equal to the in-vehicle-time and earliness ( f2 = 0.5) has
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Figure 3: Scheduled Delay Functions

half of the value (as seen on Figure 3).

To estimate the perceived cost (quality) of the selected itinerary in a given timetable for a single
passenger, we sum up all the characteristics:

C = VT + 2.5 ·WT + 10 · NT + S D [min] (1)

Origin Destination

Transfer 1 Transfer 2

VT 1

VT 2

VT 3

WT 1 WT 2

Figure 4: Example Network

For a better understanding, consider the following example using network on Figure 4: pas-
senger’s itinerary consists of taking 3 consecutive trains in order to go from his origin to his
destination, he has to change train twice. If he arrives to his destination earlier than his ideal
time, his SD will be:

S De = argmax
(
ideal time − arrival time

2
, 0

)
(2)

We use argmax function as one train line has several trains per day scheduled and the passenger
selects the one closest to his desired traveling time. On the other hand, if he arrives later than his





     

ideal time, then his SD will be:

S Dl = argmax (0 , arrival time − ideal time) (3)

The overall scheduled delay is then formed:

S D = argmin (S De , S Dl) (4)

His overall perceived cost will be the following:

C =
∑
trains

VT + 2.5 ·
∑

trans f ers

WT + 10 · NT + S D [min] (5)

The resulting value is in minutes, however it is often desirable to estimate the cost in monetary
values for pricing purposes. In such a case, national surveys estimating respective nation’s value
of time (VOT) exist. The VOT is given in nation’s currency per hour, for instance in Switzerland
the VOT for commuters using public transport is 27.81 swiss francs per hour (Axhausen et al.

(2008)). To make the cost in monetary units, simply multiply the whole Equation 1 by the
VOT/60.

The aim of our research is not to calibrate the weights in Equation 1, but to provide better
timetables in terms of the departure times. The weights serve as an input for our problem and
thus can be changed at any time. Adding everything up, the ideal timetable from the passenger
point of view can be defined as follows:

The ideal timetable consists of train departure times that passengers’ global costs
are minimized, i.e. the most convenient path to go from an origin to a destination
traded-off by a timely arrival to the destination for every passenger.

Similar concept, improving quality of timetables has been done in Vansteenwegen and Oud-
heusden (2006, 2007). Their approach has been focused on reliable connections for transferring
passengers, whereas in our framework we focus on the overall satisfaction of every passenger.





     

Other concept similar to ours has been used in the delay management, namely in Kanai et al.

(2011) and Sato et al. (2013). However their definition of dissatisfaction of passengers omits the
scheduled delay.

4 Mathematical Formulation

In this section, we present a mixed integer programming formulation for the Ideal Train
Timetabling Problem.

The aim of this problem is to define and to provide the ideal timetables as input for the traditional
TTP. It is not well said in the TTP, what ideal means. It is only briefly mentioned, that supposedly,
those are the timetables, that bring the most profit to the TOCs (this assumption is in line with
the competitive market). Generally speaking, the more of the demand captured, the higher the
profit. Since the demand estimation is a complex task that requires a lot of data collection, in this
manuscript, we propose to use a linear estimate of a passenger cost (as described in the previous
section). If this cost is minimized, we can assume that a passenger would choose the train as
his/her mode of transport. However, this approach leads to a multi-objective problem (profit
versus cost). In order to avoid this issue, we propose to treat the passenger cost as an ε-constraint
(?). Thus the ITTP’s goal is to design TOC’s timetables, such that its profit is maximized whilst
securing an ε level of the total passenger cost.

The input of the ITTP is the demand that takes the form of the amount of passengers that want
to travel between OD pair i ∈ I and that want to arrive to their destination at their ideal time
t ∈ Ti. Apart of that, there is a pool of lines l ∈ L and its segments g ∈ Gl. Segment is a part of
the line between two stations, where the train does not stop. Each line has an assigned frequency
expressed as the available trains v ∈ V l (lines, segments and frequencies are the output of the
LPP). Based on the pool of lines, the set of paths between every OD pair p ∈ Pi can be generated.
The path is called an ordered sequence of lines to get from an origin to a destination including
details such as the running time from the origin of the line to the origin of the OD pair hpl

i (where
l = 1), the running time from an origin of the OD pair to a transferring point between two lines
rpl

i (where l = 1), the running time from the origin of the line to the transferring point in the path
hpl

i (where l > 1 and l < |Lp|), the running time from one transferring point to another rpl
i (where

l > 1 and l < |Lp|) and the running time from the last transferring point to a destination of the
OD pair rpl

i (where l = |Lp|). Note that the index p is always present as different lines using the
same track might have different running times.

Part of the ITTP is the routing of the passengers through the railway network. Using a decision





     

variable xtp
i , we secure that each passenger (combination of indices it) can use exactly one path.

Similarly, within the path, passenger can use exactly one train on every line in the path (decision
variable ytplv

i ). These decision variables, among others, allow us to backtrace the exact itinerary
of every passenger. The timetable is understood as a set of departures for every train on every
line (values of dl

v). The timetable can take form of a non-cyclic or a cyclic version (depending if
the cyclicity constraints are active, see below).

Since we know the exact itinerary of every passenger, we can measure the train occupation ol
vg

of every train v of every line l on each of its segment g. Derived from the occupation, number of
train units ul

v is assigned to each train. This value can be equal to zero, which means that the
train is not running and the frequency of the line can be reduced. The model also keeps track of
the number of train drivers αl

v needed to realize the timetable.

We can formulate the ITTP as follows:

Sets Following is the list of sets used in the model:

I – set of origin-destination pairs
Ti – set of ideal times for OD pair i

Pi – set of possible paths between OD pair i

L – set of operated lines
Lp – set of lines in the path p

V l – set of available trains for the line l (frequency)
Gl – set of segments on line l

Input Parameters Following is the list of parameters used in the model:

M – sufficiently large number (for daily planning in min-
utes, the value can be 1440)

m – minimum transfer time[min]
c – cycle[min]
rpl

i – running time between OD pair i on path p using line
l[min]

hpl
i – time to arrive from the starting station of the line l to

the origin/transferring point of the OD pair i in the
path p[min]





     

Dt
i – demand between OD pair i with ideal time

t[passengers]
qt – value of the in vehicle time [monetary units per

minute]
qw – value of the waiting time in the relation to the VOT

[unitless]
f1 – coefficient of being early in the relation to the VOT

[unitless]
f2 – coefficient of being late in the relation to the VOT

[unitless]
a – penalty for having a train transfer [min]
bg – ticket price of a segment g[monetary units]
e – cost of a train driver [monetary units/train-km]
n – operating cost of a single train unit [monetary unit-

s/km]
β – capacity of a single train unit [passengers]
j – maximum length of the train [train units]
kl – length of the line l [km]
ε – maximum total passenger cost allowed [monetary

units]

Decision Variables Following is the list of decision variables used in the model:

Ct
i – the total cost of a passenger with ideal time t between OD

pair i

wt
i – the total waiting time of a passenger with ideal time t between

OD pair i

wtp
i – the total waiting time of a passenger with ideal time t between

OD pair i using path p

wtpl
i – the waiting time of a passenger with ideal time t between OD

pair i on the line l that is part of the path p, i.e. the waiting
time in the transferring point, when transferring to line l

xtp
i – 1 – if passenger with ideal time t between OD pair i chooses

path p; 0 – otherwise
st

i – the value of the scheduled delay of a passenger with ideal
time t between OD pair i

stp
i – the value of the scheduled delay of a passenger with ideal

time t between OD pair i traveling on the path p





     

dl
v – the departure time of a train v on the line l (from its first

station)
ytplv

i – 1 – if a passenger with ideal time t between OD pair i on the
path p takes the train v on the line l; 0 – otherwise

zl
v – dummy variable to help modeling the cyclicity corresponding

to a train v on the line l

ol
vg – train occupation of a train v of the line l on a segment g

ul
v – number of train units of a train v on the line l

αl
v – 1 – if a train v on the line l is being operated; 0 – otherwise

Routing Model The ITTP model can be decomposed into 2 parts: routing and pricing. The
routing takes care of the feasibility of the solution, whereas pricing takes care of the passenger
cost attributes. At first, we present the routing of the passengers – the Routing Model (RM):

max
∑
l∈L

∑
v∈V l

∑
g∈Gl

ol
vg · bg −

∑
l∈L

∑
v∈V l

(
αl

v · e · k
l + ul

v · n · k
l
)

(6)∑
i∈I

∑
t∈Ti

Dt
i · C

t
i ≤ ε, (7)∑

p∈Pi

xtp
i = 1, ∀i ∈ I,∀t ∈ Ti, (8)∑

v∈V l

ytplv
i = 1, ∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi,∀l ∈ Lp, (9)(

dl
v − dl

v−1

)
= c · zl

v, ∀l ∈ L,∀v ∈ V l : v > 1, (10)

ol
vg =

∑
i∈I

∑
t∈Ti

∑
p∈Pi

ytplv
i · Dt

i, ∀l ∈ L,∀v ∈ V l,∀g ∈ Gl, (11)

ul
v · β ≥ ol

vg, ∀l ∈ L,∀v ∈ V l,∀g ∈ Gl, (12)

αl
v · j ≥ ul

v, ∀l ∈ L,∀v ∈ V l, (13)

Ct
i ≥ 0, ∀i ∈ I,∀t ∈ Ti, (14)

dl
v ≥ 0, ∀l ∈ L,∀v ∈ V l, (15)

xtp
i ∈ (0, 1) , ∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi, (16)

ytplv
i ∈ (0, 1) , ∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi,∀l ∈ Lp,∀v ∈ V l, (17)

ol
vg ≥ 0, ∀l ∈ L,∀v ∈ V l,∀g ∈ Gl, (18)

ul
v ∈ (0, j) , ∀l ∈ L,∀v ∈ V l, (19)

αl
v ∈ (0, 1) , ∀l ∈ L,∀v ∈ V l, (20)

zl
v ∈ N, ∀l ∈ L,∀v ∈ V l. (21)





     

The objective function (6) aims at maximizing the TOC’s profit. It consists of two terms: revenue
minus operating cost. The constraints (7) assure that a certain level of the total passenger cost (ε)
will be maintained. Constraints (8) secure that every passenger is using exactly one path to get
from his/her origin to his/her destination. Similarly constraints (9) make sure that every passenger
takes exactly one train on each of the lines in his/her path. Constraints (10) model the cyclicity
using integer division. When solving the non-cyclic version of the problem, these constraints
have to be removed. Constraints (11) keep track of a train occupation. Constraints (12) verify
that the train capacity is not exceeded on every stretch/segment of the line. Constraints (13)
assign train drivers, i.e. if a train v on the line l is being operated or not. Constraints (14)–(21)
set the domains of decision variables.

Pricing Constraints To make the ITTP complete, we need to expand the Routing Model
with the pricing constraints. We will add the pricing constraints in blocks of attributes that create
the cost of a passenger.

st
i ≥ stp

i − M ·
(
1 − xtp

i

)
, ∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi, (22)

stp
i ≥ f2 ·

((
d|L|v + h|L|i + rp|L|

i

)
− t

)
−M ·

(
1 − ytp|L|v

i

)
, ∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi,∀v ∈ V |L|, (23)

stp
i ≥ f1 ·

(
t −

(
d|L|v + h|L|i + rp|L|

i

))
−M ·

(
1 − ytp|L|v

i

)
, ∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi,∀v ∈ V |L|, (24)

st
i ≥ 0, ∀i ∈ I,∀t ∈ Ti, (25)

stp
i ≥ 0, ∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi. (26)

The first block of constraints takes care of the scheduled delay (SD). In our model we have 2
types of scheduled delay: SD for every path (constraints (26)) and SD that is linked to the path,
which will be the final selected path of a given passenger(s) with a given ideal time (constraints
(25)). As described in the Section 3, the constraints (23) model the earliness of the passengers
(Equation 2) and constraints (24) model the lateness (Equation 3). Constraints (22) make sure
that only one SD is selected (Equation 4) – not necessarily the lowest one as it depends on the
cost of the whole itinerary (constraints (34)), i.e. the path with the smallest overall cost will be
selected for the given OD pair with a given ideal time. These constraints also allow us to avoid
the non-linearity in the estimation of the final passenger cost (constraints (34)).





     

wt
i ≥ wtp

i − M ·
(
1 − xtp

i

)
, ∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi, (27)

wtp
i =

∑
l∈Lp\1

wtpl
i , ∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi, (28)

wtpl
i ≥

((
dl

v + hpl
i

)
−

(
dl′

v′ + hpl′

i + rpl′

i + m
))

∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi,∀l ∈ Lp :

−M ·
(
1 − ytpl′v′

i

)
− M ·

(
1 − ytplv

i

)
, l > 1, l′ = l − 1,∀v ∈ V l,∀v′ ∈ V l′ , (29)

wtpl
i ≤

((
dl

v + hpl
i

)
−

(
dl′

v′ + hpl′

i + rpl′

i + m
))

∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi,∀l ∈ Lp :

+M ·
(
1 − ytpl′v′

i

)
+ M ·

(
1 − ytplv

i

)
, l > 1, l′ = l − 1,∀v ∈ V l,∀v′ ∈ V l′ , (30)

wt
i ≥ 0, ∀i ∈ I,∀t ∈ Ti, (31)

wtp
i ≥ 0, ∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi, (32)

wtpl
i ≥ 0, ∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi,∀l ∈ Lp. (33)

The second block of constraints is modeling the waiting time (WD). There are 3 types of
waiting time: the final selected waiting time in the best path (constraints (31)), the total waiting
time of every path (constraints (32)) and the waiting time at every transferring point in every
path (constraints (33)). The constraints (29) and (30) are complementary constraints that model
the waiting time in the transferring points in every path. In other words, these two constraints
find the two best connected trains in the two train lines in the passengers’ path. Constraints
(28) add up all the waiting times in one path to estimate the total waiting time in a given path.
Constraints (27) make sure that only one WT is selected (similarly as constraints (22) for SD).

Ct
i = qv · qw · wt

i + qv · a ·
∑
p∈P

xtp
i · (|L

p| − 1)

+qv ·
∑
p∈P

∑
l∈Lp

rpl
i · x

tp
i + qv · st

i, ∀i ∈ I,∀t ∈ Ti. (34)

At last, constraints (34) combine all the attributes together as in Equation 5 multiplied by the
VOT. The complete ITTP model can be seen in Appendix 8.





     

5 Case Study

In order to test the ITTP model, we have selected the network of S-trains in canton Vaud,
Switzerland as our case study. The reduced network is represented on Figure 5 (as of timetable
2014). We consider only the main stations in the network (in total 13 stations). A simple
algorithm in Java has been coded, in order to find all the possible paths between every OD pair.
The algorithm allowed maximum of 3 consecutive lines to get from an origin to a destination.
The traveling times have been extracted from the Swiss Federal Railways’ (SBB) website. The
minimum transfer time between two trains has been set to 4 minutes. The cycle in Switzerland
is one hour.
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Figure 5: Network of S-trains in canton Vaud, Switzerland

In Table 1, you can find the list of all S-train lines of the canton Vaud in the timetable of 2014.
There are 7 lines that run in both directions. Each combination of a line and its direction has its
unique ID number. Column “from” marks the origin station of the line as well as column “to”
marks its destination. The columns “departures” show the currently operated timetable in the
morning peak hour (5 a.m. to 9 a.m.), which is the time horizon used in our study. Trains that
did not follow the cycle (marked with a star *) were set to a cycle value, in order to not violate
the cyclicity constraints (the timetables in Switzerland are cyclic with a cycle of one hour).





     

Line ID From To Departures

S1
1 Yverdon-les-Bains Villeneuve – 6:19 7:19 8:19
2 Villeneuve Yverdon-les-Bains 5:24 6:24 7:24 8:24

S2
3 Vallorbe Palézieux 5:43 6:43 7:43 8:43
4 Palézieux Vallorbe – 6:08 7:08 8:08

S3
5 Allaman Villeneuve – 6:08 7:08 8:08
6 Villeneuve Allaman – 6:53 7:53 8:53

S4
7 Allaman Palézieux 5:41 6:41 7:41 8:41
8 Palézieux Allaman – 6:35 7:35 8:35

S11
9 Yverdon-les-Bains Lausanne 5:26* 6:34 7:34 8:34

10 Lausanne Yverdon-les-Bains 5:55 6:55 7:55 8:55

S21
11 Payerne Lausanne 5:39 6:39 7:38* 8:39
12 Lausanne Payerne 5:24 6:24 7:24 8:24

S31
13 Vevey Puidoux-Chexbres – 6:09 7:09 8:09
14 Puidoux-Chexbres Vevey – 6:31* 7:36 8:36

Table 1: List of S-train lines in canton Vaud, Switzerland

The SBB is operating the Stadler Flirt train units on the lines S1, S2, S3 and S4. In our case
study, we have homogenized the fleet and thus use this type of a train also for the rest of the
lines. The capacity of this unit is 160 seats and 220 standing people. The operating cost has
been taken from the SBB’s annual report for 2013 (?), where a regional service has a cost of
30 CHF of a train per kilometer. Since no further details have been provided, we had to break
down the cost using external knowledge. From a project for a swiss public transport operator,
we know that the driver cost is more than a half of the cost, i.e. in the “worst” case it is equal to
a half (the higher the cost of the driver the cheaper the operating cost of additional train units
thus the worst case). This leads to an operating cost of 15 CHF per train unit per km. The length
of the lines in kilometers has been estimated using Google Maps. The maximum amount of
train units per train is 2 (as SBB never uses more units). The amount of train units per train
remains the same along the line, but it might change at the end stations (we don’t go into further
details as this is the task of the Rolling Stock Problem).

The ticket prices have been taken directly from the SBB website. In Switzerland, many people
have so called General Abonnement (GA) or a half-fare card. With GA, you pay yearly fee and
get a free access to almost all public transportation in Switzerland. Half-fare card also comprises
of a yearly fee (significantly smaller than GA) and gives access to a half price tickets for public
transportation. In our case study, we have applied the half-fare prices to all of the passengers.
This approach will balance the prices between GA users and normal users (normal user does not





     

posses GA or half-fare card and thus pays the full price).

The total amount of passengers in the network has been estimated based on its bottleneck (track
between Vevey and Puidoux-Chexbres is served only by the line S31, which has the smallest
amount of trains scheduled): frequency (in both directions) times maximum train units times a
single train unit capacity = 6 times 2 times 380 = 4560. We consider both directions as the OD
pairs are generated randomly (uniformed distribution), i.e. in this case, the probability of each
direction is 50 percent. In order to ease the size of the generated lp file, the passengers have
been split into groups of size varying between 1 and 8 (uniform distribution), leaving us with
1000 passenger groups (indices it). These groups have been divided into hourly rates (Figure 6)
according to the SBB report (?) and smoothed into minutes using non-homogenous Poisson
process. Since we use concept of an ideal arrival time to the destination, the generated arrival
time at the origin has been shifted, by adding up the shortest path travel time between the OD
pair, to the destination of the passengers. In total there are 4465 passengers in the network (the
deviation from the maximal value of 4560 is due to the randomness).

5 a.m. 6 a.m. 7 a.m. 8 a.m. 9 a.m.

42 208 475 275

40

100% 100% 70%

20 15

30% 30% 70%

Number of Passenger Groups (original demand)
Percentage of the Passenger Groups (irregular demand) 

Figure 6: The hourly distribution of the passenger groups

The coefficients of the passenger cost are as described in Section 3. The list of all parameter
values can be found in Appendix 9

5.1 Technical Details

All of the tested instances have been generated as lp files using Java language and then run in
CPLEX Interactive Optimizer (CPLEX version 12.5.1) on a Unix server with 8 cores of 3.33
GHz and 62 GiB RAM. The CPLEX time limit has been set to 2 hours. The goal of this study is
the verification of the model rather than the speed of the solution method and the optimality of
the solutions. We report bounds for all of the instances and we would like to highlight that due
to the many big M constraints it is difficult for CPLEX to close the gap.





     

In order to strengthen the ITTP formulation, we suggest to add the following constraint:

dl
v ≤ dl

v+1 − 1, ∀l ∈ L,∀v ∈ V : v < |V |. (35)

this constraint helps to reduce the amount of possible combinations of the values of the train
departure times and it is suitable for both cyclic and (especially) non-cyclic formulation.

For this case study, we can further modify the cyclicity constraints to the following form:

dl
v − dl

v−1 = 60 · zl
v1 + 120 · zl

v2, ∀l ∈ L,∀v ∈ V : v > 1, (36)

zl
v1 + zl

v2 = 1, ∀l ∈ L,∀v ∈ V : v > 1. (37)

As we can notice in the Table 1, we either have 4 trains over 4 hours horizon (60 minutes
difference between all consecutive trains) or 3 trains over 4 hours horizon (one train will have
120 minutes time distance from the next train, whereas the other trains will keep the 60 minutes
difference). This attribute is modeled by adding an extra index to the cyclicity variable z, stating
if the difference between two consecutive trains is 60 or 120 minutes.

In all of the experiments, we have run 3 types of the ITTP model: current, cyclic and non-cyclic.
The current model reflects the currently operated SBB timetable as in Table 1 (the decision
variables d have been set to the values in the table). The cyclic model does not have the departure
times as a hard constraint and thus the CPLEX can look for better values than those of the SBB.
The non-cyclic model differs from the cyclic one by removing the cyclicity constraints. In order
to speed up CPLEX, we would first solve the current version and give its solution as a warm
start for the cylic model and solve it. Subsequentely, we would give the solution of the cyclic
model as a warm start to the non-cyclic model.

5.2 Results

In this section, we present the results of our case study. The detailed numerical results can be
found in the Tables 2, 3 and 4. The first row of the tables represents the level of the passenger
cost in percentage with respect to its base value (100 percent is when we omit the profit and
minimize the cost, 0 percent is when we maximize the profit without caring about the cost).





     

Subsequently, the percentages in between represent the gap between the best and the worst cost,
i.e. the value of 40 percent has been estimated as (290 094 minus 148 197) times (40 divided by
100). The actual values of the ε have been kept same for all three models even though the best
cost for cyclic and non-cyclic models were better. This allows us to directly compare the profits
at the given ε levels and to feed warm starts to the subsequent models.

ε [%] 0 20 40 60 80 100

profit [CHF] 175 185 175 180 175 108 172 630 155 554 146 099
cost [CHF] 290 094 261 713 233 334 204 955 176 576 148 197

lb [CHF] 175 711 175 711 175 711 175 711 175 711 132 489
gap [%] 0.30 0.30 0.34 1.78 12.96 10.60

gap [CHF] 526 531 603 3 081 20 157 15 708
time [s] 7 200 7 200 7 200 7 200 7 200 7 200

drivers [-] 36 36 36 39 47 48
rolling stock [-] 64 64 64 65 79 84

Table 2: Computational results of the current model

ε [%] 0 20 40 60 80 100

profit [CHF] 175 185 175 180 175 108 172 630 155 554 144 492
cost [CHF] 290 094 261 713 233 334 204 955 176 576 138 140

lb [CHF] 176 543 176 543 176 543 176 543 176 543 99 153
gap [%] 0.78 0.78 0.82 2.27 13.49 28.22

gap [CHF] 1 358 1 363 1 435 3 913 20 989 38 987
time [s] 7 200 7 200 7 200 7 200 7 200 7 200

drivers [-] 36 36 36 39 47 48
rolling stock [-] 64 64 64 65 79 87

Table 3: Computational results of the cylic model

The three models yield the same results for the ε between 0 and 60 percent. This leads to a
conclusion that with the smaller amount of trains being scheduled, the passengers have less
options and the cyclicity has no influence. Indeed, when the frequency of a line is smaller
than the horizon divided by the cycle, the timetable could be perceived by the passengers as
non-cyclic. The maximum profit is the same due to the fact that we serve the same passengers in
all three cases and thus the minimum amount of trains needed to serve them is the same.The
current and the cyclic model also yield the same results for the ε of 80 percent, but with a gap
around 13 percent. The difference, between the current and the cyclic model, comes at the ε of
100 percent, where 3 extra train units of rolling stock are being used and the departure times for





     

ε [%] 0 20 40 60 80 100

profit [CHF] 175 185 175 180 175 108 172 630 155 590 144 971
cost [CHF] 290 094 261 713 233 334 204 955 176 576 135 455

lb [CHF] 176 543 176 543 176 543 176 543 176 543 97 706
gap [%] 0.78 0.78 0.82 2.27 13.47 27.87

gap [CHF] 1 358 1 363 1 435 3 913 20 953 37 749
time [s] 7 200 7 200 7 200 7 200 7 200 7 200

drivers [-] 36 36 36 39 47 47
rolling stock [-] 64 64 64 65 79 85

Table 4: Computational results of the non-cylic model
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Figure 7: The Pareto frontier of the current model

8 out of the 14 lines are slightly shifted. This leads to improvement of cca. 10 000 CHF for the
passengers and the deacrese of the TOC’s profit by cca. 1 500 CHF.

For the non-cyclic model, the difference starts already at the ε of 80 percent, where the TOC
profit was slightly improved by 36 CHF. The relative difference at the ε 100 percent between the
cyclic and the non-cyclic model is rather small – roughly 2 500 CHF better passenger cost and
500 CHF better TOC’s profit (less trains scheduled, less train units used). On this results, we can
conclude that it is indeed better to use the cyclic timetables over the non-cyclic timetables.





     

Lastly, we plot the trade-off between the profit and the cost as a Pareto frontier (Figure 7) for
the current model. From this figure, we can read that if the TOC is willing to decrease his
profit by 29 086 CHF, the passengers could gain 141 897 CHF (similar values for the cyclic and
the non-cyclic models). We would encourage such a trade-off – for one it secures the realized
demand to be equal to the forecasted demand and for two, the TOC could charge the profit
loss to the passengers, in this case each passenger would have to pay 6.5 CHF, while saving on
average 32 CHF.

Please note that the minimum amount of trains needed to serve the passengers is 36, the
maximum amount being 48 and the actual number of trains used being 49 (Table 1). The one
unscheduled train is the last train on the line 9.

5.3 Sensitivity Analysis

In this section, we further investigate if a scenario, where the difference between the cyclic and
the non-cyclic timetable would be significant, exists. We know that in terms of the maximum
profit (as mentioned in the previous section) the models will give the same result. Thus we focus
on the passenger cost.

The parameter of our cost function (Equation 1) that might be the most sensitive to the cyclicity
is the scheduled delay. This parameter can be interpreted as a sensitivity to the time: busy people
might have high values of this parameter, whereas people traveling for leisure might have lower
values. We have tested 2 additional settings of this value: half of the original value and double of
the original value. The results (in Table 5) show that with higher values of the scheduled delay
parameters, the difference between the cost of the cyclic and the non-cyclic model is getting
larger, however it is still marginal in the terms of the whole cost. With the higher scheduled
delay parameter, the passengers are more willing to take the slower trains, in order to reach their
destinations on time. This has been projected into the higher TOC profit – the amount of trains
scheduled is similar, but the amount of rolling stock used is lower as the demand is now spread
more equally to the slower trains.

Another attribute that might be influenced by the cylicity is the demand. At first, we explore
the effect of the amount of the passengers on the passenger cost. As it can be seen in Figure 8,
the evolution of the passenger cost is almost linear. The cyclic and the non-cyclic model give
similar result in all of the instances. We did not explore instances with larger demand than as in
our case study, due to the fact that the network is almost saturated (maximum amount of trains
scheduled) at the ε of 100. Thus no further improvement is expected. As a by-product of this
analysis, we can plot the evolution of the TOC profit. We have done so for the current model





     

Current Cyclic Non-Cyclic

SD half original double half original double half original double

profit [CHF] 140 358 146 099 149 155 140 176 144 492 145 335 139 848 144 971 146 013
cost [CHF] 135 596 148 197 169 893 124 431 138 140 163 557 122 132 135 455 158 772

lb [CHF] 119 997 132 489 155 604 98 396 99 153 100 395 97 504 97 706 98 009
gap [%] 11.50 10.60 8.41 20.93 28.22 38. 62 20.17 27.87 38.27

gap [CHF] 15 599 15 708 14 289 26 045 38 987 63 162 24 628 37 749 60 763
time [s] 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200 7 200

drivers [-] 48 48 47 48 48 48 48 47 47
rolling stock [-] 96 84 81 96 87 84 96 85 82

Table 5: Sensitivity of the scheduled delay at ε level 100
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Figure 8: The passenger cost as a function of the demand

in Figure 9 (the profits are almost the same for the other two models). As it can be seen, this
function is as well almost linear and the TOC becomes profitable at around 2 000 passengers in
the network. The detailed computational results of the demand levels can be found in Tables 8,
9 and 10 in the Appendix 10.

As a last step of our analysis, we create a different demand distribution. We want to test, if a
disrupted irregular demand would be better served by the non-cyclic timetable. The modification,
in respect to the original hourly distribution values, can be seen in Figure 6. The results in Table
6 show that the difference between the cyclic and the non-cyclic model is in fact larger (about 6
000 CHF). However in the terms of the total cost, the savings are marginal.

Overall, we were not able to find a scenario, where the non-cyclic timetable would perform
significantly better than the cyclic timetable.
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Figure 9: The TOC profit as a function of the demand (current model)

Current Cyclic Non-cyclic

profit [CHF] 139 434 139 823 137 154

cost [CHF] 140 404 131 769 125 681

lb [CHF] 128 595 96 393 95 176

gap [%] 8.41 26.85 24.27

gap [CHF] 11 809 35 376 30 505

time [s] 7 200 7 200 7 200

Table 6: The computational results for the irregular demand at ε level 100

6 Conclusions and Future Work

In this research, we survey the literature on the current planning horizon for the railway passenger
service and we identify a gap in the planning horizon – demand based (ideal) timetables. We
then define a new way, how to measure the quality of a timetable from the passenger point of
view and introduce a definition of such an ideal timetable. We combine this passenger based
approach with the TOC point of view (profit maximization). We present a formulation of a
mixed integer linear problem that can design such timetables. Since our objective function
consists of two objectives, we turn the passenger cost minimization into the ε constraint. The
new Ideal Train Timetabling Problem fits into the current planning horizon of railway passenger





     

service and is in line with the new market structure and the current trend of putting passengers
back into consideration, when planning a railway service.

The novel approach not only designs timetables that fit the best the passengers, but that also
creates by itself connections between two trains, when needed. Moreover, the output consists
of the routing of the passengers and thus the train occupation can be extracted and be used
efficiently, when planning the rolling stock assignment (i.e. the Rolling Stock Planning Problem).
The ITTP can create both non-cyclic and cyclic timetables.

We test the model on a semi-real data of the S-train network of Canton Vaud in Switzerland.
The results show an average trade-off, between the most profitable train service and the least
passenger costly service, of 30 000 CHF profit against 150 000 CHF of cost savings. Our model
was able to find a better timetable compared to the current SBB timetable only in terms of the
passenger cost, where the achieved savings were around 10 000 CHF. The difference between
the cyclic and the non-cyclic timetable reveals itself only on the best passenger cost, where the
difference is approximately 3 000 CHF benefiting the non-cyclic timetable.

Further, In our sensitivity analysis, we have focused on exploiting the difference between the
cyclic and the non-cyclic timetable. Overall, we were not able to find a larger difference than
around 6 000 CHF, in case of time sensitive passenger (high value of the scheduled delay
parameters). These results justify the usage (or superiority) of the cyclic timetables, which are
considered better for the passengers as it is easier to remember just the cycle instead of the
whole timetable.

In the future work, we will focus on efficient solving of the problem and extension of the
planning horizon, i.e. to be able to solve the problem for a whole day. This would allow us
to explore, if the non-cyclic timetables could perform better off-peak hours and in the context
of the whole day. The new definition of a quality of a timetable (the passenger point of view)
creates a lot of opportunities for future research: efficient handling of the TOC’s fleet, better
delay management, robust train timetabling passenger-wise, etc.
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8 The Full ITTP Model

max
∑
l∈L

∑
v∈V l

∑
g∈Gl

ol
vg · bg −

∑
l∈L

∑
v∈V l

(
αl

v · e · k
l + ul

v · n · k
l
)

∑
i∈I

∑
t∈Ti

Dt
i · C

t
i ≤ ε,∑

p∈Pi

xtp
i = 1, ∀i ∈ I,∀t ∈ Ti,∑

v∈V l

ytplv
i = 1, ∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi,∀l ∈ Lp,(

dl
v − dl

v−1

)
= c · zl

v, ∀l ∈ L,∀v ∈ V l : v > 1,

ol
vg =

∑
i∈I

∑
t∈Ti

∑
p∈Pi

ytplv
i · Dt

i, ∀l ∈ L,∀v ∈ V l,∀g ∈ Gl,

ul
v · β ≥ ol

vg, ∀l ∈ L,∀v ∈ V l,∀g ∈ Gl,

αl
v · j ≥ ul

v, ∀l ∈ L,∀v ∈ V l,

st
i ≥ stp

i − M ·
(
1 − xtp

i

)
, ∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi,

stp
i ≥ f2 ·

((
d|L|v + h|L|i + rp|L|

i

)
− t

)
−M ·

(
1 − ytp|L|v

i

)
, ∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi,∀v ∈ V |L|,

stp
i ≥ f1 ·

(
t −

(
d|L|v + h|L|i + rp|L|

i

))
−M ·

(
1 − ytp|L|v

i

)
, ∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi,∀v ∈ V |L|,

wt
i ≥ wtp

i − M ·
(
1 − xtp

i

)
, ∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi,

wtp
i =

∑
l∈Lp\1

wtpl
i , ∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi,

wtpl
i ≥

((
dl

v + hpl
i

)
−

(
dl′

v′ + hpl′

i + rpl′

i + m
))

∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi,∀l ∈ Lp :

−M ·
(
1 − ytpl′v′

i

)
− M ·

(
1 − ytplv

i

)
, l > 1, l′ = l − 1,∀v ∈ V l,∀v′ ∈ V l′ ,

wtpl
i ≤

((
dl

v + hpl
i

)
−

(
dl′

v′ + hpl′

i + rpl′

i + m
))

∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi,∀l ∈ Lp :

+M ·
(
1 − ytpl′v′

i

)
+ M ·

(
1 − ytplv

i

)
, l > 1, l′ = l − 1,∀v ∈ V l,∀v′ ∈ V l′ ,

Ct
i = qv · qw · wt

i + qv · a ·
∑
p∈P

xtp
i · (|L

p| − 1)

+qv ·
∑
p∈P

∑
l∈Lp

rpl
i · x

tp
i + qv · st

i, ∀i ∈ I,∀t ∈ Ti,

Ct
i ≥ 0, ∀i ∈ I,∀t ∈ Ti,

dl
v ≥ 0, ∀l ∈ L,∀v ∈ V l,

xtp
i ∈ (0, 1) , ∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi,





     

ytplv
i ∈ (0, 1) , ∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi,∀l ∈ Lp,∀v ∈ V l,

ol
vg ≥ 0, ∀l ∈ L,∀v ∈ V l,∀g ∈ Gl,

ul
v ∈ (0, j) , ∀l ∈ L,∀v ∈ V l,

αl
v ∈ (0, 1) , ∀l ∈ L,∀v ∈ V l,

zl
v ∈ N, ∀l ∈ L,∀v ∈ V l,

st
i ≥ 0, ∀i ∈ I,∀t ∈ Ti,

stp
i ≥ 0, ∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi,

wt
i ≥ 0, ∀i ∈ I,∀t ∈ Ti,

wtp
i ≥ 0, ∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi,

wtpl
i ≥ 0, ∀i ∈ I,∀t ∈ Ti,∀p ∈ Pi,∀l ∈ Lp.

9 Parameter Settings

M = 720 (min)
m = 4 min
c = 60 min
rpl

i = www.sbb.ch
hpl

i = www.sbb.ch
Dt

i = as described in Section 5
qt = 27.81 CHF per hour
qw = 2.5
f1 = 0.5
f2 = 1
a = 10 min
bg = www.sbb.ch
e = 15 CHF per train per km
n = 15 CHF per train unit per km
β = 380 passengers
j = 2 train units
kl = www.maps.google.ch
ε = various





     

10 Extra Results

demand [pax] 50 100 500 1 000 2 500 5 000

profit [CHF] -103 124 -98 511 -75 183 -53 500 32 216 146 099
cost [CHF] 1 609 3 142 17 054 30 552 79 893 148 197

lb [CHF] 1 609 3 142 17 053 30 552 73 270 132 489
gap [%] 0.00 0.00 0.01 0.00 8.29 10.60

gap [CHF] 0 0 1 0 6 623 15 708
time [s] 2 2 31 69 7 200 7 200

Table 8: Results of the current model for a different sizes of the demand

demand [pax] 50 100 500 1 000 2 500 5 000

profit [CHF] -103 157 -98 509 -75 159 -53 426 32 017 144 492
cost [CHF] 1 221 2 760 15 324 28 162 72 397 138 140

lb [CHF] 1 052 2 228 11 375 21 315 55 266 99 153
gap [%] 13.84 19.28 25.77 24.31 23.66 28.22

gap [CHF] 169 532 3 949 6 847 17 131 38 987
time [s] 7 200 7 200 7 200 7 200 7 200 7 200

Table 9: Results of the cyclic model for a different sizes of the demand

demand [pax] 50 100 500 1 000 2 500 5 000

profit [CHF] -103 142 -98 622 -75 071 -53 498 31 153 144 971
cost [CHF] 1 078 2 514 14 669 27 167 70 564 135 455

lb [CHF] 1 018 2 159 11 196 20 999 54 387 97 706
gap [%] 5.57 14.12 23.68 22.70 22.93 27.87

gap [CHF] 60 355 3 473 6 168 16 177 37 749
time [s] 7 200 7 200 7 200 7 200 7 200 7 200

Table 10: Results of the non-cyclic model for a different sizes of the demand
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