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Abstract

When facing several alternatives, peopte often assumedo choosethe alternative whict
maximizes their utilities. This concept is widely known as random utility maximization (RU
In transportation research, one of thestfamousmodelingtechnique based on this ide&.g.
for modelingmode choicgis the multinomial logit (MNL) approach

Recenly there is a growing interest in an alternativedeling approach random regre
minimization (RRM). In RRM, an individualvhen choosing between alternativesassumed t
minimize anticipated regret as opposed to maximize his/her uliligre are thee variants o
RRM, the classical CRRM, the pRRMand theP-RRM. There is also another alternat
approactcalled relative advantage maximization (RAMDning the idea around and focusing
the gains

We compare MNL witlthefour mentioned alternativeghe data usedre statedhoice data se
collected by thdVT, ETH Zurich which comprise of mode choice, location choice, pal
choice, carpooling, casharing etc experimentsWe compare the performance of those
modek by their model fit (Final LL, hit rate, and predictiolye also presera comparison o
their VTTS, travel timeand costlasticities.
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Contextdependent modeli Random Regret Minimization RRM variantsi Relative
Advantage Maximization
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1. Il ntroducti on

When facing several alternativas,is reasonable to assume thegtople tend to choose an
alternative whichmaximizes their utilities. This concept is widely known as random utility
maximization (RUM) when the model allows for perception differenciestransportation
research, one of dmostfamousmodelingtechniqudor thisis multinomial logit (MNL) Ben

Akiva and Lerman, 1985McFadden, 1973)Recently there is a growing interest in
implementing an alternativenodeling approachcalled random regret minimization (RRM)
(Chorus et al., 2008; Chorus, 2010). In RRM, an individual when choosing between alternatives
is assumed to minimize anticipated regret as opposed to magrhiz/her utility. RRM is a
contextdependenmodelingapproach since the decision to choose one alternative depends on
the relative performance of the chosen alt.
attributes.This modelling technique has been implemented for route choice (Chorus,; 2012a
Chorus ad Bierlaire, 2013; Chorus et al, 2013@avel information acquisition choice, parking

lot, shopping location (Chorus, 2010), automobile fuel chdit®(us et al, 2013lbensher et

al. 2013), willingness to pay for advanced transportation servicesakarg and travel time
tradeoff (Hess et al, 2014).

RRM, as a contextlependenmodelingalternative to RUMhas several variants, the classical
one (Choru, 2010), the GRRM (Chorus, 2014),tR&®M (Van Cranenburgh et &015) and

the PRRM (Van Cranenburgh et 2015) There have been many attempts that compare the
performance of RRMs compare to RUI@horus et al(2014) listed 43 empirical studies
comparing RUM and RRM from 2012014.Regardingnodel fit, 15 times RRM outpfarm
RUM ard 15 times the other way arour@ther 13 empirical studies show neither of these two
modeling approachesutperforns each otherChorus et al. (2014also listed 7 out of 43
empirical studies thamheasured hit ratevhich is a percentage of @sation correctly predicted

by the modeland shows that RRMutperforns RUM in three cases. In two cases the RUM hit
rate is higher, while for other two cases both models perégunally well.

Leong and Hensher (2015) compare the value of travel timegsaqVTTS) from the results

of RUM, RRM, Hybrid RRM, and th& new contextdependenalterndive model, relative
advantagenaximization (RAM). Leong and Hensher (2015) show that the difference in mean
VTTS between RUVMRRM and RUMHybrid RRM issmallbut statistically significant for the
sevenroute choicedata setdrom Australia and New Zealan€horus and Bierlaire (2013)
compare RUM and RRM elasticities for the case of route choice and found that travel time
elasticitiesof RRM modelare nearly 10% geater comparkto RUM. Similarly, fora route
choice case, Thiene et §012) showed that for most attributes RRM model elasticities were
about 10% greater than the RUM mod®&r the case of preference of alternative fuel car use,
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Hensheeet al. 013)comparedRRM and RUM elasticities and fourmdsubstantial difference
in theelasticitieswith the RRMbeinghigher.

Other than RRM, there is another contdgpendenmodelingapproach that recenthasbeen
introduceal, RAM (Leong and HensheR015) Therehave not been many empirical studies
comparing the performance of RAM with RUM or RRMs exceptrfmrte choicemodels
comparisorby Leong and Hensh€2015). They found that RAM produces better model fit and
obtaining more precise model outputstsas VTTS.

It appears that most empirical studies tested the difference of RUbtlardcontextdependen
modeling approachedn term of model fit Fenv exceptios compaed them in terms of
prediction accuracyTTS, anddemand elasticite From most othe cases mentioned above
we cannot say for sure which modeling approach is bé&i#ferent data sets and contexts
might produce different results and biases.

Therefore, he objective of this paper is compare RUM, RRMsand RAMcomprehensively
in term of model fit, prediction accuracy,TTS, anddemand elasticitie®y comparing those
differentapproachesye might find which model givethebest fit, whichmodelingapproach
accurately predistthe choice comgred to other approadats Hopefully, we can contribute to
the greater body of RRMnd RAMIiteraturethrough the comparison of Swidata sets.

In section 2, we discudbe alternativemodelingapproaches to RUMheir properties and
varians, followed by section 3 where we describe data setsin section 4 we present the
result of our estimatioffor different modding approachescluding prediction accuracyin
section 5 wediscusghe VTTS followed by section 6 where we disctiesdemand elasticities
and hit rate. Finally, in Secion 7 the conclusions are drawn.

2. Al ternatives to RUM

21 Random regret minimizati on

Random regret minimizatiofRRM) was first introduced by Chorus et al. (2068a model of
travel choice. According to Chorus at al. (2008) in RRMilividual baseshis/her choice
between alternatives wishing to avoid a situation where a&hosen alternative turns out to be
more attractive than the chosen owausng regret. Thus, the individual when choosing
between alternatives is assumed to minimize anticipatpet as opposed to maximize his/her
utility. Chorus (2010) admitted that this first RRM approach haditwitations Therefore he
improved the technique to alleviate those limitations witew RRMapproach. This new
RRM approach (Chorus, 2010) ismavidely known as Classical RRMW an Cranenburgh and
Pratq 2016).
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In the Classical RRMCRRM) framework, for a persong , the regret associated witn
alternative / is obtainedjivenby the following formula (Chorus, 2012a):

RR,=R,+¢e,=a, +aa In(1+eXp[bk Cﬁxk/‘q . Xk/q)])+ €, (1)

.0k

Where RR, : random regretor analternative/ for persong

R, :systematigegretfor alternative/ for persong
e, :unobserved regréor alternative/ for persong
a, :alternative specific constant

b, :estimable parameter associated wigmericattribute X,
Xa Xuig - Values associated wigenericattribute X, for, respectivelypersong
choosingalternative’ over competitoalternative/ .
Similar to RUM formulation of choice probabilities (McFadden, 397or the classical RRM

framework the error term in Eq. 1 is assumed to be identically and independently distributed

(i.i.d) Extreme Value Typé distribuion with a varianceof p*/6. In the RRM setting, the
formulationfor thechoiceprobabilities is:

_ ol R,) 2)
é. eXp(' R/q)

ihJ
/=1

ia

The next variant of RRNMleaproposed by Chorus (2014) is called General&il (GRRM).
This modeleneralizetheclassical RRM by replacing tHenside the logarithm function with
a regretweight parametey. Van Cranenburghket al. 015) introducedc differentversion of

RRM calleduRRM. In this type of RRM, a scale parameigrenters the model as an additional
degree of freedom which allows for flexibility of the regret function level attriite yRRM
generalizedhe CRRMby allowing to estimate the variance of the error term. The formula for
URRM is as follows (Van Cranenkgh et al2015):

v .. A eb, . 0
RR/,[I]RRM =a, +R};RRM +e,=a,+ a ? In?+ expgik Cﬁ)(k/.q - X""’)E’ug-'- e, 3
i i :

where e, ~i.i.d.EV0,m)

Theformulationfor thechoice probabilities is as follows:

P/{;;RRM — JeXp(' “R/%RRM) ( 4)
?.J exp(— u R/;_;RRM)
j=1
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The latest version of RRM is also introduced by Van Cranenteirgh 015), PRRM. The
P-RRM is a limiting case of thaRRM model. Classical RRM model and any other RRM
variants postulate thbbthregrets and rejoicese experienced\ccording to VarCranenburgh

et al.(2015) the RRRM yields the strongest regret minimization behavior possible within the
RRM framework since it postulates no rejoice which is the opposite of regret.

The formulafor systematic regretf the RRRM model (Van Cranenburgtt al, 2015) is as
follows:

63 max(0, X, - X,,) if b, >0
R =a, + & b X" whereX! P =17/ S
q i ak. k7 kjig Kjiq J[ a min(O,Xk/_q - Xk/'q) if bk <0 ( )

1 /.7

XP- RRM

The computation of the Xector(.X,;, ™ )is linear and can be domeior to the estimation.

There is a prerequisite that the signs of the taste parameters aregamviathe estimation.
Once the Xvectorsare obtainegthe estimation of the-RRM model is similar to the estimation
of alinear additive RUM modelThe formulaton ofthe choice probabilitiess:

pr-RRM _ eXp(' ’L_‘)i/;- RRM) (6)
iq J
a exp(_ R//_;— RRM)

iJ
/=1

22 Rel ati ve amhwazaita gpe

Similar to RRM, relativadvantagenaximization (RAM) also compardise choseralternative
with competing alternativeddowever,there is a key difference ithe way inwhich RAM
explicitly takes into account the disadvantsged advantagof an alternativeThe advantages
of alternativesare expresseds a ratio of the sum of advantage and disadvantage.

Leong and Hensher (201frmulatethe disadvantage olfie persong choosng alternative’

over competitoalternative/ for an attribute & , denotedD,,, with this formula.

Dy =In(1+exp|t, &, - X)) (7)

Leong and Hensher (2015) assume that disadvantages and advargagesnetrical, that is
if the advantage athe persong choosingalternative’ over j/ with respect to attributé is

the corresponding disadvantagetioé persong choosingalternative/ over / with respect to

the same attribute, théhe formula is:

Ak,]-q = Dk/-,-q =In (l+ exp[bk CQX kig ~ Xk/'q )J) (8)
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Now the definition ofAk,].q

is a binary disadvantage alternative/ over / . The formula for both

is a binary advantage tife persong choosng alternative’ over J ,

and thedefinition of D,

iq

are as follows:

Ay = % A, and Dy, =§ D 9)

The relative advantage tie persong choosng alternative’ over / according to Leong and
Hensher (2015) is as follow:

A
=T 10
Riq/q A/]'q +D~ ( )

9

The observed component of utiliigr the persong choosing armlternative’ is writtenas linear

combination of MNL. The formula for systematic utility is as follows:

V' =a,+@ b, X +A R4, (11)
ki /
7.7
With X, . referring to acontextindependenattribute & j for persong choosng analternative

/, the RAM model allows for a combination of contéxiependent preferences and context
dependent preferences.

In this paper, we comparthestandard RUM model (MNL) with the classical RRM (Chorus,
2010), and theRRM as well as the-RRM (Van Cranenburgh et.aP015).We also compare
those approaches withenew RAM approach (Leong and Hensher, 2015). AlthahgRAM
approachallows for incorporation of contextdependent attributes, for tipaperwe only use
context dependent generic attributes

3. Data Description

Chorus (2010) shows that for binary choice situaitme RRM reduces tihe linearadditive
RUM. Therefore, in thigpaper we select data sets where respondéais at least thee
alternativesTable 1 shows the information regardihg data setsised, whilethe description
of the data sets cdre foundn the next suisection.The data sets that we use for this stacy
statedchoice datasets and one RP data setllected in Switzerlandsince RRM is choice set
dependent, meaning that choosing an alternativinfisencel by the presence of other
alternatives in term of theattributevalues therefore for this study we only ugparsimonious
modelformulation,usingtwo generic attributes i.e.: travel tiG€T) and travel cost (TC). We
add alternative specific constants for khleeleddata sets.
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Tablel Data setsised

Dataset Location  Publication Sample Obs  Choice setomposition

Swiss Residents of Bierlaireet al. 623 5607 Train, Swissmetrocar

Metro Switzerland (2001)

Influence of Residents of Weiset al. 631 6301 Location A,locationB, none of

parking Switzerland (2012) these

Influence of Residents of Weiset al. 585 5853 Parking A,parking B,none of

parking Switzerland (2012) these

Influence of Residents of Weiset al. 168 1666 Walk/bike, car,transit

parking Switzerland (2012)

Carsharing Residents of Ciari and 735 4350 Carsharinggar, transit
Switzerland Axhausen (2012

Carpooling Residents of Ciari and 511 3975 Car,carpooling as driver,
Switzerland Axhausen (2012 carpooling as passengémansit

RP mode Residents of Schmutz(2015) 33942 33942 Walk, bike, car, transit
choice Switzerland

31 Swi ssmetro

The Swissetro wasa major innovatiomproposedor the Swiss transport systeAbay (1999)
conducted revealed preference (RP) and stated preference (SP) sunayd$tanceroad

and rail travelersThe detas of the data setxan befound in Bierlaire et al. (2001) and
Axhausen (2013). For long distance travel, there are three altemn@tiam, Swissmetro (SM),

and car. For this paper, we only selected SP data where resporfuzshtd| three choice
alternativesThusSP data where there are only two alternatives (Train and SM) are omitted. In
total, 5607 observati@irom 1192 respondentgere usedor modeling

Table2 preserdgthe descriptive analysis of this data set. We present minimum and maximum
value,themeanand standard deviation for eaattribute usedto measure the VTTS in section

5. The minimum travel time for each of the madevaried within one hour The maximum
travel time,is thelongest forcar, being26 hour. The minimum cost for traiand SM is zero for
those who havan annual season tick&eneralabonnemen{GA)).
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Table2 Descriptive analysief the Swissmetro datasal

Data Set Attributes Observatios Minimum Maximum Mean  St. Dev.

Swiss Metro Train TT (min) 5607 43 1022 172.18 70.54
Train TC (CHF) 5607 0 576 94.23 62.48
SM TT (min) 5607 19 796 87.51 48.89
SM TC (CHF) 5607 0 768 113.95 76.38
Car TT (min) 5607 32 1560 148.66 79.77
Car TC (CHF) 5607 8 520  94.94 47.21

32 I nfluence of Parking

Weis et al. (2012) assessed the effect of parking availabiliinaere | behavidral responses.

They assumed that in addition to the tradfiebetween travel time and fuel or transit cost,

parking search times and cost havaubstantial mpact on t r dheeforetmeg 6 de c |
conducted a stated choice study of parking, location, and modsedbaassess those choices.

The detall of thetsdy is explained in Weis et al. (2012; 2013). We use the data setsttoerun
modelson three different choice sets: location choice, parking choice, and mode choice.

~

For the location choice, there aveotakernative locatiora nd o n e i oaptiogthusf t he s
threechoicesalternativesHess et al. (2014)sing two different data setsillingness to pay an

advance public transport in Netherlands and tradeoff between salary and travel time in Sweden
showed that with only twalternative choicethe modeffits result of RUM and RRM is the

same However,with theadditionof the opt-out alternative (none of these opthrthe model

fit of RRM is better than RUMTherefore|n this research, we algsimateRUM and RRM

(as well as RAMYor data sets witlanopt-out alternative. In total 6301 observasdrom 631
respondents were usdebr the parking choice, there are thedternative choicegarkingA,

parking B, andthe opt-out alternativeln total 5853 observatiafrom 585respondentsvere

used.

Finally, we alscestimatemodechoicemodel There are four mode choice alternasiwealk,
bicycle, car, transit. For lomg distance travel, walk and bicycle might not be available.
Moreover,during the experimentijone ofthe respondentscedall four available alternatives
together. Therefore, for thigaper we only take short distandeps where respondentsre
facing three choices: walk or bike, car, and transit. In total, only 1668\aimors from 168
respondentsvere used

Table 3 presents the descriptive analysis of these three data sets. For the location of parking,
we can see that the second location is slightly more expensive and also takes longer time. For

8
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parkingalternativesye can see the minimum cost of zero that is for those who already have a
parking pass. Finally, for mode choice, the zero cost for transit is for those wha®GAyand

we assume that travel cesor walk and bike are zero. As for the car fuel costp zmst is
possible fothose who already hawgparking space and travalvery short distance.

Table3 Descriptive analysisf the parking dataised
Data Sets Attributes Observatios Minimum Maximum Mean  St. Dev.
Influence Location A TT (min) 6301 9 64 29.48 15.68
E’E(ff;ﬁr?) Location A TC (CHF) 6301 15 14.0 5.10 2.86
Location B TT (min) 6301 7 64 29.67 15.84
Location B TC (CHF) 6301 1.5 14.0 5.12 3.00
Influence Parking A TT(min) 5835 8.0 39 22.41 11.80
E’Ff,gf‘kri'ﬂgg Parking A TC (CHF) 5835 0.0 20 5.60 5.24
Parking B TT (min) 5835 8.0 39 22.05 11.77
Parking B TC (CHF) 5835 0.0 20 5.62 5.22
Influence Walk TT (min) 1666 4.0 170.0 59.25 37.22
of parking gy o 7T (min) 1666 1.0 450  15.79 9.89
(Mode
choice) Car TT (min) 1666 3.0 50.0 20.25 8.57
Car TC (CHF) 1666 0.0 22.4 7.14 6.35
Transit TT (min) 1666 3.0 108.0 23.84 15.07
TransitTC (CHF) 1666 0.0 7.4 2.08 1.28

33 Ca-BEharan@apool i ng

Two SP experiments were conducte@stimate the gtential of carpooling in Switzerlanth
order togain insight about user perceptioregarding innovative modes, the SP paes
composedf two different experiments, one of them indling car sharingas an alternative.
The deta# of thesurveyare availablen Ciari and Axhausen (2012; 2013a; 2013b).

For theexperimentwhich includescarsharing there are three alternative modea:sharing
car, and transitn total, 4350 observations from 735 responddntthe other experiment, there
are four alternative modes: carpoolingaadriver (CPD), carpooling aa passenge(CPP),
transit, and car. In total, 3975 observations from fkpondentsvereused Note that car is
the only alternative that available ac@dl 3975 observations, however siraleobservation
have three available alternatives, we incl@8@5 observations in the model.
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Table 4 presents the descriptive analysis of tiwsedata setsFor carsharing data set, the
zero cost for transit is for those who ha®@A. As for carpooling data set, we have zero travel
time and travel cost for all alternatives exciygcar. That isbecausgefor some observation,
the CPPCPD, and transitarenot avaiable. For those who haweGA, we set the travel cost
for transit to zero.

Table4 Descriptive analysis of caharing and carpooling daiaed

Data Sets Attributes Observatior Minimum Maximum Mean St. Dev.

Carsharing Carsharing TT (min) 4350 3.20 308.40 36.85 38.02
Carsharing TC (CHF 4350 0.83  439.67 41.45 49.32
Car TT (min) 4350 3.20 318.00 40.79 37.34
Car TC (CHF) 4350 0.55 747.40 44.83 63.49
Transit TT (min) 4350 3.20 418.80 62.00 50.66
Transit TC (CHF) 4350 0.00 244.80 14.20 20.76

Camooling CPP TT (min) 3975 0.0 2976 31.59 36.08
CPP TC (CHF) 3975 0.0 43.5 3.19 4.61
CPD TT (min) 3975 0.0 258.0 18.33 31.66
CPD TC (CHF) 3975 0.0 375 2.38 4.24
Car TT (min) 3975 48  297.6 43.21 38.71
Car TC(CHF) 3975 0.1 171.0 7.75 11.14
TransitTT (min) 3975 0.0 372.0 45.83 54.58
TransitTC (CHF) 3975 0.0 244.8 10.25 18.98

34 RP mode choi ce

Schmutz (2015used data fronthe Swiss Microcensus 2010 for his study. The Mobility and
Transport Microcensus is a survey conducted evierg years that provides detailed
informationon mobility behavior of the Swiss residenThe official data set includes around
300,000 stages, 210 trips and 65,000 tours starting and ending at hamtae work of
Schmutz (2015)only travel behavior part of the main survey for travel on one appointed day
per individual havebeen usedSchmutz (2015) presents MNL models for five levels of
aggre@tion: stage, sutour, tour, trip, andlayplan In thispaperwe only use the trip data set.

The alternatives for mode choice aralk, bike, car, and transifter some filteringwherewe
only use observations that have all four alternatives avaiktdreasonable walk and bike
travel time for all observations, we obt&di@942observations. The detaibf the data setan
be foundin Schmutz (2015)

10
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Table5 presents the descriptive analysisttid RP data usedhe zero cost for transit is for
those who have GA.

Table5 Descriptive analysisf the RP dataised

Data Sets Attributes Observatios Minimum Maximum Mean St. Dev.

RP mode Walk TT (min) 33942 5.4 719.9 188.11 147.44

hoi ) .

ChOIC®  Bike TT (min) 33942 20 2400 6271 49.15
Car TT (min) 33942 4.0 253.0 21.13 11.75
Car TC (CHF) 33942 1.0 14.0 2.06 1.53
Transit TT (min) 33942 6.0 830.0 55.92 36.48
TransitTC (CHF) 33942 0.0 34.0 5.05 410

4. Model Esti mati on

41 Estimation Resul t

For the Swissmetro data sether than generic attributes, travel time and travel cost, we added
alternative specific constaafASC) for each mode to the utility function/regfenction, and
we normalizehe Swissmetro ASC to zero.

The locatiorchoiceand parking choice are néabelled dataet. Thereforewe do noinclude

ASCs. We usa similar methodas inHess et al. (2014) fdhe optout alternativecaseIn the

first and second utility/regret function we multiply time and cost parametersegfiective
attributes. Then we include the third utility/regret function where there is only one parameter
Anoneo t o PBoe moeles choicmaohlye ahr. and transit are available across 1666
observations. For those who hawe walk alternative there is no bike alternative and vice
versa.We added fouASCs and we normalize transit ASC to zero.

For the case of catharing, we normalize the transit ASC to zero in our utility/regret function.
As for the carpooling case, only car alternative &lable across 3975 observatsoohherefore,

we normalize ASC car to zero in our modeinally, for RP mode choicave normalize the
ASC transit to zero.

All modelsareestimated usingythonBiogeméBierlaire, 2016)The results for MNL, CRRM,
1 RRM, PRRM, andRAM for sevendata setare presentetth Table6 below.For brevity, we
only present generic attributaadthe scale parameter for uRRM.

11
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Table6 Estimation results
Data Sets| Attri- ‘ MNL ‘ C RRM ‘ HURRM ‘ PRRM ‘ RAM
bute
est t-stat est t-stat est t-stat est t-stat est t-stat
Swiss Time -0.01 -109 -0.01 -17.8 -001 -93 -001 -84 -008 -9.3
Metro Cost -001 -161 -001 -168 -0.01 -16.6 -0.01 -162 -0.08 -10.0
(N=5607) 121 43
F-LL -4382.49 -4539.672 -4373.356 -4418.252 -4239.245
AIC 1.5646 1.6207 1.5617 1.5774 1.5136
BIC 1.5694 1.6254 1.5677 1.5821 1.5183
Parking Time -0.06 -31.5 -0.04 -31.4 -0.04 -222 -0.03 -282 -0.83 -6.0
location Cost -0.18 -19.8 -0.13 -20.6 -0.14 -183 -0.10 -19.4 -1.85 -58
choice H 6.22 1.0
(N=6301) FLL -5063.745 -4993.869 -4988.037 -5010.554 -5293.729
AIC 1.6082 1.5861 1.5845 1.5914 1.6812
BIC 1.6114 1.5893 1.5888 1.5946 1.6844
Parking Time -0.13 -323 -0.09 -306 -0.10 -200 -0.09 -27.2 -225 -24
choice Cost -0.16 -183 -0.15 -23.1 -0.18 -11.8 -014 -21.9 -3.71  -29
(N=5835) 334+ 17
F-LL -3160.084 -2933.602 -2930.057 -2925.971 -3964.244
AIC 1.0842 1.0065 1.0057 1.0039 1.3598
BIC 1.0876 1.0100 1.0102 1.0074 1.3632
Parking Time -0.05 -141 -008 -17.9 -007 -99 -007 -101 -243 -35
mode Cost -0.14 -112 -008 -101 050 23 048 53 -068 -82
choice H 117 23
(N=1666) F-LL -1366.330 -1321.320 -1349.922 -1349.337 -1414.494
AIC 1.6463 1.5922 1.6278 1.6259 1.7041
BIC 1.6625 1.6085 1.6473 1.6421 1.7203
Car Time -0.02 -164 -0.02 -162 -0.02 -17.1 -0.02 -17.0 -0.19 -9.0
sharing Cost -001 -85 -001 -7.1 -001 -7.0 -001 -69 -020 -6.6
(N=4350) p 0.12 183
F-LL 1583.012 1636.519 1680.706 1681.501 1926.19
AIC 1.8352 1.8229 1.8132 1.8125 1.7563
BIC 1.8410 1.8287 1.8205 1.8184 1.7621
Car Time -001 -62 -001 -59 -001 -84 -001 -86 -0.10 -7.6
pooling Cost -0.05 -53 -003 -43 -003 -42 -003 -43 -064 -56
(N=3975) u 0.09 139
F-LL -3950.835 -3949.359 -3929.118 -3922.169 -3832.877
AIC 1.9904 1.9896 1.9799 1.9759 1.9310
BIC 1.9983 1.9975 1.9894 1.9838 1.9389
RP mode Time -0.02 -162 -0.01 -12.2 -001 -128 -001 -115 -0.17 -95
choice Cost -0.14 -138 -0.06 -16.8 -0.07 -150 -0.06 -181 -150 -7.6
(N=33942) . 259 9.1
F-LL -15417.741  -15410.937  -15382.139  -15459.477 -14990.85
AIC 0.9088 0.9084 0.9067 0.9112 0.8836
BIC 0.9100 0.9096 0.9082 0.9125 0.8849

Note* = not significar; ** = 10% significant
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For all models, the parameter of time and cost are significantive@txpected sign (negative).
However we need to be careful in interpreting these parameters. In MNL, a parameter estimate
refers to increase or decreas¢hiautility of an alternative caused by a eunat or one standard
deviation increase in an attri butsghescreasel ue.
by a standard deviation of travel time and/é&lacost of an alternative decrease the utdityhat
alternative.

In the RRM context, a parameter estimadflects the potentialincrease or decrease in regret
associateavith comparing a considered alternative with another alternative inoteome unit

i ncrease i n an atRRMiiskcontexd dependera. Whereas in RUMstieo r t
attribute of other alternatives is irrelevant, in RRM attribute of sthlézrnative can influence

the increase/decreaske regret of the chosen alternatiear RAM context, a parameter
estimate in RAM corxt reflects the potential increase or decrease in relative advantage
associated with comparing a considered alternative with another alternative in term of one unit
increaseinaat t ri buteds value

We present the model fit comparison in Table 6 that ist®f log-likelihood, Akaike
information criterion (AIC) an@®ayesian information criteriofB1C). Looking at AIC and BIC,

we found that RAM outperforms other models in the case of Swissmetro, car sharing, car
pooling, and RP mode choic@/e also found thgiRRM outperforms other models in the case

of parkinglocation and parking mode choice, while PRRM outperforms other models in the
case of parking choice.

Regarding the comparison of MNL and CRRM in term of model fit, we found thattwoly
times MNL outperforms CRRMn the case of Swissmetro and car pooling. Tieisult
underlines the literatunesult,that noneof the models are clearly superior in all cases.

42 Prediction Accuracy

Hit rate can also be one of thalicatos measuringhe goodnes®f fit of a choice model. Hit

rate refers to the fit between actual choice observed from the data and the predicted choice
obtained by using the model itself. The higher the hit rate the closer we can say that our model
represerdreality. In Talde 7, we present the prediction accuracy of fivedelingapproaches

across seven data sdtsthe firstfive columrs, we present the hit ratd five models In arother

column we presenpercentage of observations whatemodelsproduce the same outoe
regardless the observed choice. diieis column followed bwrothercolumnwhere we show

the percentage abservationsvhich all models correctly predict the outcosne

13
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Table7 Prediction Accuracy

Hit rate All modds All models
predictthe predict the
DataSets  \NL  CRRM  uRRM PRRM  RAM same right

outcome outcome
Swiss Metro  68.50% 68.50% 68.50% 68.50% 69.10% 91.14% 64.38%
(N=5607)
Parking 67.80% 68.00% 68.00% 68.00% 67.30% 94.02% 65.40%
location choice
(N=6301)
Parking choice 81.10% 81.70% 81.90% 81.30% 80.10% 88.47% 78.01%
(N=5835)
Parking mode 654%%  61.16% 61.22% 61.34% 62.30% 67.65% 47.8%%
choice
(N=1666)
Car sharing 59.20% 59.80% 60.00% 60.10% 60.70% 82.76% 526%
(N=4350)
Car pooling 4926%  49.08% 49786 49.7% 51.30% 81.91% 43.00%
(N=3975)
RP mode 87.30% 87.30% 87.30% 87.30% 87.40% 99.48% 87.10%
choice
(N=33942)

We found two data sets where the hit rate is above 80% in the case of parking choice (SP
unlabeled data) and RP mode choice. In other three data sets, Swiss metro,dboateand

parking mode choice, the hit rate is approximately 60%. As for theooding data sets the hit

rate of all models are below 50% except for the RAM model. RAddle| in generalshows

the highest model fit except for the casehafparking data sets. Overall we can say that RUM

is outperformedy other approaches in all dagets in term of hit rate.

It is interestng to see the distribution of the prediction nateere all models predict the same
outcome For the most of our data sets, the prediction rate is above 80%, more specifically for
three data sets, the predicti@te is above 90%. The highest prediction catgbe foundn the

case of RP mode choice which is almost 100%. The lowest prediction ratéhéscase of
parking modechoice; this mightbe due to the difference in the choice set, some have no walk
alternative while the rests have no bike alternative.

The prediction rates for all models predict the right outcoméeaeerin the last column. All

the percentage is slightly below theraite of all the five modeling approach for each respective
data set. The substantial diffecerbetween the percentage of all models predbetectly, and

the hit rate carbe foundin the case of parking mode choidéhis might be due to some
observation§acing zero alternative f@particulatmode (walk or bike). The same reason might
be appliedo the car pooling data sehereinthe case of car pooling not all thie observations
facing all four alternatives.

14



17" Swiss Transport Research Conference May 17-19, 2017

43 Pr obabPRilloitt y

In this sectiorpresent thgrobability of each alternative predicted by the five models. At the
y-axis is the probabilityangefrom 0 to 1. At the »axis is the observations. There are six lines
in the figure each represent each modetipgroachand also one line repsent the observed
choice, with 0 means the alternatigenot chosenand1 means the alternativie chosenTo

plot this graph, we grouped together the obsenkarice and the predicted choice from five
modelingapproacksfor analternative/ . Then we sorted them based on the observed choice
followed by MNL predicted choice as the base. That meanstbervatiom in x-axis forthe
alternative / is not necessarily the samedservatiom in x-axis foranalternative | .

In Figure 1 we can see the probability plot for Swissmetro datBaethe train alternative, we
can observe for those who did not choose a train, the probabilities of choosing tranyare
low which as expectedHowever the probabilities of choosing train for those who chose train
are very low which means that none of those people will be predicted to dhedsain.
Interestingly the probability for CRRM is higher than the other modeling approach.

Figurel Swissmetro probability plot
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For the Swissmetro alternativeye can see that for those who chose Swissmetro, the
probabilities plot is as expected even though tleessome observations whidmave low
probabilities.However for those who did not choose Swissmetro, themea number of
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observationgvhich have high probabilitiesThis might be the reason why the hit rates for
Swissmetro are only around 68%. For car alternative, the probabiditiésdse who did not
choosea caris as expectedjowever for those who choosa car, the probabilities for more
than half of them are quite low.

Since parking location and parking choice both are unlabeled data set, the probability plot of
each alternatie might not tell mucimformation we decidenot toshow the probability plotin

Figure 2, we show the probability plot for Parking mode choice. Tiwbgeare facing walk
alternative are not facing bike alternative and vice versa. Therefore we caosgebability

for all observationsn the left side of walk and bike alternative. Unlike in Figure 1 where the
probabilitiesof URRM and PRRM are mostly similar to RAM, here the probabilitigsRRM

and PRRMare vared. For all of four alternatives, tharobabilities plot are as expected, even
though there are some cases where we find high probabilities on tulhogen side for car

and transit.

Figure2 Parking mode choice
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In Figure 3 we present tipeobability plot for car sharing data set. The probabilities plot for car
alternative is as expected, however for the train alternative especially those whihehogg

the probabilities are quite low. Interestingly if we lookregcarsharingaltemative, we can see

that the probabilities for PRRM for some observations, in thechosen and chosen case, are
quite high. It is also interesting that the probabilities for those who chose car sharing are very
low.
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Ca sharing

Figure3
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We plot the probabilities for car pooling in FigureCaris the only alternative whiclas faced

by all observations, which explains the zero probabilities in the left side of the other three

alternatives.

Car pooling

Figure4

Car pooling as driver
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In our car pooling plot, we can see that for all alternatives exegphe probabilities are not
that high for the chosen alternative side.

Finally, we present the probability of our RP mateice data seh Figure 5 It is interesting

to see that there is no high probability for walk and bike. We can also see that for transit
alternative especially the chosen side, the probability to choose transit higln®/e can see

high probabilitis to choose carwhich most of them above 0.5.

Figure5 RP mode choice

Walk Bike
1.0 1.0

0.8 0.8
0.6 0.6

0.4 0.4

——Observed —MNL CRRM MRRM —PRRM —RAM ——Observed —MNL CRRM MRRM —PRRM —RAM

Car Transit
1.0 1.0

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

&
=——0bserved —MNL CRRM uRRM =——PRRM —RAM =——Observed ——MNL CRRM uRRM =——PRRM —RAM

44 No#nrading Behavior

Non-traders refer to respondents in stated preference survey who always make the same choice
decisionr egar dl ess of t he av aniolrSRlateesetave haeerfonralt i v e 6
some percentage of ndraders whichs shownin Table 8. In this section, we show how many
percens of nontraders came predictedrom our five modeling approaches.

In the case of Swissmetro, the rAmaders of train alternative is only 2.09% which only 13
people. The five modeling approaches can pratdict thosefor this alternative This is
understandable since in Figure 1 wa cae that the probabilities for choosing train are very
low. For Swissmetro alternative, we can see that there are 21.67% Swissmetradecs
which is about 135 people. From this number, MNL pR&RM can correctly predict the nen
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traders by 83.70%, wti is about 113 people. For caternative PRRM can givea higher
predictionrate

We do not present the ndabelled data set as it does not matter which alternatigchosen
Overall looking at theable we might say thathere is no modeling apprdabetter than the
othesfor all contexs. There is a case where MNL outperforms other, buigteso happeng
for RRMs and RAM.

Table8 Non-trading prediction
Data Sets  Alter-native  OPSeTved Percentageontraders predicted from observed roaders
nomraders = Nt CRRM uRRM PRRM  RAM
Swiss Metro  Train 2.09% 0% 0% 0% 0% 0%
(Sampleb23  gissmetro 21.67%  83.70%  76.30%  83.70%  82.96%  77.78%
Car 6.10%  28.95%  28.95%  28.95%  34.21%  39.47%
Parking mode Walk 5.95% 10.00% 70.00% 70.00% 10.00% 20.00%
?Shaorirfslgm) Bike 7.14% 100% 833 8.3 0%  83.3%
Car 536%  22.22% 111  11.11%  11.11%  11.11%
Transit 9.52% 0%  6.2%  625% 6256  18.75%
Car sharing Car sharing 2.31% 0% 0% 0% 0% 0%
(sampleF39 o 25.44%  81.28%  77.01%  71.66%  70.59%  58.29%
Transit 21.90%  21.74%  22.98%  24.84%  24.84%  36.65%
Car pooling  Car 8.22%  52.38%  52.38%  52.38%  54.76%  52.38%
(sampleS1 b yriver 137%  1429%  14.29%  14.29%  14.29% 0%
cP sa7,  333%  333%  333%  333%  3.33%
passenger
Transit 2.94% 0% 0% 0% 0% 0%
5. Val ue of Travel Ti me Savings

The walueof travel time savings (VTTS3% an important concept for travel demand analysis. It
measurs how much moneye.gCHF) a persoris willing to pay for a unit reduction itravel
time (e.g.anhour). The VTTSfor the MNL model canbe obtaiedfrom Eqg.12below

WY 0Ty _ e0s brr 12

vrTs,"™ =602
WV, 1UTC, brc

WhereV, represents systematic utilityr analternative/ for persong , 77, represents travel

time associated witla persong choosng an alternative/ , and 7C,, represent travel cost
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associated witlapersong choosng analternative’ . The mrametes of travel timeand travel
cost arerepresented b§ and b, respectively Since RUM is not context dependent, the

VTTS for an alternatives notinfluencel by other alternatives as in the case of RRM. The
method to measure VTTSfor contextdependent choice modelsedescribe below.

51 Met hod t o cnoenatsgwErpes n ccenroti VcTeT S

5.1.1 CRRMVTTS

To measure the VTT®r CRRM we need to derive the systematic regrethafpersong

choosng the alternative/ with respect taattribute X, . The derivation is shown in E43

below, withmoredetaik in Appendix 1.

IJqu — b Céxp[b CQ kig = k/q )J - - b
= =a
WXy i J 1+exp[b CQ X sia = Xuig )J | +1
/ EXpl_b CQ k/q )J (13)

_ - b,
/IJeXpl_ b CQ kig = /(/q)J+1

Eq. 13 enters the VTTS formula as shown in Hd.below, which also presented in Chorus
(2012b).

CRRM _ 593 |.1/-_\’,-q/p7' - 603 i bﬂ/(eXpl. b Cé / )J+l) (14)

VITS o
s WR, IuTC, ey - bre/le)- b drC, TC,q)J”fl)

Eq. 14implies that VTTS measures wigkenerallychange when choice set changeterms of
alternatives. Changes in attributes aifmpetingfor an alternativeas well as changes in
attributes of the chosen alternative will influence the VTTS.

5.1.2 PRRM VT

The derivative of the systematic regrettbé uRRM modelis shownin Appendix2. The
formula for deriving the yRRM VTT$% shownin Eq. 15 below.

a b 6. .0

VTTS RRM — 603 M - ¢ R (15
uR“R"’M/ uTC 5 & b, o}
' @nge e ]°+1§
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5.1.3 PRRMVTTS

Van Cranenburgh andr&o (2016) derive the derivatiaf the systematic regret for PRRM

modelwith respect tattribute X, asshownin Eq.16 below:

WR, 19 b.alif b, <0andx,, <x,, orb, >0andx,, >x,,
J.f

=1 (16)
Wy 70 if b, <Oandx,, > x,, or b, >0andx,, <X,

Since we only have two generic attributes and we already know in advanced that our parameter
estimates are both negatives, thenuse theupper leftpart ofEq.16. Thus part oEq.16 enter
Eq.17 for deriving the PRRM VTTS

- bTT_ al
IUTT, b
VTS, = 603 WRTWTTy gy Tha<rry (17)
HR/q/UTC/q - brc a 1
ot
TC, <TC,

Let us recall the properties of PRRM as shown in Ee( "is obtained by the summation of

m|n(0 Xio - X,

kig " ,qq) in the case o& negativeparameter. Therefore in the condition where the

chosen alternativés outperforned by the competingfor an alternative the derivative of
systematic regret with respect to travel time or travel cost will becomelfzthrat is thecase
we will have an infinite VTTS for the respected person and respected alternative

514 RAMVTTS

Leong and Hensher (2018pve already derivedn equationfor measure RAM VTTSas
shownin Eqg. 18:

W a KDy,
a hq HT q u7'77q
RAM
VTTSQAM =603 “VRAM/IJTE] - 603 22 [ Ajg + //q] (18
WV, TuTC, D. KA, A MO,
5 7 urc, v u7C,

N [ //q //q]

The derivation of advantage and disadvantadkegfersong choosingalternative’ over ; is

in Eq. 19 below:

WA, bk

WD, b,
U 19
Xy~ o005, &%~ X 1 9

and
uX/(/q eXp |_ b CQ kig = /(/q )J +1
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52 VTTS result and di scussion

In this subsection, we present the result of V]I®an value anstandard deviatiofor each
alternativefor the fve modekin Table9.

Table9 Value of travel time savings (CHF/hour)
Data Sets Alter- MNL C RRM URRM P RRM RAM
native

Mean Std Mean Std Mean Std Mean Std Mean Std

Swiss Train 150.9 28,7 84.66 119 7059 69.1 3892 235
?f\le:”s%m) SM 66.10 0 5651 247 4862 11.6 5190 187 3502 259
Car 134.18 114.9 78.63 34.8 3045 37.6 112.94 164.0
Eﬁé'i‘cigg(l'\l"fggg;‘) 19.60 0 1929 46 1850 1.1 2177 104 3240 92.9
(PI\?:”gggs‘;hOice 4663 0 4210 86 3661 41 3883 115 7+10° gr10M
Parking  Walk 101.31 24.6 9956 29.4 116.19 192 16.85 33.7
[:T%?Se Bike g , 3883 100 5501 161 8726 306 8642 1805
(N=1666) Car 3858 17.0 39.18 158 43.19 21.2 147.31 369.3
Transit 5454 235 53.60 21.2 6417 331 3355 628
Car sharing CS 91.88 180 59.60 37.9 9544 465 84.97 118.8
(N=4350)  car  104.94 0 9522 172 6820 708 8685 526 9500 1854
Transit 159.26 105.2 9*10'° 5*10'?2 16.81  53.8 117.54 239.3
Car pooling Car 1414 16 1924 125 1946 8.7 1506 31.3
(N=3975)  cpp 1427 2.0 5517 6775 33.67 11.2 1056 11.2
cop 08 O 1488 26 510° 2107 2965 107 1206 162
Transit 1421 1.9 2390 16.6 21.48 7.1 4101 753
RP mode  Walk 1942 45 1534 29 3313 43 171 1.0
f£2§§94z) Bke ., 1129 14 1108 03 1630 63 484 15
Car 738 20 929 14 018 10 336 15
Transit 905 2.1 1003 14 601 22 816 7.3

Forunlabelled SPs it doe®t make sense to present values fortthealternatives as the order
in the choice experiment (left or right alternative) doet matter andt is quite random
Thereforewe only present the mean VTTS from two alternatives.

The VTTSs resultarein the eyected rangexcept for some strange resulisthe case of
parking choice data for RAM model and ajRRM transit alternative for car sharing data set.

To do a better depiction of the VTT8sstribution we plot the VTTSoy choice situatiorfior
eachalternativewith abox plot At the x-axis we present théour contextdependentmodels
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At they-axis we present the VTTS in CHF per hotlihe reference line attached to thexis
represents MNL VTTS.

For the Swissmetro data set, the depiction of VT&B8be seenn Figure6. We can see for
train case, the CRRMnduRRM VTTS are mostly above MNL VTTS. For the Swissmetro
case, the VTTS of othenodelingapproachess below the MNL.Finally, for car VTTS, we
can see that for theRRM, and pPRRMVTTS are mostly above MNLThe VTTS for PRRM

Is below MNL VTTS. In Caalternativewe can see many and quite substantial outliershéor
car alternative.

Figure6 Swissmetro VTTECHF/hour)
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For theunlabeleddata sets wittan opt-out alternative, the depiction of VTTSs for location
choiceand parking choiceanbe seenn Figure7. For these unlabeled cases, the RAM VTTS
distribution is very high.

Figure7 Location and prkingchoice VTTS (CHF/hour)
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In Figure 8 we present the plot of parking mode choice VTTS. For all alternatives, the VTTS
for PRRM and RAM are below MNL.
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