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Abstract

It appears to be a commonly held belief that Machine Learning (ML) classification algorithms
should achieve substantially higher predictive performance than manually specified Random
Utility Models (RUMs) for choice modelling. This belief is supported by several papers in
the mode choice literature, which highlight stand-out performance of non-linear ML classifiers
compared with linear models. However, many studies which compare ML classifiers with linear
models have a fundamental flaw in how they validate models on out-of-sample data. This paper
investigates the implications of this issue by repeating the experiments of three past papers using
two different sampling methods for panel data.

The results indicate that using trip-wise sampling with travel diary data causes significant data
leakage. Furthermore, the results demonstrate that this data leakage introduces substantial
bias in model performance estimates, particularly for flexible non-linear classifiers. Grouped
sampling is found to address the issues associated with trip-wise sampling and provides reliable
estimates of true Out-Of-Sample (OOS) predictive performance. Whilst the results from this
study indicate that there is a slight predictive performance advantage of non-linear classifiers
over linear Logistic Regression (LR) models, this advantage is much more modest than has been
suggested by previous investigations.
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This paper is an update of an existing manuscript, available online as a technical report (Hillel,
2020).

1 Introduction

Mode choice modelling has traditionally been tackled with statistical Discrete Choice Models
(DCMs) based on the random-utility framework (McFadden, 1981). However, there has recently
been an increased focus in the literature on applying ML classification techniques for mode
choice prediction, following the numerous successes of ML approaches in other fields.

It seems intuitive that ML classifiers should afford greater predictive performance than linear
RUMs; ML techniques are typically much more flexible than RUMs and the majority of ML
classifiers can automatically capture complex non-linear relationships between input features
and choice probabilities. Indeed, there are several existing studies that find ML classifiers
significantly outperform RUMs in terms of their predictive performance. However, a recent
systematic review conducted by Hillel et al. (2021-03-01) identifies a number of technical
limitations and pitfalls in the methodologies used in these studies. Of particular note, the review
highlights that several previous studies make use of trip-wise sampling methods for hierarchical
panel data, where each individual contributes more than one trip to the dataset.

Trip-wise sampling forms validation folds by sampling uniformly across all trips in the dataset.
As such, trip-wise sampling with panel data allows for matching return, repeated, and shared
trips made by the same individual or members of the same household to occur across training
and validation folds. This allows a model to observe trips matching the validation data during
model training, and so allows for data leakage of the chosen mode from the training data to the
validation data. This violates the key principle of validating ML classifiers on unseen OOS data
and may result in biased model performance estimates, in particular for highly flexible models
which are able to overfit to the data.

This paper explores the implications of using trip-wise sampling for panel data and introduces
grouped sampling, where validation folds are sampled grouped by household/person, as an
alternative. Two approaches are used to investigate the implications of the different sampling
methods:

1. Dataset investigation: identifies the mechanism for data leakage from trip-wise sampling
by quantifying the proportion of matching trips in different travel diary datasets for





             




different validation schemes.

2. Modelling investigation: assesses the impacts of the data leakage from trip-wise sam-
pling by comparing OOS validation results obtained using trip-wise sampling and grouped
sampling.

Three previous studies are used for this analysis:

• two studies which compare the performance of multiple ML classifiers using trip-wise
sampling with multi-day travel diaries

– Study 1: Chang et al. (2019), and
– Study 2: Hagenauer and Helbich (2017)

• and a third study which investigates the use of Gradient Boosting Decision Trees (GBDT)
classifiers using grouped sampling with a single-day travel diary

– Study 3: Hillel et al. (2018).

In each case, the dataset in each paper is analysed, and the modelling is repeated using both
trip-wise and grouped sampling.

The rest of the paper is laid out as follows. Firstly, Section 2 summarises existing ML and RUM
performance comparisons in the literature, including their use of trip-wise/grouped sampling,
and introduces the three papers investigated in this study in more detail. Next, Section 3 presents
the dataset investigation to quantify the proportion of matching trips in different travel diary
datasets for different validation schemes. Section 4 then presents the modelling investigation to
compare OOS validation results for different classifiers using trip-wise sampling and grouped
sampling. Finally, Section 5 provides the conclusions for the study, and introduces possible
directions for further work.

2 Literature review

2.1 Existing Machine Learning and Random Utility Model

performance comparisons

There exist several papers in the literature which investigate mode choice prediction using ML
models. This includes applications of Artificial Neural Networks (ANNs) (Wang and Zhao,





             




2019, Golshani et al., 2018, Lee et al., 2018, Nam et al., 2017, Omrani et al., 2013, Cantarella
and de Luca, 2005, Hensher and Ton, 2000, Subba Rao et al., 1998); Decision Trees (DTs)
(Pitombo et al., 2015, Tang et al., 2015, Karlaftis, 2004); Ensemble Learning (EL) (Chapleau
et al., 2019, Cheng et al., 2019, Ding et al., 2018, Hillel et al., 2018, Liang et al., 2018, Ermagun
et al., 2015); and Support Vector Machines (SVMs) (Pirra and Diana, 2019); as well as three
papers which perform a comparative study of multiple classification approaches (Chang et al.,

2019, Hagenauer and Helbich, 2017, Zhou et al., 2019). These papers typically compare the ML
approach to a LR model, which is used as a benchmark for a statistical RUM.1

Several ML mode choice studies make use of travel diary data, where individuals or households
report all of the trips they make during the study period, which can range from a single day to
several weeks. This includes two studies which use multi-day travel surveys to compare the
relative performance of several ML classification algorithms alongside LR models (Chang et al.,

2019, Hagenauer and Helbich, 2017). Both of these studies find that ML classifiers, and in
particular EL models, substantially outperform RUMs/LR.

Chang et al. (2019) use continuous six-week travel diary data to compare the performance of
SVMs, Naïve Bayes (NB), and three EL algorithms (Random Forest (RF), AdaBoost (AB), and
GBDT) alongside Nested Logit (NL) and LR models, for predicting choice out of nine different
modes (walk, cycle, motorcycle, vehicle driver, vehicle passenger, bus, light-rail transit, rail,
other). They find the highest performing classification is obtained with a RF, which achieves
substantially higher test accuracy than a LR model (87.41% vs 63.71%).2 Similarly, Hagenauer
and Helbich (2017) use continuous six-day travel diaries to compare six ML classifiers (SVMs,
NB, ANN, RF, GBDT, and a bagging ensemble) with a LR model for a four-mode problem
(walk, cycle, public transport, car). They also obtain highest performance with the RF classifier,
which achieves a mean test accuracy of 91.4%, compared to 56.1% for a LR model.

2.2 Trip-wise sampling

Travel diary data is panel data; each individual or household records more than one trip in
the final dataset. As such, the dataset may include return, repeated, and shared trips, which
are highly likely to be made by the same mode. Trips in travel diary data can therefore not be
considered as independent.

1Note that typically the LR models in these papers are regularised using automated L1/L2 regularisation using the
C hyperparameter, whereas traditional RUM are typically regularised using parameter significance tests for
manually specified utility functions

2RF used in combination with a Denoising Autoencoder to pre-process the data





             




A recent systematic review by Hillel et al. (2021-03-01) identifies 13 ML studies in the literature
which make use of complete travel diary data (Yang and Ma, 2019, Cheng et al., 2019, Chang
et al., 2019, Wang and Ross, 2018, Zhu et al., 2018, Hagenauer and Helbich, 2017, Semanjski
et al., 2016, Tang et al., 2015, Papaioannou and Martinez, 2015, Ma, 2015, Rasouli and
Timmermans, 2014, Shukla et al., 2013, Pulugurta et al., 2013, Biagioni et al., 2008). Of
these studies, all 13 (including the two comparative studies referenced above) make use of trip-
wise sampling to generate the validation datasets. Trip-wise sampling forms validation sets by
sampling trips independently from the dataset and so allows trips made by the same individual or
household to occur across the training and validation data. This includes return/repeated/shared
trips.

Trip-wise sampling with panel data therefore allows for data leakage of the chosen mode from
the training data to the validation data for matching return/repeated/shared trips, and so violates
the key principle of validating ML classifiers on unseen OOS data. This could therefore result in
unreliable predictions of predictive performance.

This problem is not unique to mode choice modelling, and a systematic review of cross-validation
sampling for papers investigating medical diagnosis using panel data from wearable devices
identified a similar prevalence of incorrect sampling methods in the literature (Saeb et al.,

2017).

2.3 Grouped sampling

As opposed to trip-wise sampling, grouped sampling forms validation sets by sampling trips by
household/person, such that all trips made by an individual or household are sampled together.
Grouped sampling prevents trips made by the same individual or members of the same household
from appearing in both the training and validation data, including any return, repeated, or shared
trips. This therefore prevents the data-leakage occurring from matching trips. Grouped sampling
is first used for ML investigations for mode choice modelling by Hillel et al. (2018), who train
GBDT classifiers on trip records from a single-day travel diary to predict mode choice for a
four-mode problem (walk, cycle, public transport, private vehicle).





             




3 Dataset investigation: matching trips

This investigation quantifies the number of matching trips which occur when using trip-wise
sampling with travel-diary data. Three types of matching trips are investigated: return, repeated,
and shared. Formal definitions for each, as well as a general definition for any matching trip
are given in Table 1. Note that a single trip can belong to multiple sets of trips. For example, a
return trip may both be repeated, and shared by multiple members of a household.

Table 1: Definitions of matching trips.

Type Definition

Return trip A trip made by an individual from origin x to destination y is made in
reverse between origin y and destination x. Note, these do not necessarily
need to be part of a return-tour, and could have other trips made between
them, or even be made as part of different tours.

Repeated trip A trip made by an individual from origin x to destination y is made again
between the same origin x and destination y (i.e. in the same direction).

Shared trip A trip is made by two or more members of the same household with
matching origin x, destination y, and departure time t. Note this can only
occur in household data.

All matching trips Any sets of trips made by the same individual/members of a house-
hold with matching origin and destination, or with reversed origin and
destination.

3.1 Datasets

The papers investigated in this study have either made the dataset used in the study publicly
available alongside the paper (Hillel et al., 2018, Hagenauer and Helbich, 2017), or make use of
publicly available open data (Chang et al., 2019). An overview of the dataset used in each study
is given in the following sections.

3.1.1 Study 1: Mobidrive

Study 1 uses the 6-week Mobidrive data, which is publicly available online (Chalasani and
Axhausen, 2004-05). The dataset contains 52 265 trips made by 361 individuals in 162 house-





             




holds. The data includes both household and individual IDs, and so grouped sampling can be
performed using the household ID.3

Origin and destination zone IDs are given for each trip. In total, there are 496 different reported
zones in the study area. Matching trips are identified for each individual (return and repeated
trips) and household (shared trips) using the origin and destination zones. Note, this may identify
some false positives, as multiple different destinations could be in the same zone and therefore
have the same IDs. However, it is expected that trips between matching zones should also
be highly correlated for the same individual/household in terms of mode choice and features
describing the trip.

3.1.2 Study 2: Dutch National Travel Survey

Study 2 uses a dataset adapted from a 6-day travel diary from the Dutch National Travel Survey
(NTS). The data has been augmented with environmental data describing the land use diversity
and proportion of green space of the residential postcode location, the average urban density
of the selected route, and the weather conditions at the time of travel. The dataset contains a
total 230 608 of trips made by 69 918 individuals. The number of households is not given. The
dataset is made available as supplementary material to the paper.

The shared version of the data has no individual and/or household IDs. However, the data
contains unique values for the land use diversity and proportion of green space for each postcode
area in the study. As such, individual IDs can be imputed by enumerating the unique combina-
tions of postcode area (using the diversity and green features in the data) and socio-economic
data (combination of age, gender, ethnicity, education, income, cars, bikes, and driving license
ownership). If two people in the survey data from the same postcode area have the same socio-
economic details they will be grouped as the same person. As such, this approach identifies less
unique individuals than in the original data (45 036 vs 69 918). However, these IDs are sufficient
for ensuring data from the same individual does not occur in both the train and test data.

Similarly, the dataset does not contain any details of the start or end-location of each trip. As
such, matching (combined return and repeated4) trips are identified for each individual using
exact matches of the straight-line distance value (given accurate to 100m) with the imputed
individual IDs. This may result in false positive matches, as two different sets of origins and
destinations may have the same distance. As there is no location information in the dataset,

3The household IDs in the public data are non-unique, and so new household IDs are formed from unique
combinations of the household ID, study code, and city code.

4as the data is grouped by individual and not household, shared trips cannot be identified





             




there is no way of determining the difference between return and repeated trips, and so results
are only obtained for all matching trips (see Table 1).

As with many travel datasets, the NTS data is inherently imbalanced in that there are many
more trips made by some modes (e.g. car) than others (e.g. public transport). To address this
imbalance, the authors of the original paper use a combined over/undersampling scheme to
ensure equal numbers of trips are present in the dataset. For modes with less trips than the mean
trips per mode (bike, walk, and public transport), the trips are sampled with replacement until
the number of trips for that mode is equal to the mean (i.e. they are oversampled). For modes
with more trips than the mean (car), the trips are randomly removed until the number of trips for
that mode is equal to the mean (i.e. they are undersampled).

The effect of this sampling scheme are investigated by comparing the number of matching trips
for both the original unsampled data and the sampled data.

3.1.3 Study 3: London Passenger Mode Choice

Study 3 uses the London Passenger Mode Choice (LPMC) dataset, which is adapted from a
single day travel diary from the London Travel Demand Survey (LTDS). The data has been
augmented with imputed Level of Service (LOS) variables describing the choice-set at the time
of travel. The dataset contains a total of 81 096 trips made by 31 954 individuals in 17 616
households. The dataset is made available as supplementary material to the paper. The data
includes both household and individual IDs, and so grouped sampling can be performed using
the household ID.

Matching trips are identified for each individual (return and repeated trips) and household
(shared trips) using the reported start and end locations.5 As the final year of data (2014/15) is
used for external validation in the paper, matched trips are only identified using the training
and validation data (2012/13–2013/14). This sample contains a 54 766 trips made by 21 399
individuals in 11 725 households.

3.2 Methodology

The dataset investigation has two parts, with methodologies as follows.

5the spatial data is omitted from the publicly available version of the data for privacy reasons





             




1. Quantify proportion of matching trips in each dataset:

a) Identify pairs/sets of return, repeated, shared, and all matching trips in each dataset
through targeted searches of the features and household/person IDs.

b) Calculate the total number of matching trips of each type and the average set sizes
for each dataset.

c) Calculate the proportion of each type of matching trip that has matching mode, and
the overall proportion of trips in the dataset with matching mode of each type.

2. Quantify the proportions of all matching trips across training and validation data which
occur with trip-wise sampling using Monte-Carlo simulation:

a) Sample a simulated validation set trip-wise, with the unsampled data forming the
simulated training set.

b) Calculate the proportion of the validation set with matching trips with the same
mode choice in the training.

c) Repeat and average over 10 000 repetitions (draws) of this process for each validation
set size (30% for holdout validation, 10% for cross-validation).

Two different sample sizes are investigated for the Monte-Carlo simulation. A 30% sample is
used to represent the most commonly used sample size for OOS validation for ML mode choice
studies (Hillel et al., 2021-03-01). A 10% sample is then simulated to represent 10-fold cross
validation, which is the most commonly used number of folds used for cross validation in the
literature (Hillel et al., 2021-03-01).

3.3 Results

The numbers and proportions of matching trips in each dataset are given in Table 2. For the
NTS, the values are given for the original unsampled data as well as the sampled data using
the over/undersampling scheme proposed in the paper to ensure equal numbers of trips of each
mode. As discussed, the analysis for the NTS data uses reconstructed individual IDs and so
shared trips within a household are not identified, though are reasonably expected to occur in
similar proportions to the other two datasets. Furthermore, as repeated trips in the NTS are





             




determined using the straight line distance only, it is not possible to distinguish between return
and repeated trips for this data.

Table 2: Summary statistics for each dataset, for return, repeated, shared, and all matching trips.
N. = number of. . . ; P. same mode = proportion of matching trips that have the same
mode choice; P. dataset = proportion of dataset in matching sets with same mode
choice.
* the values for the sampled dataset are averaged over 10 000 draws.

Dataset Type
N.

sets
N.

trips

Av.
set
size

N. trips
same
mode

P. same
mode

P.
dataset

Mobidrive
(n=52 265)

Return 5644 47 416 8.4 45 736 0.965 0.875
Repeated 5672 43 493 7.7 40 781 0.938 0.780

Shared 5241 11 384 2.2 5271 0.463 0.101
All 4415 49 771 11.3 47 922 0.963 0.917

NTS
original

(n=230 608)
All 73 015 168 868 2.3 163 642 0.969 0.710

NTS
sampled*

(n=230 608)
All 47 238 182 157 3.9 179 372 0.985 0.778

LPMC
(n=54 766)

Return 15 605 32 471 2.1 30 898 0.952 0.564
Repeated 1315 2711 2.1 2496 0.921 0.046

Shared 8541 20 623 2.4 20 051 0.972 0.366
All 15 814 40 520 2.6 39 357 0.971 0.719

From the table, it is clear to see that a substantial proportion of trips in each dataset belong to
sets of matching trips with the same mode choice (shown in the column P. dataset). This shows
that the individual trips in each dataset can clearly not be considered as independent. Trips in
matching sets are likely to have highly correlated or matching features, including distances, LOS
variables, departure times, socio-economic variables, etc.

The highest proportion of matching trips with the same mode choice is for the Mobidrive data,
in which 91.7% of all trips have one or more matching trips with the same mode choice. This is
likely due to the Mobidrive data having a long study period (six weeks) compared to the other
datasets. The effect of the period of the trip diary can be seen in the average set-size of return
and repeated trips in the Mobidrive dataset (8.4 and 7.7 respectively) compared to the single-day
LPMC data (2.1 and 2.1 respectively). This occurs as trips are likely to be repeated more times





             




during the longer travel diary. As would be expected, the set size for shared trips between the
two datasets is similar, as this represents the average party size for shared household trips, which
should not be affected by the study period.

Overall, the original (unsampled) NTS survey has a slightly lower proportion of matching trips
with he same mode choice than the LPMC data (71.0% vs 71.9%), despite it being a longer
period travel diary (six-day vs single-day). This is at least in part due to the fact that shared trips
are not accounted for in the NTS data (as there is no way of identifying individual households),
which represent a substantial proportion of the matching trips in the LPMC data.

The results also show that the sampling scheme used on the NTS data in Study 2 increases the
proportion of matching trips. In particular, the original sample of 9300 public transport trips
has been oversampled to create a sample of 57 652 trips, meaning each public transport trip has
been repeated an average of 6.2 times.

The proportion of matching trips which have matching mode (P. same mode for all types), is
above 96% for all datasets. This shows that matching trips are highly likely to share the same
mode choice, suggesting that there is high potential for data-leakage if trip-wise sampling is
used with these datasets. Shared trips in the Mobidrive data have a lower proportion of matching
modes (46.3%). This is because vehicle driver and vehicle passenger are treated as separate
mode choices in the Mobidrive dataset, whereas the other two datasets have a single vehicle
mode which covers both driving and passenger. As such, multiple household members in the
same vehicle will have a different mode choice.

3.3.1 Monte-carlo simulation

Table 3 shows the results of the monte-carlo simulation of trip-wise sampling for holdout
validation with a 30% sample and 10-fold cross-validation. This data is represented visually in
Fig. 1.

The results show that for a 30% holdout validation set sampled trip-wise, over half of the trips
in the validation set have matching trips with the same mode choice in the training set for all
datasets. This indicates substantial data-leakage from the training data to the validation data.
The proportion is even higher for 10-fold cross-validation, where over 65% of the validation
data has matching trips with the same mode choice in the training data. The rate of matching
trips is highest for the long-period Mobidrive data, where in for 10-fold cross validation, almost
all (over 95%) of the the validation data is effectively repeated in the training data.





             




Table 3: Average proportion of matching trips with the same mode choice in each dataset using
trip-wise sampling for holdout validation (30% sample) and 10-fold cross-validation
(10% sample). Results estimated over 10 000 draws.

Dataset
Holdout
(p=0.3)

CV
(p=0.1)

Mobidrive 0.941 0.956
NTS original 0.535 0.653
NTS sampled 0.707 0.757
LPMC 0.579 0.675
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Figure 1: Average proportion of matching trips (with same mode choice) and unseen trips for
each dataset over 10 000 draws of Monte-Carlo sampling for (a) holdout validation
(30% sample) and (b) 10-fold cross validation (10% sample)

As expected, the over/undersampling of trips by each mode used on the NTS data in Study 2
results in higher proportions of matching trips between training and validation data.





             




4 Modelling investigation: Out-Of-Sample validation

4.1 Methodology

In order to investigate the impacts of the data leakage from trip-wise sampling methods, the
modelling results from each study are repeated using both trip-wise and grouped sampling.

The two comparative studies (Study 1-2) use a grid search to identify suitable hyperparameters for
each classifier, and then estimate performance using k-fold cross-validation, with the validation
folds sampled trip-wise. The models are used as discrete classifiers (i.e. each observation
is assigned purely to a single class), and model performance is quoted in terms of Discrete
Classification Accuracy (DCA) (i.e. the total proportion of correctly classified observations in
the validation data).

The experiments in these papers are first repeated on the same data with trip-wise sampling,
using hyperparameters specified in the paper where possible. The experiments are then repeated
a second time with the same hyperparameters, this time using grouped sampling for the cross-
validation folds. The cross-validation results are then compared for trip-wise and grouped
sampling.

Whilst Hillel et al. (2021-03-01) identify the use of purely discrete classification as a method-
ological pitfall, the classifiers in these studies have been optimised (using a grid-search) for
discrete classification. Optimal hyperparameters are different for discrete and probabilistic
classification, and certain discrete classifiers (e.g. SVM) must be specifically calibrated to give
probability-like outputs. As such, only discrete metrics are reported for these studies.

In contrast, Study 3 performs a sequential hyperparameter using k-fold cross-validation with
grouped sampling. The optimised models are then validated externally on a future year of
data. The models are treated as probabilistic classifiers, and are evaluated in terms of their
Cross-Entropy Loss (CEL),6 with the DCA also provided for reference.

Study 3 only evaluates the GBDT model, and does not contain a benchmark LR model. As
such, this study uses the modelling methodology from the paper to additionally estimate a LR
benchmark. The sequential hyperparameter search is repeated twice for each classifier (GBDT
and LR), once using trip-wise sampling and once using grouped sampling, in order to obtain

6The CEL is equivalent to the negative log-likelihood - in ML it is typically normalised by diving by the size of
the dataset to allow comparison between different dataset sizes.





             




two different model specifications for each classifier. Each optimised model is then validated on
the same external sample. Both the cross-validation results and external validation results can
therefore be compared, alongside the identified hyperparameters for each classifier.

All of the classifiers for all studies are implemented in Python, using scikit-learn, xgboost, and
hyperopt.

4.1.1 Study 1

Five classifiers are implemented from Study 1: (i) LR (referred to as Multinomial Logit (MNL)
in the paper), (ii) SVM, (iii) RF, (iv) AB, and (v) GBDT. The NL, fusion models, hybrid
models, and feature selection methods are not tested. Reliable results are not found for the NB
model, which is among the worst performing classifiers in Study 1, and so this classifier is also
omitted.

The authors of the original paper use grid-searches to identify optimal hyperparameters for each
classifier. However, the selected hyperparameters for each algorithm are not given in detail in
the paper, with only certain hyperparameter values specified. Furthermore, the search spaces
for the grid-searches are not specified and so it is not possible to repeat them. The analysis in
the original paper makes use of the python library scikit-learn. As such, hyperparameters from
the original paper are used where given, otherwise the default hyperparameter values for each
classifier from scikit-learn are used. Full details of the hyperparameters used in this study for
each classifier are given in Table 12 in Section A.1.

The authors do not mention whether features are normalised prior to model fitting. This should
be applied for models which measure distances between points (e.g. SVMs) or apply spatial
regularisation (e.g. L2 regularisation in LR). For this study, standard normalisation (zero-mean,
unit-variance) is applied to the input features for the LR and SVM classifiers. EL methods based
on DTs are scale invariant, and so scaling is not applied for these classifiers.

Five-fold cross validation is used to evaluate the models in terms of the DCA, following the
methodology used in the original paper. As the proposed models are only evaluated as discrete
classifiers in the paper, only discrete metrics are reported in this study. The cross-validation is
repeated using trip-wise and grouped household-wise sampling.

The paper has a further pitfall in the methodology, in that the modelling makes use of variables
which are dependent on the mode choice in the feature vector. This includes the recorded





             




trip duration and recorded trip expenses from the travel survey. The recorded duration and
expenditures are both included explicitly as separate features in the dataset. The recorded
duration is also implicitly included through the inclusion of both the arrival and departure times
(i.e. the duration can be calculated from these values). This is a methodological pitfall, as the
duration implicitly provides the model with the achieved speed of the trip (distance divided
by duration), which is highly correlated with the mode choice (see Hillel et al. (2021-03-01)),
and the recorded expenditure can easily be used to differentiate trips made by free modes (e.g.
walking) from paid modes (e.g. public transport). Furthermore, these variables could not be
known in advance of a trip being made, and so classifying based on these variables represents
mode identification from the recorded data (as is frequently applied to GPS data where the travel
mode is unknown) and not mode choice prediction. As such, the experiments for this paper are
repeated twice; once using the original data from the paper, and once using a corrected set of
features with the reported duration and departure times omitted.

4.1.2 Study 2

Six classifiers are implemented from Study 2: (i) LR (referred to as MNL in the paper), (ii) SVM,
(iii) ANN (iv) glsgbdt (referred to as boosting in the paper), (v) bagging, and (vi) RF. Reliable
results are not found for the NB model, which is among the worst performing classifiers in
Study 2, and so this classifier is omitted.

The authors of the original paper use grid-searches to optimise the hyperparameters for each
classifier. The search spaces and selected hyperparameters for the algorithms are given as
supplementary material to the paper. However, only some hyperparameters are optimised, and
values for the other hyperparameters are not given. The analysis in the original paper makes
use of the R package caret to interface with the following packages: nnet, klaR, ipred, e1071,
randomForest, and gbm. For the scikit-learn implementation in this study, hyperparameter values
from the original paper are used where specified, otherwise hyperparameter values are chosen to
match the default parameters from the respective R library. Full details of the hyperparameters
used in this study for each classifier are given in Table 13 in Section A.2. An further explanation
of the implementation of the LR and ANN classifiers is given in Section A.2.1.

The authors do not mention whether features are normalised prior to model fitting. For this
study, standard normalisation (zero-mean, unit-variance) is applied to the input features for the
LR, SVM, and ANN classifiers.

Ten-fold cross validation is used to evaluate the models in terms of the DCA, following the





             




methodology used in the paper. This cross-validation is repeated using trip-wise and grouped
person-wise sampling.

As discussed, the methodology in the original paper uses a combined over/undersampling scheme
to compensate for the imbalanced data by ensuring equal numbers of trips each mode. The
resultant models are only validated on the sampled data using 10-fold cross-validation, and are
never tested on a representative holdout sample. As discussed in Hillel et al. (2021-03-01), issues
with imbalanced data arise from using discrete classification, where the accuracy paradox means
that classifiers are unlikely to predict low probability classes. These issues should therefore
be addressed by using probabilistic classification and proper continuous scoring metrics, such
as the CEL. However, as the proposed models are evaluated only as discrete classifiers in the
original paper, only discrete metrics are reported in this study.

To investigate the impacts of the sampling scheme, the experiments for this study are repeated
twice; once using the over/undersampling methodology from the paper, and once using the
original representative sample. The discrete mode-shares are then investigated for the for the
two sampling schemes.

4.1.3 Study 3

In contrast to the previous studies which use trip-wise sampling and discrete classification,
Study 3 makes use of grouped household-wise sampling and probabilistic classification.

For this study, the GBDT trained on the augmented data is re-implemented (referred to as the
choice-set model in the original paper). In addition, the proposed modelling methodology is also
used to estimate a reference LR model as a comparison. The data are normalised to zero-mean
unit-variance for the LR classifier.

In this study, the final models are tested using external validation on a future year of data. Ten-
fold cross-validation is instead used to select optimal model hyperparameters during Sequential
Model-Based Optimisation (SMBO). As such, for this study, the hyperparameter optimisation is
repeated using both grouped household-wise and trip-wise sampling for each classifier (therefore
obtaining two different sets of hyperparameters for each classifier). The resulting classifiers are
then tested on the external validation sample.

The same search space as the original paper is used for the GBDT model, given in Table 14 in
Section A.3. The search space for the LR model is given in Table 15.





             




4.2 Results

4.2.1 Study 1

The repeated trip-wise results for Study 1 are shown alongside the results from the original paper
in Table 4. Whilst there is relatively close agreement between the scores for the EL classifiers,
the repeated results for the MNL and SVM classifiers are much higher than the original scores.
This suggests features may not have been scaled for these classifiers in the original paper. The
remaining differences in results are likely due to differences in the hyperparameters used; as
discussed, only certain hyperparameter values are specified in the original paper and default
values are used for the remaining hyperparameters (see Table 12). In particular, the default
parameters in scikit-learn for the RF classifier allow the DTs in the ensemble to split until all
leaf nodes belong purely to one class, whereas the GBDT and AB classifiers have maximum
depths of three and one respectively, restricting the flexibility of the ensemble.

Table 4: Trip-wise sampling modelling results (DCA) for 5-fold cross-validation on full dataset
(including durations and expenses) alongside results from original paper for Study 1

Classifier
Original

(trip-wise)
Repeated
(trip-wise)

LR 0.533 0.671
SVM 0.366 0.734
RF 0.804 0.879
AB 0.588 0.615
GBDT 0.778 0.754

The results for grouped (household-wise) sampling using both the full and corrected datasets
are shown alongside the repeated trip-wise results in Table 5. The group-wise sampling results
are lower than the trip-wise sampling scores for all classifiers, showing that the data-leakage
from trip-wise sampling identified in the dataset investigation results in biased performance
estimates. In particular, the DCA scores for cross validation are substantially lower for the
flexible non-linear classifiers (RF, GBDT, and SVM). This shows that these classifiers are able
to easily overfit to the leaked data. The linear LR model and AB model with very shallow
trees are not able to easily overfit to leaked data, and so perform comparatively worse with trip-
wise sampling than their true performance with grouped sampling. As a result of the different
effects of the data-leakage on the classifiers, the relative performance of the classifiers with
the incorrect trip-wise sampling is not a reliable indicator of the performance on the corrected
group-sampling scheme and the rankings of performance in this study are not consistent with
the original paper.





             




Table 5: Grouped (household-wise) sampling modelling results (DCA) for 5-fold cross-
validation on full dataset and corrected dataset alongside trip-wise sampling results for
Study 1

Classifier Trip-wise Grouped
Grouped with
corrected data

LR 0.671 0.639 0.582
SVM 0.734 0.534 0.498
RF 0.879 0.663 0.611
AB 0.615 0.601 0.581
GBDT 0.754 0.619 0.515

The modelling results for the corrected data (i.e. with recorded trip durations and costs removed),
shown in the last column of Table 5, are lower again for all classifiers, showing that all classifiers
were able to fit to the input features which are dependent on the output mode choice.

Overall, the combination, the use of trip-wise sampling and including features dependent on
the mode choice results in heavily biased performance estimates for the flexible non-linear
ML models, with a difference in the reported accuracy of the RF model of over 26 percentage
points between trip-wise sampling with the full dataset and grouped sampling with the corrected
dataset. As such, as shown by Fig. 2, the true differences in performance estimates are much
closer for the different models than is suggested by the original paper. The original results show
a difference of over 27 percentage points between the DCA of the RF and LR models, whereas
this difference is less than 3 percentage points for the grouped sampling results with corrected
and appropriately scaled data.

4.2.2 Study 2

The trip-wise results for Study 2 are shown for the sampled dataset alongside the original results
from the paper in Table 6. There is close agreement between the original results and repeated
results for all classifiers. This suggests that the classifiers have been accurately reimplemented
in this study, and that feature normalisation was used for the LR, SVM, and ANN classifiers in
the original paper.

The results for grouped (person-wise) sampling using the sampled dataset are shown alongside
the repeated trip-wise results in Table 7. As with Study 1, the use of trip-wise sampling on
the panel results in drastically inflated performance estimates for the non-linear EL and SVM
classifiers. The use of grouped sampling results in a reduction of the apparent DCA of the RF
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Figure 2: Comparison of results from original paper (using trip-wise sampling) and corrected
results (using grouped sampling and corrected dataset) for each classifier in Study 1

Table 6: Trip-wise sampling modelling results (DCA) for 5-fold cross-validation on sampled
dataset alongside original results from paper for Study 2

Classifier
Original

(trip-wise)
Repeated
(trip-wise)

LR 0.561 0.578
SVM 0.825 0.799
ANN 0.606 0.613
GBDT 0.801 0.814
BAG 0.906 0.904
RF 0.914 0.914

model of over 30 percentage points compared to the incorrect trip-wise sampling, whereas it has
no discernible impact on the results for the LR model.

The corrected results from this study are shown alongside the results from the original paper in
Fig. 3. As with Study 1, there are much smaller differences in the corrected results compared to
the original paper, with nearly identical performance of the LR and RF models with grouped
sampling, compared to a difference of over 35 percentage points in the original paper. As before,
the rankings of performance are also not consistent between the sampling schemes, with the
GBDT model achieving the highest DCA on the sampled data with the given hyperparameters,
instead of the RF model for the trip-wise data.





             




Table 7: Grouped (person-wise) sampling modelling results (DCA) for 5-fold cross-validation
on sampled dataset alongside trip-wise sampling results for Study 2

Classifier Trip-wise Grouped

LR 0.578 0.577
SVM 0.799 0.452
ANN 0.613 0.609
GBDT 0.814 0.614
BAG 0.904 0.573
RF 0.914 0.583

RF BAG SVM GBDT ANN LR
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1.0

DC
A

Original paper
Corrected

Figure 3: Comparison of results from original paper (using trip-wise sampling) and corrected
results (using grouped sampling) for each classifier in Study 2

Impact of sampling scheme for imbalanced data The grouped sampling results for both
the sampled and unsampled data are shown in Table 8. The results appear to suggest that the
models perform better on the unsampled data, despite there being less data leakage from repeated
trips (see Table 3), though this is in fact a result of discrete classification and the accuracy

paradox; as there is higher class imbalance in the unsampled data, the model can achieve a
higher accuracy by simply predicting the majority class.

To illustrate this further, Table 9 shows the predicted mode shares for the GBDT classifier
(the highest performing classifier with grouped sampling) for both the sampled and unsampled
data. Whilst the accuracy score of the GBDT classifier is higher for the unsampled data, the





             




Table 8: Grouped sampling modelling results (DCA) for 5-fold cross-validation on sampled and
unsampled dataset for Study 2

Classifier
Sampled

data
Unsampled

data
LR 0.577 0.659
SVM 0.452 0.605
ANN 0.609 0.670
GBDT 0.614 0.688
BAG 0.573 0.678
RF 0.583 0.687

mode shares show that this is a result of the model substantially over-predicting car trips, and
under-predicting the less likely modes (in particular public transport).

As shown by Table 9, discrete classification is unable to generate representative mode shares,
even when the data has been sampled to be completely balanced for each mode.7 This shows that
discrete classification is not appropriate for mode choice prediction, or any application where
representivitiy of the output is of importance. Instead, probabilistic classification should be
used with strictly proper scoring metrics such as CEL (Hillel et al., 2018, Gneiting and Raftery,

2007-03).

Table 9: Predicted and true mode-shares and ratios for the sampled and unsampled datasets for
the ANN classifier for Study 2

Sampled Unsampled
Predicted True Ratio Predicted True Ratio

Walk 52 360 57 652 0.908 28 933 37 571 0.770
Bike 62 137 57 652 1.078 51 043 56 298 0.907
PT 42 158 57 652 0.731 5494 9300 0.591
Car 73 953 57 652 1.283 145 138 127 439 1.139

4.2.3 Study 3

The CEL and DCA for the repeated grouped sampling GBDT model are shown alongside the
original results from the paper in Table 10. The cross-validation scores show the predicted OOS

7Whilst results for all classifiers are not given in this paper for conciseness, none of the tested classifiers are found
to give representative mode-shares with discrete classification for either the sampled or unsampled data, and the
GBDT is found to be the highest performing model in terms of predicted mode shares.





             




performance using 10-fold cross-validation with grouped (household-wise) sampling of the
classifiers optimised with a SMBO search also using grouped sampling. The training data (first
two years of data) is used for both the model optimisation and the cross-validation performance
estimation. The external validation results then show the performance of the model with the
hyperparameters identified in the SMBO search with grouped sampling when estimated on all of
the training data and used to predict an unseen future year of data (i.e. data collected separately
from the training data). There is a close agreement between the original results and the repeated
results in this study, suggesting the repeated hyperparameter search has found similar values to
the original paper. This is confirmed by the hyperparameter values for each classifier shown in
Table 16 in Section A.3; the repeated grouped sampling model has matching maximum depth
and a similar number of trees in the ensemble to the original paper. The results in Table 10
indicate that the grouped sampling cross-validation results are a good indicator of true external
validation performance, as there are only small differences (approximately 0.015 difference in
CEL and one percentage point of DCA) between the cross-validation and external validation
results.

Table 10: Grouped sampling modelling results (CEL and DCA) for 10-fold cross-validation and
external validation alongside original results from paper for Study 3

Classifier Validation Metric
Original

(grouped)
Repeated
(grouped)

GBDT
Cross-validation

CEL −0.634 −0.635
DCA 0.759 0.758

External validation
CEL −0.651 −0.651
DCA 0.748 0.748

The grouped and trip-wise sampling results for the GBDT and LR classifiers are shown in
Table 11. An explanation of the grouped sampling results is given above. For the trip-wise
sampling results, the SMBO search is performed using trip-wise validation. As such, the
resultant models have different hyperparameters to the grouped sampling models. The different
hyperparameters are shown in Tables 16 and 17 in Section A.3. Note that the parameters
identified with trip-wise sampling have lower regularisation than with grouped sampling (i.e.
they allow the model to have more flexibility with higher variance and lower bias). For instance,
the trip-wise sampling GBDT model has a much higher maximum depth (13 vs 6) and a greater
number of trees in the ensemble (2547 vs 1446) and the trip-wise LR model has a higher C

value, indicating less regularisation.8 This allows the trip-wise models to more easily overfit to
the data-leakage identified in the dataset investigation.

As with Studies 1 and 2, comparing the grouped and trip-wise sampling cross-validation results
8C is the inverse of the regularisation strength, i.e. the lower the value, the stronger the regularisation.





             




Table 11: Grouped and trip-wise modelling results (CEL and DCA) for 10-fold cross-validation
and external validation for Study 3

Classifier Validation Metric Grouped Trip-wise

GBDT
Cross-validation

CEL −0.634 −0.467
DCA 0.759 0.830

External validation
CEL −0.651 −0.730
DCA 0.748 0.747

LR
Cross-validation

CEL −0.679 −0.676
DCA 0.738 0.739

External validation
CEL −0.693 −0.693
DCA 0.736 0.736

indicates that trip-wise sampling provides heavily biased performance estimates for the highly
non-linear GBDT classifier, whilst having very little visible effect on the linear LR model. This is
confirmed by the external validation results; whilst the differences between the cross-validation
and external validation scores for the GBDT model are small for grouped sampling, they are
much larger for trip-wise sampling.

Further to the bias in performance estimates introduced by trip-wise sampling, the external
validation results reveal that the GBDT model optimised using trip-wise sampling actually
performs worse for true OOS prediction. This shows that using trip-wise sampling during model
optimisation will introduce a bias towards high-variance models (which can overfit to the leaked
data) that perform worse in practice.

As with the previous studies, the performance differences between EL models and the linear LR
model indicated by trip-wise sampling are much larger than the true performance indicated by
grouped sampling.

4.2.4 Summary

As shown by the repeated modelling experiments from each study, trip-wise sampling with
panel data results in significantly biased performance estimates for non-linear classifiers, whilst
having much lower impact on results of linear models. As such, the true performance differences
between non-linear ML classifiers and linear models is much lower when using grouped sampling
than suggested by trip-wise sampling results. This is illustrated by Fig. 4, which shows the
absolute difference in DCA between the highest performing classifier and the linear LR model





             




for each study, using both trip-wise and grouped sampling.
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Figure 4: Apparent absolute performance difference (in percentage points of DCA) between
highest performing classifier* and linear LR model for each study using trip-wise and
grouped sampling.
* Highest performing classifier from original paper for each study: Study 1 - RF,
Study 2 - RF, Study 3 - GBDT.

5 Conclusions

This paper conducts an experimental review of sampling methods for ML model validation,
using the data and methodology of three published studies which investigate ML approaches for
mode choice prediction.

Firstly, the datasets from each study are analysed to identify the proportion of matching trips,
including repeated, return, and shared trips. Monte-carlo simulation of different validation
schemes is used to identify that for all the datasets, trip-wise sampling results in over half of the
validation data having matching trips with the same mode choice in the training data, and for
one dataset this figure is well over 90%. This indicates that there is substantial data leakage from
the training data to the validation data when using trip-wise sampling with panel data, therefore
violating the principle of OOS validation.

The experiments in each study are then repeated using both trip-wise and grouped sampling.
For all three studies, the repeated results indicate that flexible non-linear classifiers, including





             




EL models and SVMs with non-linear kernels, are able to easily overfit to the leaked data from
trip-wise sampling. In the case of two of these studies, this has lead to incorrect conclusions
from the results, with the authors suggesting there are substantial performance benefits (over
20 and 35 percentage points difference in DCA respectively for Study 1 and 2) of non-linear
ML models when compared to RUMs (represented in these studies by the linear LR model). As
identified by a recent systematic review of ML techniques for mode choice modelling, this is a
wide-spread issue, with all included studies which make use of complete trip-diary data using
trip-wise sampling.

As revealed by the grouped sampling and external validation results, whilst there is a slight
predictive performance advantage of non-linear classifiers, and in particular EL models, in
reality the differences are much more modest (< 3 percentage points of DCA for all studies)
than has been suggested by previous investigations.

Two further issues are investigated in this study, (i) the use of input features dependent on output
mode choice, and (ii) the use of discrete classification. These issues are found to introduce bias
to model performance estimates and/or result in incorrect model outputs (e.g. mode-shares).

It is hoped this study will help researchers and practitioners to evaluate the relative advantages
and disadvantages of ML approaches more fairly against traditional RUMs. Whilst the results
may indicate that the advantage in predictive performance of ML classifiers may be more limited
than initially thought, they do also highlight that there is a consistent marginal advantage of
these techniques over linear models across the three repeated studies. From the prevalence of the
issues investigated in this paper in the literature, there is a clear need for a deeper understanding
of how these techniques should be applied. As such, planned further work includes developing
a standardised modelling framework which covers both ML and RUM approaches for choice
modelling.

As a result of the modest predictive performance advantages of ML classification techniques
identified in this study, it is the author’s belief that future studies should focus on how to
use ML methodologies to augment and improve the random-utility approach, for example
through assisted and/or automated utility specification, rather than on replacing RUMs with ML
classifiers.
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Appendices

A Hyper-parameter values

A.1 Study 1

Table 12: Hyperparameters used for each classifier for Study 1

Classifier Parameters

LR LogisticRegression() and StandardScaler()

specified: C=1

default: penalty='l2', dual=False, tol=0.0001, fit_intercept=True, class_weight=None,
solver='lbfgs', max_iter=100, multi_class='multinomial'

SVM SVC() and StandardScaler()

specified: kernel='rbf'

default: C=1.0, gamma='scale', shrinking=True, probability=False, tol=0.001,
class_weight=None, decision_function_shape='ovr'

RF RandomForestClassifier()

specified: n_estimators=100, criterion='gini'
default: max_depth=None, min_samples_split=2, min_samples_leaf=1,

min_weight_fraction_leaf=0.0, max_features='auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True,
oob_score=False, class_weight=None, ccp_alpha=0.0, max_samples=None

AB AdaBoostClassifier()

specified: n_estimators=100, learning_rate=0.1, base_estimator=DecisionTreeeClassifer()
default: algorithm='SAMME.R', max_depth=1

GBDT GradientBoostingClassifier()

specified: n_estimators=100, loss='deviance', learning_rate=0.5
default: subsample=1.0, criterion='friedman_mse', min_samples_split=2,

min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3,
min_impurity_decrease=0.0, min_impurity_split=None, max_features=None,
max_leaf_nodes=None, n_iter_no_change=None, ccp_alpha=0.0





             




A.2 Study 2

Table 13: Hyperparameters used for each classifier for Study 2.
* value is modified to match R default parameters.

Classifier Parameters

LR MLPClassifier() and StandardScaler()

specified: hidden_layer_sizes=(), alpha=0,001, solver='lbfgs'
default: max_iter=100*, tol=0.0001

SVM SVC() and StandardScaler()

specified: kernel='rbf', C=1.25, gamma=0.4, decision_function_shape='ovo'
default: shrinking=True, probability=False, tol=0.001, class_weight=None

ANN MLPClassifier() and StandardScaler()

specified: hidden_layer_sizes=(48,), alpha=0.1, activation='logistic, solver='lbfgs'
default: max_iter=100*, tol=0.0001

GBDT GradientBoostingClassifier()

specified: n_estimators=300, learning_rate=0.2, max_leaf_nodes=49, max_depth=None,
min_samples_leaf=10

default: loss='deviance', subsample=0.5*, criterion='friedman_mse',
min_samples_split=2, min_weight_fraction_leaf=0.0, min_impurity_decrease=0.0,
min_impurity_split=None, max_features=None, max_leaf_nodes=None,
n_iter_no_change=None, ccp_alpha=0.0

BAG BaggingClassifier()

specified: n_estimators=350, base_estimator=DecisionTreeeClassifer(max_depth=None)
default: max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False,

oob_score=False

RF RandomForestClassifier()

specified: n_estimators=450, max_features=3
default: criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1,

min_weight_fraction_leaf=0.0, max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, bootstrap=True, oob_score=False, class_weight=None,
ccp_alpha=0.0, max_samples=None

A.2.1 Study 2 - hyperparameter notes

The LR and ANN models are estimated using the nnet R package in the original study. This
package uses the BFGS optimisation algorithm, and so the equivalent solver (lbfgs) is used in
scikit-learn (Venables and Ripley, 2002). The sigmoid activation function is used for the hidden





             




layer in nnet (Venables and Ripley, 2002), which is referred to as logistic in scikit-learn. The
hyperparameter for weight-decay is equivalent to the alpha parameter for L2 regularisation when
using the BFGS algorithm.

The interaction.depth parameter in the gbm R library specifies the total number of permitted
splits, and is not equivalent to the max_depth hyperparameter in scikit-learn, which limits the
total permitted layers in the tree. As each split in a binary tree adds one leaf node to the tree, and
the tree starts with a single node, the interaction.depth of 48 in gbm is equivalent to a maximum
number of leaf nodes of 49 in scikit-learn

A.3 Study 3

Table 14: Hyperparameter search space for GBDT model for Study 3

Hyper-parameter Distribution Range

max_depth Uniform 1–14
gamma Log-uniform 0–5
min_child_weight Log-uniform (int) 1–100
max_delta_step Log-uniform (int) 0-10
subsample Uniform 0.5–1
colsample_bytree Uniform 0.5–1
colsample_bylevel Uniform 0.5–1
reg_alpha Log-uniform 0–1
reg_lambda Log-uniform 1–4
learning_rate Fixed 0.01
n_estimators See methodology 1–6000
extra_stopping_rounds Fixed 50

Table 15: Hyperparameter search space for LR model for Study 3

Hyper-parameter Distribution Range

penalty Uniform choice L1, L2
C Log-uniform 1e−5–1e5
class_weight Uniform choice None, balanced

solver Fixed saga

multi_class Fixed multinomial





             




Table 16: Optimised hyperparameter values for GBDT for Study 3

Hyper-parameter Original (grouped) Grouped Trip-wise

max_depth 6 6 13
gamma 5.439e−3 2.596e−3 0.03855
min_child_weight 36 26 1
max_delta_step 4 2 9
subsample 0.65 0.5 0.9
colsample_bytree 0.65 0.5 0.55
colsample_bylevel 0.55 0.85 0.8
reg_alpha 4.823e−4 0.3747 0.03022
reg_lambda 2.572 2.4 3.473
n_estimators 1472 1446 2547

Table 17: Optimised hyperparameter values for LR model for Study 3

Hyper-parameter Grouped Trip-wise

penalty L1 L1
C 0.7715 1.228
class_weight None None
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