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Abstract

Urban mobility is facing a paradigm shift towards providing more convenient, environmentally
friendly and on-demand services. Satisfying customer needs in a cost-efficient way has been
the goal of many ride-sharing systems. Taxi ride sharing is considered nowadays an effective
service for reducing traffic congestion and pollution; however, the operational strategies that can
be used to optimize on-demand ride sharing have not been well investigated. Moreover, only a
few studies in the literature provide reliable insights about capacitated ride-sharing systems.
In the current work, we focus on solving the on-demand ride sharing service in a real-time frame-
work, considering different optimization techniques. Furthermore, by investigating different
decision variables and cost functions, we evaluate various management strategies. Furthermore,
we study the sensitivity of the solutions to different ride sharing capacities.
In this framework, we develop an event-based simulation engine that can be used in order to
propose a real-time taxi ride sharing search algorithm. The aim of the algorithm is to quickly
decide between competing taxi candidates that satisfy both the user inquiries and the problem
constraints. This simulation engine can provide valuable insights regarding different cost func-
tions and parameters variations. Moreover, by utilizing millions of real trip data from the New
York City taxi database, we evaluate the feasibility of the proposed framework and evaluate the
results for different strategies and optimization techniques.
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Introduction

As urban population is growing, the need for a more efficient transportation services are moti-
vating the authorities to implement new technologies in mobility services.In the recent years
the growth of smartphone technologies and inexpensive cellular communications have led to a
more individualized transport in urban areas; companies like Uber, Lyft, Via, and Cab-with-me
have risen that focus on developing demand responsive services, known as Mobility-on-Demand
(MoD). Furthermore, considering the ride sharing potential and benefits, these companies have
also adjusted their services with sharing options. On the other hand, with the parallel rising of
automated driving technologies, it seems that semi- or fully-automated ride sharing services
would be an attractive option in the near future. Satisfying customer needs in a cost-efficient
way has been the goal of many ride-sharing systems.

Taxi ride sharing is considered nowadays an effective service for reducing traffic congestion
and pollution; however, the operational strategies that can be used to optimize on-demand ride
sharing have not been well investigated in the literature. A better understanding of the complex
ride sharing problem would allow for more effective system deployments. The challenges arise
from the fact that multiple stakeholders are involved with contradicting interests. If the objective
of a private taxi company is to increase its revenue by offering more rides, this is in contradiction
with the interests of governments (e.g. less traffic congestion and pollution). At the same time,
usually a customer’s objective is to travel from point A to B in the fastest and most inexpensive
way. As a result, different policies need to be designed and studied in order to come up with
mutual collaborative solutions and provide an efficient service. Nevertheless, only a few studies
in the literature provide reliable insights and results about capacitated ride-sharing systems.

1 Related Works

Optimization of ride sharing services has attracted a lot of research interest recently. This
problem can be formulated mathematically is a similar way as the vehicle-routing and the
dynamic pick-up and delivery problems. The general definition for pick-up and delivery
problems is how to optimally transport objects or people from an origin to a destination. Given
that all the input data are available before the determination of the routes, the problem is
classified as a static optimization problem, for instance the recent publication of Bongiovanni
et al. (2019). On the other hand, in the dynamic version of the problem, some of the input data
are communicated during the time horizon of the operational process (e.g. customer requests).





         

Hence the solutions we are seeking are known as strategies to decide the real-time operations
as a new request is received. Another classification presented in Pillac et al. (2013) is based
on whether the information received by a request is certainly known (deterministic) or still
undetermined and subject to changes (stochastic). Regarding this classification, in the current
work, we focus on the dynamic deterministic pick-up and delivery problem.

According to literature, there are only a few works investigating the dynamic pick-up and
delivery problem Berbeglia et al. (2012). Early approaches focus on the transportation of elderly
and handicapped people, which is known as the dial-a-ride problem (DARP). In Oxley (1980) a
solution is proposed for a demand responsive service for individuals who are not able to use
public transport. Early solutions of DARP have mainly utilized heuristic methods, e.g., the
solution provided by MIT for the DAR service in Rochester, New York, USA Wilson et al.

(1971). Psaraftis in Psaraftis (1980) introduced the first model with a dynamic programming
approach for both the static and dynamic version of DARP. In the past 40 years, there has been
a steady growth of different methods applied to solve DARP (Ho et al. (2018), Cordeau and
Laporte (2007)). In the current work, we mainly review the most recent approaches that address
the dynamic deterministic DARP.

Ho et al. Ho et al. (2018) classify the solutions provided by different researchers for dynamic
deterministic DARP into theoretical and experimental approaches. The theoretical solutions
include (a) an online algorithm, which has proven to provide better results versus its offline
counterpart, or (b) a methodology to compute a lower bound which is tighter compared to the
previously introduced lower bounds Waisanen et al. (2008). On the other hand, experimental
approaches mostly develop simulation engines or other dynamic models. In these approaches,
a new input (event) triggers the simulation engine or the model to make decisions in a short
period of time. As stated in Ho et al. (2018), a passenger request is in most of the cases the
simulation trigger (event) for rescheduling the vehicles’ routes (e.g Berbeglia et al. (2012), Häll
et al. (2015)). The aim of such approaches is to serve the new request in an optimal way. In
most of the studied cases, there is a penalty when a request is rejected Ho et al. (2018). Ho et
al. Ho et al. (2018) recommend to consider other triggers (events) for rescheduling, such as
vehicle breakdowns, and unexpected events, in order to have a more realistic representation of
the dynamic deterministic DARP (see e.g. Beaudry et al. (2010)).

Researchers have applied different methods to solve different types of DARPs. Since DARP is an
NP-hard problem, most of the proposed techniques include classical heuristics or metaheuristics
that can be applied to large-scale problems. Implementation of construction heuristics can be
beneficial when a feasible solution is required fast, e.g. in dynamic DARPs (see Wong et al.

(2014), Marković et al. (2015)). Moreover, Wong et al. in Wong et al. (2014) have evaluated





         

different strategies by application of construction heuristics. Most of these heuristics are based
on the concept of greedy insertion heuristics, in which the vehicle with the cheapest insertion
criterion in their route is chosen to accommodate the request Jaw et al. (1986). Finally, Diana
and Dessouky in Diana and Dessouky (2004) have studied various insertion strategies.

Tabu Search (TS) is a well-known and commonly used metaheuristic to solve static DARPs. In
TS a tabu list is created and the local search algorithm avoids revisiting previously evaluated
solutions. As stated in Ho et al. Ho et al. (2018), Cordeau and Laptore Cordeau and Laporte
(2003) were among the first who applied the TS method to solve static DARPs. However, for
a dynamic DARP a shorter response time is required; Attanasio et al. Attanasio et al. (2004)
provided several parallel computation methods for implementing TS processes to solve dynamic
DARPs. There are several other metaheuristics developed to solve different classifications of
DARPs, e.g., simulated annealing, variable and large neighborhood search, generic algorithms,
and hybrid methods. Interested readers are referred to review surveys (e.g. Ho et al. (2018),
Cordeau and Laporte (2007)) for a detailed summary of previous works.

2 Simulation Model

2.1 Simulation Components

In the current work, we focus on solving the on-demand ride sharing service in a real-time
framework, considering different optimization techniques. More precisely, by investigating
different decision variables and cost functions, we evaluate various management strategies.
Moreover, we study the sensitivity of the solutions to different ride sharing capacities. Within
this framework, we develop an event-based simulation engine that can be utilized in order to
propose and evaluate a real-time taxi ride sharing search algorithm. The aim of the algorithm
is to decide in real-time (i.e. within few seconds) among competing shuttle candidates that
satisfy both the user inquiries and the problem constraints. This framework enables us to study
different realistic scenarios regarding various cost functions, in which we can study preferences
of different stakeholders (e.g., maximum number of ride sharing per vehicle, maximum waiting
times, quality of service, etc.). Furthermore, in this approach the state of the system is updated
not only when a request arrives as an input, but also whenever a drop-off or change in traffic
conditions takes place; all these are considered events and trigger the procedure of updating the
system state. Finally, by utilizing millions of real trip data from the New York City taxi database,
we evaluate the feasibility and real-time applicability of the proposed framework, and evaluate





         

the results for different strategies and optimization techniques. It should be stated that in the
current work we have applied a similar framework as the one described in Ota et al. (2017);
however we define a cost function and implement different methods from operations research.

The main components of the simulation engine explained as follows: The fleet consists of
shuttles and each of them is considered as an individual object. In principle, they may have
different attributes (e.g. capacities, maximum number of shared trips, battery autonomy in case
they are electric). Table 1 presents the list with the fleet variables. Moreover, each shuttle
contains information about its current location, speed, occupancy, and a sorted list with all the
drop-offs updated in the last simulation step.

Commuters are also considered as objects with attributes that defined when the travel request is
produced: e.g. pick-up location, drop-off location, maximum tolerated delay time, ride sharing
willingness, etc. All the parameters that are associated with commuters are listed in Table 2. The
scheduler starts the operation as a request triggers the system; simply speaking the scheduler
assigns a commuter to a shuttle, in an optimal manner, considering the commuter specified

Vehicle Status Description

O Current Occupancy
V Velocity

S i, . . . , S n Stop sequence

Ride-Sharing Constraints Description

C Capacity of a vehicle
nshare Number of trips that can be shared, 0 if the commuter
tdelay Maximum time that a commuter will tolerate a delay in pick-up
textra Maximum time that will be added by a ride sharing

Stop Info Description

ln Location of stop S n

on Number of commuters connected to this stop

Table 1: Fleet specifications: vehicle status, ride-sharing variables, stop information.

Commuter Ride-Sharing
Constraints Description

op Number of commuters
tpick time request for pick-up
Lpick pick-up location
Ldrop drop-off location
nshare maximum number of trips to be shared
tdelay Maximum time that a commuter will tolerate a delay in pick-up
textra Maximum time that will be added by a ride sharing

Table 2: Ride-sharing commuter variables.





         

constraints and the cost function optimization policy. The algorithm that the scheduler follows
will be described in the full paper.

The test case network that is utilized in the proposed framework is an urban network. Links (L)
and nodes (N) represent roads and intersections respectively. The network constitutes a graph
G(L,N). If a road is a two-way street, there will be two links defined for that segment. We
denote with Ti the time required to travel link Li . We assume that each trip starts/ends at a node
and if a pick-up/drop-off location is in the middle of the link, it is projected to the nearest node.
Using this framework, we utilize real-time information about the traffic conditions, as a weight
for each link, and this can be updated to the network dynamically over time.

the simulation engine is evaluated using millions of trip data from New York City (NYC) taxi
database, and different scenarios are studied. Each trip includes pick-up and drop-off time, the
corresponding latitudes and longitudes, and the number of passengers. In this framework, we
model shuttles and trips as separate objects and the scheduler assigns the trips to the vehicles of
the fleet. The NYC dataset provides a real distribution of trip requests, which is a good basis for
evaluating different ride-sharing policies. Table 3 presents some simulation parameters which
are not included in the components of the vehicles or passengers.

The simulation engine can derive the best ride sharing scenario based on the parameters in an
event-based approach. The requests are based on historical trip data of NYC. As a request
is received, the scheduler reads the current state of all the fleet: location, capacity, next stop
and tolerable delay or extra time. The scheduler computes the cost for each candidate shuttle
and assigns the trip to the vehicle with the lowest cost (given that it satisfies the ride sharing
constraints). If there is no shuttle available to accommodate this request, the request will be
rejected; this is modeled with a large penalty parameter in the cost function. In the current work,
we focus on the real time ride sharing approach, therefore our approach should consider online
simulations and react immediately as a request is received. The operator needs to provide a
response to the customer weather the request is accepted or not, and the status of all the fleet
must be updated. This approach is a new contribution compared to the type of work in which all

Input Parameters Description

m Number of taxis
C Default taxi capacity

nshare Default number of allowable ride sharing the commuter nshare over writes this variable
tdelay Default wait time tolerable by a commuter
textra Default extra time added due to ride sharing tolerable by a commuter

F(r, c) Cost function- cost for a taxi c to accommodate request r

Table 3: Simulation parameters.





         

the requests are known in advance, which is not adequate for online ride sharing systems.in the
following section, the details of the simulation algorithm will be explained.

2.2 Simulation Algorithm

The goal of optimizing a capacitated ride sharing system is to minimize the total cost or
maximizing the total utility of ride sharing, while considering a set of constraints. For instance
the cost can include travel time or travel distance, CO2 emissions, delay or idle time,or any other
parameters. in most of the cases the weighted combination of these parameters are considered as
a cost function. In the framework of current work we will consider different cost functions, with
various weighted combination of set of parameters. let F(r, c) be the cost function- cost for a
taxi c to accommodate request r. let n be the number of trips and m the number of shuttles/taxis.
The total travel cost T (i) for the first i trips is

T (i) =

T (i − 1) + min1≤ j≤m{ f (ri, c j)}

T (i − 1), if there is no shuttle available
(1)

in order to describe our algorithm we assume the extra distance that a shuttle c j has to travel to
accommodate a request ri is considered as the cost function and we try to minimize the total
travel distance for n requests T (n).

Scheduler Algorithm

1 : Inputs: a set of requests R = {r1, r2, ...}

2 : Parameters: m : number of shuttles, C : Capacity of shuttles, nshare, textra, tdelay, f (r, c)
4 : Sort(R)
5 : Initialize shuttles
6 : for i = 1 to |R| do
7 : Elapsed_time = Pickup_time(ri)− Pickup_time (ri−1)
8 : f ∗ ← ∞

9 : for j = 1 to m do
10 : Update(c j)
11 : fi j ← f (ri, c j)
12 : if f ∗ > fi j then
13 : f ∗ ← fi j

14 : c∗ ← c j

15 : end if
16 : end for
17 : Assign(ri, c∗)
18 : T (i)← T (i − 1) + f ∗

19 : end for





         

All requests are sorted in chronological order, the algorithm tries to find the shuttle with lowest
cost in real time. As soon as a request pops up the time elapsed from the previous request is
calculated and all the shuttles are updated accordingly. Furthermore the request will be assigned
to a shuttle with lowest travel cost. It should be considered that this approach does not provide a
globally optimal solution, but gives us a real time online optimal output.

3 Input Data

In order to have an insight about the input data to our simulation engine the following figures
are illustrated: In the first stages of simulation engine development, we consider the data of one
of the boroughs of NYC – Manhattan in one month in 2011. The data of Manhattan area in 2011
has been studied by many researchers in the literature and has the benefit that our results can be
compared to existing benchmarks. Figures 1 and 2 present the distribution of the trip lengths
for all the taxi trips that happened in the whole month of February 2011 (5,886,154 trips). In
Figures 3, the spatial distribution of requests per zone is depicted for the same month, where we
can clearly see the hot spots for this area. In Figures 4 the pick-up, drop-off locations of the first
200 request are shown on network of Manhattan, moreover the 20 available shuttles are depicted
as black squares.





         

Figure 1: Distribution of trip lengths in Manhattan (February 2011).
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Figure 2: Boxplot of trip lengths distribution in Manhattan (February 2011).
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Figure 4: Manhattan Network showing the locations of request pick-up, request drop-off and the
shuttles
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