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Abstract

Since the 70s, there has been a growing interest in activity-based modelling. This approach
models the need to travel as a result of performing daily activities (Bowman and Ben-
Akiva, 2001). Nevertheless, the activities need to be scheduled which involves a lot of
variables and results in a huge number of unique alternatives (Pougala et al., 2021).
Among these variables, the number of possible locations is usually bigger than other
variables, motivating the use of a choice set for locations. However, this choice set of
locations is usually not known by the modeller (Pagliara and Timmermans, 2009), so
there is a need to recreate it. In addition, it would be useful for two purposes: simulation
of daily schedules, and estimation of the parameters of an activity-based model based
on an underlying choice model. For the first one, alternatives in the choice set must be
competitive, to generate realistic schedules, as for the latter one, it should also contain
unlikely alternatives to estimate unbiased parameters. In this paper, a methodology to
generate a choice set of destinations suitable for both purposes is presented. The choice
set is generated with a choice model and can be transformed afterwards to include unlikely
alternatives. The methodology is validated using the 2015 Swiss Mobility and Transport
Microsensus (fédéral de la statistique and fédéral du développement Territorial, 2017)
dataset.





       

1 Introduction

Since the 70s, there has been a growing interest in activity-based modelling. This ap-
proach models the need to travel as a result of performing daily activities (Bowman and
Ben-Akiva, 2001). Nevertheless, prior to performing activities, they need to be scheduled.
The scheduling process for individuals is an important part of activity-based models
and involves a lot of variables. The type of activity, the activity location, the mode of
transport or the activity timing are all examples of variables that an individual considers
in order to schedule their day. Interactions between these components are highly complex.
For example, having access to a car can make a location available that would otherwise
be difficult to reach by public transport; or needing to travel during a congestion peak
could increase the attractiveness of soft modes and closer destinations. In this paper,
an alternative is defined as a combination of the choice of activity, destination, mode of
transportation and timing. Due to the number of variables, the scheduling process is
highly combinatorial and results in a huge number of unique alternatives (Pougala et al.,
2021).

There are two main streams of activity-based models: rule-based models and utility-based
models (Pougala et al., 2020). In the latter one, the scheduling process is obtained by
assuming that individuals take part in activities that maximise their utilities. There is
therefore a choice model with parameters to be estimated beforehand. As mentioned
before, the number of alternatives can be extremely high, which causes problems for the
estimation of the choice model. More specifically, in the context of destinations, the
universal choice set, which is composed of all the possible locations for an activity, is
usually much larger than the ones for other variables like activity type, transportation
mode or discretised timings. Thus, it would be unrealistic and too computationally
expensive to estimate parameters of the activity-based choice model with this set applied
to every individuals. Furthermore, the choice set of individuals, which is made of desti-
nations that an individual is actually considering choosing, is usually not known by the
modeller. For all of these reasons, a choice set is needed when estimating parameters of an
activity-based choice model. In addition, unlikely alternatives should be included in the
consideration set so that the activity-based choice model can capture why the chosen alter-
native is superior to other alternatives. Moreover, this allows to realistically simulate the
scheduling process and to avoid biased parameters (Pagliara and Timmermans, 2009). One
must then reconstruct a choice set that includes competitive and more random alternatives.





       

In this paper, we propose a methodology to rebuild a choice set that is suitable for
estimating parameters of a choice model. Ideally, to reconstruct how individuals build
their choice set as accurately as possible, the relations between the different variables of
the activity-based model should be considered. While it would be very challenging to
estimate everything at once, we propose a new approach to jointly generate a destination
and mode choice set from a trip diary dataset. In doing so, we tackle the problems
associated with estimating a choice model in the context of a utility-based ABM. This
also provides a behavioural interpretation of how an individual generates his choice
set and gives more flexibility than a sequential reconstruction of mode and destination
choice sets. The choice set is obtained by estimating a choice model, which provides a
probability of choosing a destination with a specific mode of transportation. The given
probability distribution is then used to form a choice set through importance sampling of
alternatives. This choice set is composed of destinations linked to a mode of transportation.

The rest of the report is structured as follows: section 2 highlights what has been
undertaken in the literature until now. In section 3, the methodology used to resolve the
problem is presented. The results and discussion of a case study are described in section
4. Finally, a conclusion and the future work are provided in section 5.

2 Literature review

According to Pagliara and Timmermans (2009), there are three important ways to generate
a spatial choice set.

1. a naive way, where all the alternatives are simply enumerated.
2. a deterministic way, where the choice set is derived according to some rules. For

example, the choice set could be constrained in distance and time.
3. a stochastic way, where the choice set is obtained probabilistically. For example,

the spatial choice set can be derived with utility-maximisation principles, where
individuals maximise the utility that they receive when performing activities at
specific locations.

The naive way is generally used in practice only if the number of alternatives is low.
Indeed, if the number of alternatives increases, the computational time also increases, and





       

can quickly become out of control; which motivates the use of the two other ways in order
to generate a choice set.

For the deterministic part, the choice set is usually generated according to some rule-based
algorithms that constrain the destination location to be within a distance or a travel time.
The concept of time-space prism, introduced by Hagerstrand (1970), where the chosen
destination is forced to be within a perimeter of edges defined by the time and distance
from the origin, is vastly used to constrain the choice set of destinations. The Activity
space, which is the area where activities are performed, is also a concept to define the
choice set in a deterministic way. Schönfelder and Axhausen (2003) measured destinations
locations with a geocoded dataset of trips, and showed that they would fall within an
activity space of three different forms: a two-dimensional confidence ellipse, kernel densi-
ties, and an area covered by a buffer around the shortest paths network. Another way to
constrain the choice set destinations is the rubber banding method (Scherr et al., 2019).
Using home and primary activity (work or education) location as anchor points, they as-
sume that a third destination would be situated inside the perimeter of these two locations.

On the other hand, one can also use a stochastic way to generate the choice set. This way
is mostly associated with the utility that one can derive from going to a destination. The
choice set is based on the assumption that individuals consider locations that maximise
their utility. Swait and Ben-Akiva (1987) used the concept of constraints (mode of trans-
portation, income, accessibility, knowledge, social, psychological, ...), but in a stochastic
way. The constraints generating the choice set would be generated randomly. They argued
that some constraints might be well suited for a deterministic approach, such as distance,
but that appears to not be that straightforward for social, informational or psychological
constraints. This idea is extended by representing unobserved constraints or elimination
criteria by indicators that would be derived from the data (Ben-Akiva and Boccara, 1995).
For example, driving alone would be available if and only if the random constraint is
above a threshold defined by the modeller. In this example, the threshold depends on the
number of cars in the household associated with parameters to be estimated. Swait (2001)
argued that the choice-set is taste-driven. He used this assumption to derive the GenL
model, which is a cross-nested logit model. Nests are the different possible choice sets,
and alternatives belong to each nest where they appear. Supplementing the previously
mentioned work, Scrogin et al. (2010) used stochastic efficient frontier analysis to derive a
choice set. Alternatives that would provide a sufficient quality with respect to a certain
level of travel time would be kept in the choice set. Overall, we have to keep in mind





       

that these models have been developed to predict a chosen destination afterwards, in a
specific context (mode choice, shopping location, etc.). Not much work has been done
in the context of activity-based model, and especially not to address the estimation of a
discrete choice model’s parameters.

When using a choice set to estimate parameters, the choice set must contain competitive
alternatives, so that the model captures trade-offs made by choosing an alternative, but
also worse alternatives, so that the model captures why the chosen alternative is more
interesting. When doing importance sampling, i.e. sampling alternatives that are more
likely to be chosen, a correction term in the maximum likelihood estimation must be
added (Bierlaire and Krueger, 2020). This correction term is obtained from the probability
of alternatives to be sampled before the estimation of the model. It considers that the
individual can only choose amongst a reduce number of alternatives. This allows to avoid
biased parameters. The sampling protocol must be defined and the probability to get
the choice set must be calculated, in order to derive the correction term. Frejinger et al.
(2009) is an example of importance sampling to derive the choice set, where a route
choice set is built accordingly to a probability of choosing links that will compose the
route. This probability depends on how far the link diverges from the shortest path.
This sampling protocol allows to compute the correction term due to this alternative
sampling. A method based on the same idea has been used by Pougala et al. (2021) to
generate a choice set of activity schedules. Starting with a given schedule, and using a
Metropolis-Hastings algorithm, several transformations were applied to the schedule, such
as time discretisation, activity assignment and swapping, changes of activity duration
mode or location and a combination of all these changes. The resulting schedules are
accepted according to a probability of acceptance, and the probability to apply these
changes are defined by the modeller, which permits to compute the correction term.

In this paper, we will use a stochastic model to derive a joint choice set of destinations and
mode, by getting a first choice set from a discrete choice model. This allows to perform
importance sampling over alternatives, and spot the one that could be more attractive
to a specific individual. Then we introduce perturbations in the choice set to include
alternatives with lower utility, with the motivations raised in the previous paragraph. The
aim of the project is to use the flexibility of a joint estimation of the destination and the
mode of transportation choice set, while still keeping a balanced choice set, in order to
avoid biased parameters in the activity-based model. Using a choice model should also
give a behaviorally more realistic explanation on the choice of alternatives.





       

3 Methodology

This section presents the methodology used for the model. First, in subsection 3.1, the
behavioural assumptions used are introduced. Then, the problem is formalised in 3.2.
Afterwards, the model framework is presented in 3.3, as well as how to obtain the choice
set from the model in 3.4. The probability to obtain the choice set from the sampling
protocol is also stated down in this section.

3.1 Behavioural assumptions

In order to recreate the choice set of an individual, several behavioural assumptions are
made:

1. Mode and location choices are inherently linked: we assume that mode and
location choices are linked, with the underlying interpretation that the transportation
mode influences the destination choice and vice versa. For example, one could choose
a car to access a destination zone that is easily reached by car but not by public
transport. On the other hand, one could choose a close destination because they
do not have an easy access to car or public transport services. Additionally, this
gives a better flexibility than modelling them sequentially and captures potential
interactions between these variables.

2. The utility derived by the choice of a location, with a transportation
mode, depends on the travel time and some measures of attractiveness
of the zone: we assume that an individual chooses its mode of transportation
and destination according to the travel time, the type of zones (urban, rural or
intermediate), the population and job density of the zone. The underlying inter-
pretation of this assumption is that an individual prefers to minimise the time lost
in transportation. Furthermore, the type of zones and a higher or lower job or
population density would increase or decrease a destination utility and justify a
longer or shorter travel time.

3. Activity choice is given and impacts the utility function: the type of





       

activity is assumed to be given in order to choose the destination and the mode
of transportation. It is also an explanatory variable in the utility function. This
implies that the choice of transportation mode and destination depends on the type
of activity. For example, with an education activity, one would prefer to travel by
public transport but for a shopping activity, a soft mode might be preferred.

4. Alternatives with the same transportation mode are correlated: we assume
that alternatives with the same mode of transportation are correlated. This is
interpreted as a similar comfort or perception of travel time in the same mode.

5. Alternatives are spatially correlated: we define different groups of destinations
where we assume that there is a spatial correlation amongst zones that are in the
same group of destinations. For example, zones that are close to a water plant share
the same advantages such as a swimming possibility or beautiful views.

3.2 Problem formalisation

We adopt a definition of the universal choice set similar to the one in Shocker et al. (1991),
which is the set of all alternatives. Shocker et al. (1991) introduces three others sets; the
awareness set, which consists of the alternatives that are known by the individual, the
consideration set, composed of alternatives that are considered by the individual within
a specific context (point of time, given activity, and so on), and the choice set, which
contains alternatives from the consideration set that are still relevant directly before
making the choice. A choice set is therefore a specific type of consideration set. In this
paper, we generate a choice set of destinations linked to a mode of transportation for
an individual n from a given activity an. We define Z the set of all possible destination
zones z and M the set of all transportation modes available m. There are therefore Z ·M
alternatives in the universal set. We also introduce Cn, the choice set of an individual n
with regard to an activity an. Since this choice set is not fully observed by the modeller,
we introduce a choice set for a given type of activity Ĉn generated for all individuals.
The aim of the methodology is to recreate Ĉn, such that it contains alternatives that are
competing, hence that could potentially be in Cn, and that are less likely to be chosen, so
that Ĉn can be used to estimate the parameters of the ABM choice model. To include
unlikely alternatives, the choice set needs to be transformed with a sampling protocol
such that it is always possible to calculate the probability to obtain it. Finally, we define
P (Ĉn), the probability to obtain the transformed choice set of an individual.





       

Figure 1: Modelling pipeline of the full activity based model

Outlined in orange, the scope of this paper





       

Figure 1 summarises the full modeling pipeline. The first part is to generate a choice set,
with a probability to obtain it. Then, this choice set is used to estimate the parameters of
the activity-based choice model. Finally, the ABM optimises individuals daily schedules.
The scope of this paper is to focus on the first part of the whole process, outlined in
orange.

3.3 Modelling the framework

In order to derive the choice set of an individual n, the utility related to a destination
zone z and a mode of transportation m is defined as follows:

Vzmn = ASCm + βTIMEm · TTzm + βTY PE · Tz + ωwork · βJobDWORK
· JobDz+

ωeducation · βPopDEDU
· PopDz + ωleisure · βJobD−PopDLEI

· (JobDz + PobDz)+

ωshopping · βJobD−PopDSHO
· (JobDz + PobDz) + ωother · βPopDOTH

· PopDz (1)

where in this equation:

• ASCm: a constant for the transportation mode
• β: parameters to be estimated from the dataset
• ω: dummy variable, equal to 1 if the corresponding activity is chosen
• TTzm: travel time from an origin to the zone z with mode m

• Tz: type of zone z

• PopDz: population density of zone z

• JobDz: employment density of zone z

The explanatory variables have been chosen according to the behavioural assumptions
described in subsection 3.1. The relationship between activities and population density
or employment density has been arbitrarily decided. Note that a few combinations have
been tried before arriving to this final utility. It is clear that, with more data, such as the
number of schools and universities per zone, the number of shops per zone or the number
of leisure places per zone, this utility function could be improved.

A cross-nested logit model (CNL) is then used, with this utility specification, with the
aim to develop a probability distribution to choose a zone. The use of a cross-nested
logit model follows the behavioural assumptions. First, it allows to give a behavioural





       

Figure 2: Structure used for the cross-nested logit model

Each alternative belongs to one mode (M) and one group of transportation (Gr)

interpretation of the choice set. Then, the cross-nested structure allows to deal with both
mode correlation and spatial correlation assumptions. This structure can be found in
Figure 2. In this figure, all the alternatives are enumerated, and each alternative belongs
to two nests: one corresponding to its mode (M), and one corresponding to its group of
destinations (Gr). Note that, in this example, there are 3 modes and N zones, which is
why there are 3N alternatives in total.

3.4 Generating the choice set

This section is separated in two parts: in 3.4.1, it is explained how importance sampling
is performed with a choice model, and in 3.4.2, how the choice set is transformed with the
aim to be suitable for parameters estimation. A summary of the whole process is drawn
in Figure 3.





       

Figure 3: Summary of the methodology

3.4.1 Importance sampling

Once the choice model parameters are estimated, importance sampling can be performed
over all alternatives by using the probability distribution obtained from the choice model.
From Ben-Akiva et al. (1985), if the error term follows an extreme value distribution i.i.e.,
with ϵ ∼ EV (µ, 0), the probability to choose alternative i for an individual n with the
logit model is:

Pn(i|Cns) =
eµVin∑

j∈Cns
eµVjn

(2)

And for the cross-nested logit model, with K nests, we have:

Pn(i|Cns) =
K∑
k=1

α
µk
µ

ik eµkVin∑
j∈Cns

α
µk
µ

jk e
µkVjn

(
∑

j∈Cns
α

µk
µ

jk e
µkVjn)

µ
µk∑K

p=1(
∑

j∈Cns
α

µp
µ

ik eµpVjn)
µ
µp

(3)

Where:

• αjk: degree of membership of the alternative j to the nest k, must be between 0
and 1.

• µk: scaling parameter of the nest k. This parameter comes from the correlation
amongst alternatives in the same nest and must be greater than one.

• µ: parameter of the extreme value distribution.
• Vjn: deterministic utility of alternative j for an individual n.
• Cns: choice set where alternatives can be sampled from. It represents which

alternatives are available to an individual.

Note that in all these formulas, µ is normalised to 1, and α = 1
2
. If we assume that all the

alternatives are available to anyone, the probability to draw the choice set of size N with





       

important sampling is:

PIS(Ĉn) =
ΠN

j=1Pn(j)

ΠN−1
j=1 (1−

∑j
l=1 Pn(l))

(4)

In the above formula, the upper part represents the probability to draw alternatives in
the choice set, according to the probability distribution of the corresponding choice model.
The lower part comes from the fact that alternatives cannot be replaced, meaning that
the probability distribution needs to be re-normalised after each draw.

3.4.2 Perturbation of the choice set

From section 2, we have seen that the choice set needs to be transformed to include
unlikely alternatives. Practically, this is done in two different ways. First, by adding a
random term in the computation of the probability distribution, which leads to a different
importance sampling. Second, by transforming the choice set with 3 operations, occurring
with a probability defined by the modeller. The 3 transformations considered are to add
a random alternative, to swap the transportation mode and/or to change the zone of an
alternative to a neighbouring one.

The probability to get the choice set with a random term is the same as in equation 3
and 4, but with different values of the utility. For the second technique, we have:

• Adding random alternatives: if there is a number of zones Z and modes M , and
the size of the choice set is N , the probability to add an alternative j which is not
in the choice set Ĉn is Padd(j) =

1
Z·M−N

. Note that if we want to add an alternative
from a specific nest of size Zk and Mk, the probability is Padd(j) =

1
Zk·Mk−Nk

, where
Nk is the number of alternatives belonging to the nest already in the choice set.

• Swapping the transportation mode: if there are M transportation modes, and
the choice set Ĉn is of size N , then the probability to swap the mode of transportation
of an alternative is Pswap(j) =

1
N

1
M−1

, where the first part is the probability to select
this specific alternative in the choice set, and the second the probability of choosing
another mode of transportation. Note that this transformation is only valid if and





       

only if the resulting alternative is not already in the choice set.
• Changing the zone to a neighbouring one: if the alternative j has Neij

neighbouring zones, the probability to change a zone is Pchange(j) :
1
N

1
Neij

. Note that
this transformation is only valid if and only if the resulting alternative is not already
in the choice set.

These transformations happen with a probability defined by the modeller. If these
probabilities are respectively padd, pswap, pchange, we can define the probability of a
transformation t for alternative j:

Pt(j) =


paddPadd(j) if t = add

pswapPswap(j) if t = swap

pchangePchange(j) if t = change

Finally, we can compute the probability to obtain the transformed choice set Ĉn after T

transformations, which is:

P (Ĉn) = PIS(Ĉn) · ΠT
j=1Pt(j) (5)

Note that the chosen alternative must be part of this choice set, but it does not modify
the probability to draw the choice set. Indeed, if the chosen alternative is in the choice
set, nothing more needs to be done. If it is not in the choice set, we add the chosen alter-
native with a probability equal to 1, which gives the same probability to draw the choice set.

4 Case study

In this section, a case study on Lausanne, Switzerland is conducted. First, simplifying
assumptions are presented in 4.1, and details on the dataset used to estimate the cross-
nested logit model are shown in 4.2. The results of the parameters estimation, as well as a
specification testing of the cross-nested logit model against the logit model are conducted
in 4.3 and 4.4. Then, a choice set is obtained in 4.5 and a sensitivity analysis on the
choice set perturbation is presented in 4.6. Finally, a schedule is generated in 4.7 and
assumptions are discussed in 4.8.





       

4.1 List of assumptions

Assumptions used to simplify the model implementation are listed and explained. Their
impact on the model, and some ideas to relax them will be discussed in section 4.8.

1. Zones with the same mode of transportation share the same alternative
specific constant: this assumption is made to avoid the number of parameters to
explode. Indeed, there is only 3 modes of transportation, while the number of zones
can be substantially larger.

2. All modes and destination zones are available to everyone: we assume that
every individual has access to a car, to public transportation and can walk or bike
to any destinations.

3. Destinations are zones: defining location as an area (zone) instead of a point
location is not a loss of information.

4. Soft modes include biking and walking: in order to avoid the number of
transportation to be too large, we regroup walking and biking in the same mode of
transportation, where we assume that their utility does not differ significantly.

5. Soft modes travel time is derived from the car travel time: the soft modes
travel time is not available from our data. Therefore, it is assumed that soft modes
travel time is colinear to car travel time.

6. Public transport mode includes rail, bus, tramway and postal bus: we
assume that all these modes have a similar impact on the utility, so we regroup
them in one transportation mode, allowing to reduce the number of alternatives and
increasing the number of trips from the dataset for this mode of transportation.

7. Trips made by car, motorbike, or being a car passenger, or a motorbike
passenger are all seen as the car transportation mode: again, we assume
that trips made by these different modes are not significantly different, allowing for
more trips in the database and less complexity in the model (because the number of
transportation modes is lower).

8. The error term is assumed to be random following an extreme value
distribution: this assumption allows to estimate the difference between individuals
that cannot be captured by the model.

9. Population density and jobs density are used instead of absolute values:
since zones are of different sizes, the density is assumed to represent the attractivity
of the zone in a better way.





       

4.2 Dataset

Data used for this project comes from three main sources.

1. The 2015 Swiss Mobility and Transport Microsensus (OFS and ARE, 2017) dataset,
which is a trip diary dataset containing more than 100000 trips from about 50000
households in Switzerland. This dataset is mainly used to estimate parameters from
the cross-nested logit model. For the case study, only trips with Lausanne as a
destination and one of the mode of transportation and activity mentioned in section
3 are kept. After this pre-processing, there are 3536 trips left for the estimation of
parameters.

2. Destination zones are the ones defined by the Swiss government (VM-UVEK, 2019).
Switzerland is divided in approximately 8000 zones, with 88 in Lausanne, which
will be used in this case study. They are shown in Appendix C. This dataset also
provides the type (rural, intermediate, urban) of each zone, which is used in the
utility function.

3. Zone-to-zone travel time and distance, as well as some attractivity measures of zones,
such as the population or job density, and the accessibility of each zone are provided
by the SBB. Zone-to-zone distance was used to convert it as an estimation of the
cost of each trip. However, after analysis of the cross-correlation of these features,
the cost, as well as the zone accessibility, are dropped due to their cross-correlation
with travel time (see Figure 4). Note that the travel time (which is given in minutes)
is scaled down by a factor of 10, in order to keep values around 1 for the parameters
estimation. The distance between zones is calculated from MATSim data. In
MATSim, distances are computed between two points. Therefore, to compute the
distance between zones, 5 random points per zones are taken. To calculate the
zone-to-zone distance, the mean of all point-to-point distances is taken.

4.3 Parameters estimation of the cross-nested logit model

Parameters are estimated with trips from the 2015 Swiss Mobility and Transport Microsen-
sus (OFS and ARE, 2017 2017), that have a destination in Lausanne. They can be seen in
Table 1. Destinations have been separated into three groups that are shown in Appendix
C. Note that the alternative specific constant of soft modes (ASCact), MUact, the scaling
parameter associated to the soft modes nest, and βTY PE have been normalised to 1 since





       

Figure 4: Cross-correlation matrix of different zones features

they were not significant in previous estimations. Also, the estimation of parameters has
been done using the biogeme package on python (Bierlaire, 2020). We observe that all
the parameters have a significant p-value with a 95% level of confidence. However MUcar,
the scaling parameter of the car nest, is not significant according to its robust p-value.
We observe that the value associated with this parameter is quite high (7.06) and with
a big standard error (2.89). An explanation on why this parameter is not significant, is
the number of trips to estimate parameters of the model. There are less than 1316 car
trips, with 276 alternatives, and car trips can be more diversified than public transport
trips (where they usually follow public transport network). The other nest parameters
are all in a similar range (between 1.63 and 2.05), implying some correlation between





       

alternatives of the same nest. We observe that both car and public transport alternative
specific constant are negative, which means that with everything being zero, soft modes
are the preferred ones. The impact of the job density is positive for the working activity,
meaning that a zone with a higher job density is more likely to be chosen for a working
activity. The same observations are made for a shopping activity, where both job and
population density increase the chance of a destination for a shopping activity. On the
other hand, the population density decreases the utility of a zone with an education,
leisure or other (such as escort children or people with a disability) activity. This implies
that these activities are usually performed in zones that have less inhabitants. Finally,
the impact of travel time is always negative on the utility, which can be interpreted as
further destinations being less attractive.























Table 1: Parameters of the cross-nested logit model

Name Value Std err t-test p-value Rob. Std err Rob. t-test Rob. p-value
ASC_c -1.99 0.127 -15.7 0 0.118 -16.8 0
ASC_pt -1.73 0.166 -10.5 0 0.19 -9.12 0
B_JobD_PopD_SHOP 0.00712 0.00203 3.5 0.00046 0.00334 2.13 0.0328
B_JobD_WORK 0.00335 0.001 3.34 0.000842 0.00136 2.48 0.0133
B_PopD_EDUC -0.0251 0.00591 -4.24 2.19e-05 0.00576 -4.36 1.29e-05
B_PopD_LEIS -0.0189 0.00289 -6.55 5.66e-11 0.00291 -6.51 7.32e-11
B_PopD_OTHE -0.0178 0.00424 -4.2 2.63e-05 0.00475 -3.75 0.000174
B_TIME_act -0.537 0.0107 -50.1 0 0.0124 -43.3 0
B_TIME_c -0.457 0.0595 -7.69 1.49e-14 0.0818 -5.59 2.21e-08
B_TIME_pt -0.327 0.0429 -7.61 2.84e-14 0.0589 -5.55 2.91e-08
MU_CAR 7.06 2.89 2.44 0.0146 4.99 1.41 0.157
MU_CENTER 1.66 0.132 12.6 0 0.118 14.1 0
MU_EAST 2.05 0.223 9.18 0 0.186 11 0
MU_PT 1.63 0.296 5.51 3.5e-08 0.433 3.76 0.00017
MU_WEST 1.98 0.209 9.48 0 0.177 11.2 0





       

4.4 Specification testing of the CNL model

A simple joint logit model has been estimated (the result of the estimation are in Appendix
B), and we will test the cross-nested logit model according to a log likelihood ratio test,
with a 95% confidence interval. The log likelihood of the logit model Llogit is -16755.54
and the one from the cross nested logit model Lcn−logit is -16732.25. To obtain the null
hypothesis H0, we first need to set the alphas to 1 or 0, which transforms the cross-nested
logit in a nested logit model. Then, the nest parameters must be equal to 1, which means
that MUCAR = MUPT = MUEAST = MUCENTER = MUWEST = 1, which transforms the
nested logit model to a simple logit model. Since no alphas were estimated, we have 5
less parameters in the null hypothesis, which leads to a degree of freedom of 5 and a χ2

value of 11.07 for a confidence interval of 95%. The likelihood ratio test is:

LR = −2(L0 − L1) = −2(Llogit − Lcn−logit) = −2(−16755.54 + 16732.25) = 46.58 (6)

LR = 46.58 > χ2(95%, 5) = 11.07 (7)

Therefore, we can reject the null hypothesis at a 95% interval of confidence.

4.5 Choice set considerations

In this section, we present an example of a choice set, and the probability distribution
associated to the cross-nested logit model for a household located in the western part of
Lausanne and a working activity. The probability distribution (Figure 5) indicates that
there is a higher chance to choose a zone next to the household location with soft modes.
However, the distance has a strong impact (a figure of the distance distribution can be
seen in Appendix A), and zones that are further away from the household location are
not likely to be chosen. With driving, we observe that the probability to choose a zone is
not significantly different. This unveils that a car gives a good accessibility to most of
the zone in Lausanne, and is quite independent of the travel time. Finally, with public
transport, zones that have a higher chance to be chosen are less homogeneous. This comes
from the public transportation network, giving a better accessibility to zones that are
served with subways and bus lines than others.





       

Figure 5: Probability distribution of choosing a zone

From the probability distribution shown in Figure 5, we draw a choice set of 15 alternatives.
It is shown in Figure 6. We find a similar distribution as to what was previously observed
in the probability distribution. First, zones that are accessed by soft modes, are zones
close to the household. Then, zones accessed by driving seem to be evenly distributed.
Finally, zones accessed by public transport appear to be on bus lines, and closer to the
city center.

Using the choice set in Figure 6, we show an example of how we can include unlikely
alternatives. Here, we apply 10 transformations, with the same probability to be chosen
for an addition of alternative, a swap of transportation mode, and a change of zone to a
neighbouring one. This results in 5 changes of mode of transportation, 3 swap of zones,
and 2 random addition of alternatives. The new choice set can be observed in Figure 7.
While the choice set is still similar to the one observed in Figure 6, some new and less
likely alternatives are introduced.

Finally, using the same activity and household location, a perturbed choice set is drawn
with a random term in each utility function. The random term is normally distributed,





       

Figure 6: An example of a choice set after importance sampling

Figure 7: An example of a choice set after being transformed

centered around 0 with a scale of 1. The obtained choice set can be seen in Figure 8.
Alternatives chosen are mostly different than the ones chosen in Figure 6 and 7, which
implies that they would be less likely alternatives. However, it is difficult to assess on how
much it differs. A deeper analysis will be conducted in 4.6.

Figure 9 compares the mode shares obtained from the MTMC dataset, the probability
distribution and the choice sets generated. Note that this comparison is only done for
the working activity. Mode shares in the MTMC are not the same depending if the trip





       

Figure 8: An example of a choice set with a random term in each utility function

purpose is a working activity or not. We observe that they are not following exactly the
one from the Microsensus, but this can be explained by the household location, being far
away from the city center and, therefore, reducing the attractiveness of soft modes (since
the number of job locations is higher in the city center). The proportion of alternatives in
the choice set is not following the probability distribution due to the stochastic phenomena
of importance sampling. If we were to draw a higher number of choice sets, and take the
mean of their mode shares, the result would be much closer to the one from the probability
distribution. We note that the transformations of the choice set take them even further
away from the probability distribution, but that the random term gives much more similar
proportions.

4.6 Sensitivity analysis and validation of the choice set

Since the choice set of individuals is not known, it is very difficult to assess the quality
of a choice set. Nevertheless, the observed choice of individuals is in the dataset. In
order to perform a sensitivity analysis, we make the assumption that the aggregate value
of individuals choice sets should follow the same distribution than the distribution of
chosen alternatives in the dataset. Ideally, we would need to record the choice set of
individuals beforehand, and use this distribution for the comparison. Practically, we draw
a thousand choice sets of 10 alternatives, for random household locations in Lausanne,





       

Figure 9: A comparison of mode shares

and calculate the final distribution of alternatives from the choice sets. This is done for all
5 activities, and for 3 different types of draws: importance sampling with no perturbation,
importance sampling with some transformations, importance sampling with a random
term. For the second one, three different numbers of transformations are applied, and
for the last one, it is a normally distributed random term with three different values of
σ. Note that for the transformation part, a change of zone, a swap of transportation
mode and an addition of a random alternative have all the same probability to hap-
pen. To compare values in an aggregate way, the mean absolute error (MAE) is taken
between each calculated distribution, and the one from the MTMC. Results are on Table 2.

Overall, the mean absolute error is the lowest with no perturbation, and increases almost
always with the perturbation increasing. It means that if the perturbation increases, the
choice set is more likely to include alternatives that are less chosen in the MTMC, hence





       

Table 2: Sensitivity analysis on the choice set perturbations

Type of draw Parameters
value

Work Education Shopping Leisure Other

MAE Comput.
time [s] MAE Comput.

time [s] MAE Comput.
time [s] MAE Comput.

time [s] MAE Comput.
time [s]

No perturbation - 0.263 40.991 0.426 43.343 0.365 43.183 0.247 43.770 0.308 43.519

With
transformations

10 transfo. 0.341 46.403 0.488 45.101 0.419 44.986 0.339 45.514 0.403 44.741
15 transfo. 0.350 45.576 0.487 46.042 0.436 45.770 0.353 45.552 0.404 45.555
20 transfo. 0.373 46.167 0.498 46.572 0.446 46.099 0.376 46.370 0.427 46.588

With a random
term

Sigma = 1 0.317 44.006 0.465 44.016 0.385 44.492 0.296 43.756 0.350 43.850
Sigma = 2 0.357 44.514 0.471 43.769 0.407 44.437 0.322 44.494 0.388 44.033
Sigma = 5 0.404 44.650 0.499 43.623 0.451 43.895 0.375 44.400 0.431 44.191

Table 3: Sensitivity analysis on transformations

Type of
transformation

Work Education Shopping Leisure Other

MAE Comp.
time [s] MAE Comp.

time [s] MAE Comp.
time [s] MAE Comp.

time [s] MAE Comp.
time [s]

No transformation 0.263 40.991 0.426 43.343 0.365 43.183 0.247 43.770 0.308 43.519
All transformations 0.350 45.576 0.487 46.042 0.436 45.770 0.353 45.552 0.404 45.555
Only addition of
an alternative 0.466 44.021 0.542 50.533 0.506 47.780 0.464 46.609 0.509 46.967

Only change of
transportation mode 0.251 49.536 0.413 46.701 0.356 54.303 0.245 46.721 0.320 46.873

Only swap of zone
to a neighbour 0.254 46.745 0.425 47.190 0.372 47.210 0.254 46.443 0.320 47.348

less likely alternatives. Except for a working activity, introducing a normally distributed
random term with a σ = 5 seems to perturb the choice set as much as applying 20
transformations. But the perturbation with a random term is faster, by 2-3 seconds, than
applying 20 transformations. Note also that changing σ does not significantly change
the computational time, where applying more transformations increase computational
time. Therefore, perturbing the choice set with a random term seems more suitable than
applying simple transformations.

A deeper sensitivity analysis is conducted on the type of transformation, where each
transformation is compared to both no transformation and all transformations at the same
time. Results are shown on Table 3. We observe that 15 additions of random alternatives
give a choice set with worse MAE for all activities. Changing the transportation mode
or swapping a zone to a neighbouring one leads to a similar MAE as if there was no
transformation. We conclude that only adding random alternatives successfully perturbs
the choice set, whereas other transformations are not strong enough. For computational
time, there are no significant tendencies that can be identified, except that it is almost
always worse than applying the three transformations at once.





       

4.7 Schedule generation

To give an example of the full modelling pipeline (see Figure 1), we will generate schedules
using the CNL model estimated previously. Note that the step 2, which is estimating the
activity-based choice model parameters will not be done, due to computational limitations.
The ABM used to generate the schedule is the one defined in Pougala et al. (2021), which
optimise schedules, with respect to their utility, defined as:

US = U +
A−1∑
a=0

(U1
a + U2

a + U3
a +

A−1∑
b=0

(U4
a,b + U5

a,b)) (8)

where in this equation, there are A activities, and:

• U: a generic utility.
• U1

a : utility associated from the activity participation.
• U2

a : utility associated with the starting time of the activity.
• U3

a : utility associated with the activity duration.
• U4

a,b: utility associated with the trip from the location of a to the location of b, but
without considering travel time.

• U5
a,b: utility associated with the travel time from the location of a to the location of

b.

For the generic utility, and utility 1 to 4, the parameters are left untouched. Here, we
make the implicit assumption that these parameters would not be significantly different
if we re-estimate them with a choice set. This assumption is made mainly because of
computational purposes, since estimating an activity-based choice model involves a lot
of variables, and is therefore computationally very costly. On the other hand, U5

a,b is
replaced by the utility described in section 3.3, with the parameters estimated from the
CNL model (see section 4.3):

U5
a,b = V 5

a,b = Vzmn (9)

Note that the utility is scaled down by a factor of 10, in order to keep a similar weighting
than in the initial utility of schedules. Finally, to avoid long computational times, the
ABM has been run with a choice set of 10 alternatives, for each activity. These choice
sets have been generated with importance sampling, as in section 3.4.1. They are stated
down in Appendix D.2. Note that the choice set is different for each activity (since it is
an exogenous variable in the utility function), and that it does not need to be perturbed,





       

Figure 10: Final schedule for Alice

Figure 11: Final schedule for Brian

because it is not used for parameters estimation. Also, for simplicity, the chosen alternative
is not added in the choice set, since most of activity destinations were not in Lausanne.
In the ABM, schedules have been optimised for 5 iterations.

Schedules have been generated for two different individuals, who will be called Alice and
Brian. Their initial schedules from the MTMC, as well as their preferences, are shown in
appendix D.1. For more informations about how the preferences were chosen, we refer to
Pougala et al. (2021). Their schedules after optimisation are drawn in Figure 10 and 11.
For Alice, we observe that she is going by public transport to her education and leisure
activities. For the education, a destination in the city center of Lausanne (zone 52, see
Appendix C) is chosen. The choice seems suitable, since there are various types of schools
in this zone. The leisure destination is in the northern area of Lausanne (zone 27, see Ap-
pendix C), in the forest of Sauvabelin. On the other hand, Brian preferred to stay at home.
We can imagine that he did his education activity online, and canceled its shopping activity.

If we compare the computational time between Alice and Brian in Table 4, we observe a
huge difference. This might be due to one more mandatory activity to do for Alice, which
increases the number of potential alternatives. Indeed, there are 20 alternatives for the
morning and afternoon education activities, and 10 alternatives for the leisure activity. In





       

Table 4: Summary of schedules generation

Number of
alternatives
to choose from

Number of activities
initially

Number of activities
in the final schedule

Computational
time [hours]

Alice 34 7 4 7.089
Brian 23 5 2 0.176

addition, there are the 4 initial home activities. This larger number of alternatives could
mean that the computational limits of the computer (8Go of RAM memory, 4-core at
1.8GHz processor) have been reached. Otherwise, we observe that the number of activity
to perform is lower than the one schedules originally, meaning that the utility to perform
an activity can be more costly than doing nothing.

4.8 Discussion of assumptions

In this subsection, we estimate the impact of the assumptions (see section 4.1) on the
model. In other words, how strongly these assumptions can cause the model to be wrong.
We also provide an estimation on the complexity surrounding their resolution, meaning
how easily we could relax these assumptions, with some suggestions on how to achieve it.
Typically, a high complexity to resolve assumptions requires to collect various data within
the population, or, alternatively, to have a big computational power. A low complexity
means to adapt the methodology which is achievable but requires some implementation
time. Table 5 summarises this.























Table 5: Estimation of the impact on the model of assumptions and complexity to resolve them

Assumption
(see Section 4.1)

Impact on
the model Why does it impact the model Complexity

to resolve Idea to resolve

1 Medium Unique informations about zones
cannot be captured Medium Unique ASC for all alternatives,

but it requires a high computational power

2 Medium
While this assumption is very wrong,
it might only concern a minority of trips,
which mitigates its impact

Medium
Addition of some rules, such as car licence
or owning a car for car availability, or to limit
travel time to zones over a specific threshold

3 Low From the literature, it is possible to rebuild
a point location afterwards Low Rebuild the point destination after computing zones

in the choice set

4 Medium
While this assumption can be valid for short
range trips (less than 1km), it becomes harder
to justify it for mid range trips (1-5km)

High Collect informations about biking and
walking travel time as well as biking availability

5 High This could be very wrong,
especially in a urban context High Collect data about the actual travel time

with soft modes

6 Low
Travelling time and comfort of
these different transportation modes are
not significantly different

High
Travelling with public transport
often includes several modes of transportation.
Detailed data about trips would be needed

7 Medium Travel time is not substantially different,
but the comfort can change High Separating these modes would require more data

and would increase the number of alternatives

8 Low Allows to compute probability of
choosing alternatives Medium Increase model complexity

9 Low Smaller zones attractivity is
shown in a better way Low The results with density have shown to be significant





       

Assumption 14 has been dealt with by performing a specification testing that shown the
significance of using a CNL model. Assumptions 1, 2, 3 and 8 could be dealt with assuming
that one has big computational power available, and more time. For assumptions 4, 5, 6
and 7, it would require to collect more data, which is a burdensome task.

5 Conclusion and further work

In this paper, we have shown a way to generate a choice set of destinations, jointly with
the transportation mode. By estimating a cross-nested logit model first, and then perform
importance sampling, we could obtain a choice set for an individual, given the origin of
the trip and the activity performed. We have also provided the probability to compute
the choice set. This probability is crucial if the choice set is then used to estimate a choice
model. It allows to correct the maximum likelihood estimation to avoid biased parameters.
A case study over the city of Lausanne, Switzerland has been conducted. This showed
how to draw an example of a choice set and how to transform it. The sensitivity analysis
revealed that perturbing the choice set with a normally distributed random term leads
to better results than with simple transformations. Parameters of the cross-nested logit
model have been reused to modify the ABM defined by Pougala et al. (2020), and generate
schedules with the methodology. While deeper investigations would be needed, we could
still observe the trade off that an individual do when scheduling activities, especially the
cost from travelling.

While we have shown examples of the methodology in the case study, future work could
be conducted in order to validate the cross-nested logit model on a larger scale, and the
schedules that are generated. This might be done by finding the same distribution of
activities, as in the Microsensus dataset. Deeper investigation could be conducted to
compare the transportation mode and destination shares obtained with this methodology
and the one observed in the data, over Switzerland. This would require to adapt the
methodology with some rules, so that the computational time is reasonable.

Additionally, further work could be done to tackle some of the assumptions mentioned in
section 4.1 and 4.8. Special attention could be put on the variables of the utility function,





       

by investigating the addition of other variables. For example, we could add a proper
trip cost, trip comfort, or having a travel time that depends on a congestion level. With
unlimited resources, we should also collect data about the number of schools or universities
per zone, as well as the number of shops, in order to combine them to an education or
shopping activity. Additionally, with better computational resources, activities could be
jointly estimated in the cross-nested logit model, and more variables in the model could
be added, such as alternative specific constant for each alternative.

Finally, in the case study, the activity-based choice model has not been re-estimated. The
bias coming from the choice set are considered with a random parameter in the model.
Ideally, one should re-estimate the model with the generated choice set as input, and
with a correction to the likelihood estimation. Since the choice set probability can be
computed, the parameters of the activity-based choice model could be re estimated if the
computational resources are sufficient.
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A Distance distribution

Figure 12 shows the zone-to-zone distance distribution from the household location used
in section 4.5.

B Logit model parameters

Table 6 shows the value of parameters estimated in the Logit model.

Table 6: Logit model parameters

Name Value Std err t-test p-value Rob.
Std err

Rob.
t-test

Rob.
p-value

ASC_c -3.88 0.0721 -53.8 0 0.0785 -49.4 0
ASC_pt -2.66 0.129 -20.7 0 0.135 -19.8 0
B_JobD_PopD_SHOP 0.0174 0.00189 9.21 0 0.00176 9.92 0
B_JobD_WORK 0.00759 0.00161 4.72 2.37e-06 0.00173 4.39 1.11e-05
B_PopD_EDUC -0.0371 0.00871 -4.26 2.05e-05 0.0081 -4.58 4.59e-06
B_PopD_LEIS -0.0281 0.00403 -6.96 3.42e-12 0.00424 -6.62 3.68e-11
B_PopD_OTHE -0.0313 0.00641 -4.88 1.04e-06 0.00625 -5.02 5.29e-07
B_TIME_act -0.592 0.0119 -49.9 0 0.0142 -41.6 0
B_TIME_c -0.733 0.0419 -17.5 0 0.0451 -16.3 0
B_TIME_pt -0.525 0.0276 -19 0 0.028 -18.7 0

C Group of destinations and their index

Figure 13 shows the index number of zones, as well as how they are grouped for the
cross-nested logit model.





       

Figure 12: Zone-to-zone distance distribution





       

Figure 13: Destinations by group and with their index





       

D Original schedules and choice set for Alice and Brian

D.1 Original schedules























Table 7: Initial schedules and preferences of Alice

Activity
number

Activity
label Label Start

time
End
time Duration Feasible

start
Feasible
end Location Categories Flex

early
Flex
late

Flex
short

Flex
long

1 home dawn 0 8.25 8.25 0 24 (46.6033, 6.67643) discret F M F F
2 education education1 8.33 12 3.63 7 23 (46.6014, 6.68191) mandat R R R M
3 home home1 12.2 13.2 1.08 0 24 (46.6033, 6.67643) discret F M F F
4 education education2 13.5 16.2 2.75 7 23 (46.6014, 6.68191) mandat R R R M
5 home home2 16.5 17 0.5 0 24 (46.6033, 6.67643) discret F M F F
6 leisure leisure 17.1 18 0.917 0 24 (46.6014, 6.68191) discret F M F F
7 home dusk 18.1 24 5.92 0 24 (46.6033, 6.67643) discret F M F F

Table 8: Initial schedule and preferences for Brian

Activity
number

Activity
label Label Start

time
End
time Duration Feasible

start
Feasible
end Location Categories Flex

early
Flex
late

Flex
short

Flex
long

1 home dawn 0 7.33 7.33 0 24 (46.5509, 6.63299) discret F M F F
2 home home1 7.42 7.42 0 0 24 (46.558, 6.63459) discret F M F F
3 education education 7.47 12.1 4.62 7 23 (46.558, 6.63459) mandat R R R M
4 home home2 12.3 16.2 3.92 0 24 (46.5509, 6.63299) discret F M F F
5 shopping shopping 16.5 18.5 2.03 7 20 (46.5226, 6.62739) discret F M F F
6 home dusk 19 24 5 0 24 (46.5509, 6.63299) discret F M F F





       

D.2 Choice sets

Table 9: Choice sets per each activity for Alice and Brian

Activity Choice set
1 2 3 4 5 6 7 8 9 10

Alice
Education Zone ID 75 87 82 59 84 60 51 67 54 34

Transportation
mode Car Car Car Car Car Car PT PT Car PT

Leisure Zone ID 71 77 59 11 13 3 40 26 46 72
Transportation

mode Car Car PT Car Car Car PT PT PT PT

Brian
Education Zone ID 22 71 79 22 37 24 68 81 64 44

Transportation
mode SM Car PT Car PT Car SM Car Car Car

Shopping Zone ID 64 65 87 4 30 28 62 50 54 60
Transportation

mode PT Car Car Car PT PT SM PT Car Car
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