
Largescaletransportationsimulationson Beowulf
Clusters

NurhanCetin
�
andKai Nagel

�
Dept.of ComputerScience,ETH Zürich,Switzerland

Postal:ETH ZentrumIFW B27.1,CH-8092Zürich,Switzerland

February16,2001

Abstract

If the individual entitiesin a systemare usedas the main componentsof
a traffic simulation,the simulationis calledmicroscopic. Whenthe traffic
densityis high and the areacoveredis wide, the individual elementsof a
microscopicsimulationandalsothesimplerulessuchascarfollowing, lane
changing,gap acceptance,can result in complex behaviors. Sucha large
scaletransportationsimulationcanconsumemoretimeandmorecomputing
resources.A parallelcomputingapproachto sucha big traffic systemmight
beeconomicalandefficient in termsof money andconsumedresources.

This paperdescribesa parallelapproachto a microscopictraffic simula-
tion. Theparallelizationmethodis domaindecomposition,whichmeansthat
eachCPUof theparallelcomputeris responsiblefor adifferentgeographical
areaof thesimulatedregion. Wedescribehow informationbetweendomains
is exchanged,andhow the transportationnetwork graphis partitioned. An
adaptiveschemeis usedto optimizeloadbalancing.

We demonstratehow computingspeedsof a parallelmicro-simulations
canbesystematicallypredictedoncethescenarioandthecomputerarchitec-
ture areknown. This makesit possible,for example,to decideif a certain
studyis feasiblewith acertaincomputingbudget,andhow to investthatbud-
get.Themainingredientsof thepredictionareknowledgeabouttheparallel
implementationof themicro-simulation,knowledgeaboutthecharacteristics
of thepartitioningof thetransportationnetwork graph,andknowledgeabout
the interactionof thesequantitieswith the computersystem. In particular,
we investigatethe differencesbetweenswitchedandnon-switchedtopolo-
gies,andtheeffectsof 10Mbit, 100Mbit, andGbit Ethernet.

Keywords:Parallelcomputing,traffic simulation,transportationplanning�
cetin@inf.ethz.ch�
nagel@inf.ethz.ch

1

1 Intr oduction

If the individual entitiesin a systemareusedasthemaincomponentsof a traffic
simulation,thesimulationis calledmicroscopic.Althoughthemicro-simulations
have simplerulessuchascar following, lanechanging,gapacceptanceetc.,these
rulescanproducecomplex behaviors if the traffic densityis high on a wide area.
Sucha large scaletransportationsimulationcan consumemore time and more
computingresources.

Largescalesimulationscanberun on a clusterof PCsto speedup thecompu-
tation.Usingaclusterof PCsandpartitioningthewholetaskamongthecomputers
in this clusteris economicalin thatsucha clusteris affordableby mostuniversity
engineeringdepartmentsandby middle sizecompanies.By “a clusterof PCs”,
wemeanthatagroupof 10-20PCsconnectedby astandardLAN technologyruns
Beowulf Linux. Theothersolutionmightbebuying asupercomputersuchasIBM
SP2or Intel iPSC/860in order to achieve the parallelismbut this solutionis not
cost-effective.

2 Domain decomposition

Domaindecompositionmight be definedaspartitioning the geographicalregion
into subregionsof approximatelyequalsize(Fig. 1). It is oneof thecrucial issues
of parallelcomputing.After partitioningthedomaininto subdomains,eachCPU
in thesystemis assignedto oneof thesesubdomainsandperformsthecalculation
on thatsubdomain.

Sincesomeof thevehiclesin thetraffic might leaveasubdomainandenterinto
anothersubdomainon the way to their destinations,the traffic flow information
neartheboundaryof theneighborsubdomains(or CPUs)needsto beexchanged.
This is necessaryin orderto maintaintheconsistency betweentheCPUs.

In the following, we will describethe domaindecompositionmethodfor the
cellular automata(CA) implementationwhich is usedin TRANSIMS [12]. That
particularimplementation,however, is usedfor expositiononly; theparallelization
approachworks on any driving logic which hasa similar structure.The domain
decompositionfor parallelizationis straightforwardif thestateat time ����� depens
only on informationfrom time step � , andon neighboringcells. Therefore,anup-
datingprocessin suchasystemis in principlecomposedof two elements,namely,
a communicationfor theboundaryinformationat time step � , andanupdatefrom
time step� to �	�
� . In theactualimplementation,we usetwo communcationsand
two sub-updatespertime step,seelater.

Traffic simulationsfulfill two conditionswhichmake thisapproachefficient:

2

CPU link

CPU 2

CPU 3

CPU 1
CPU 2

CPU 1

Master Slave

edge
boundary edge

intersection CPU
tile boundary

CPU 0 CPU 0

Figure1: From[6].Domaindecompositionof transportationnetwork. Left: Global
view. Right: View of a slave CPU. The slave CPU is only awareof part of the
network which is attachedto its local nodes.This includeslinks which areshared
with neighbordomains.� Domainsof similarsize:Thestreetnetwork canbepartitionedinto domains

of similar size. A realisticmeasurefor sizeis theaccumulatedlengthof all
streetsassociatedwith adomain.� Short-rangeinteractions:For driving decisions,thedistanceof interactions
betweendrivers is limited. In our CA implementation,on links all of the
TRANSIMS-1999[12] rule setshave aninteractionrangeof 37.5meters(=
5 cells,eachof whichhasa lengthof 7.5meters)which is smallwith respect
to the averagelink length. Therefore,the network easilydecomposesinto
independentcomponents.

We decidedto cut the streetnetwork in the middle of links ratherthanat in-
tersections;THOREAU [7] doesthe same.This separatesthe traffic complexity
at the intersectionsfrom the complexity causedby the parallelizationandmakes
optimizationof computationalspeedeasier.

In the implementation,eachdivided link is fully representedin both CPUs.
EachCPUis responsiblefor onehalf of thelink. In orderto maintainconsistency

3

betweenCPUs,theCPUssendinformationaboutthefirst five cellsof “their” half
of the link to the otherCPU.Five cells is the interactionrangeof all CA driving
rulesona link. By doingthis, theotherCPUknows enoughaboutwhatis happen-
ing on the otherhalf of the link in orderto computeconsistenttraffic. Therefore
theresultingsimplifiedupdatesequenceon thesplit links is asfollows (Fig. 2):� Changelanes.� Exchangeboundaryinformation.� Calculatespeedandmovevehiclesforward.� Exchangeboundaryinformation.

Note, however, that useof the CA canbe viewed asa didacticexample;any
traffic simulationlogic wherethe stateat time ���� usesonly informationfrom
time � andwhereinteractionis local canbeparallelizedin thisway.

3 Master-SlaveApproach

Parallelprogramsdistribute thework betweenmany processors.The loadshould
bedistributedevenly so thatsomeof processorsarenot idle (and/orsomeof pro-
cessorsarenot overloaded).Oneof thepopulartechniquesfor thedistribution is
calledMaster-Slave Approach.

As thenameimplies,oneof theprocessorsis designatedasmasterprocessor
whichhastheknowledgeof theoverallwork to bedone.Therefore,thesimulation
is startedupby themaster, whichspawnsslaves,distributestheworkloadto them,
andkeepscontrolof thegeneralscheduling.

Master-slave approachesoften do not scalewell with increasingnumbersof
CPUssincethe workloadof the masterremainsthe sameor even increaseswith
increasingnumbersof CPUs. For that reason,in TRANSIMS-1999the master
hasnearlyno tasksexcept initialization andsynchronization.Even the outputto
file is donein a decentralizedfashion. With the numbersof CPUsthat we have
testedin practice,we have never observed themasterbeingthebottleneckof the
parallelization.

4 MessagePassing

In a parallel environment, someform of inter-processorcommunicationsis re-
quiredin orderto exchangedataandinformationbetweenprocessorsandto pro-
vide synchronizationof theprocessors.Generally, therearetwo mainapproaches

4

At beginning of time step:

CPU 1

CPU 2

CPU 1

CPU 2

After boundary exchange (parallel implementation):

CPU 1

CPU 2

After entering from parking:

After lane changing:

CPU 1

CPU 2

CPU 1

CPU 2

After second boundary exchange (parallel implementation):

CPU 1

CPU 2

After movement:

Figure2: Exampleof parallellogic of a split link with two lanes.Thefigureshows
the generallogic of onetime step. Rememberthat with a split link, oneCPU is
responsiblefor onehalf andanotherCPUis responsiblefor theotherhalf. These
two halves are shown separatelybut correctly lined up. The dottedpart is the
“boundaryregion”, whichis wherethelink storesinformationfrom theotherCPU.
Thearrows denotewhentheinformationis transferredfrom oneCPUto theother
via boundaryexchange[6].

5

to inter-processorcommunication.Oneof themis calledmessagepassingbetween
processorsandits alternative is to useshared-addressspacewherevariablesare
keptin acommonpool thereforethey aregloballyavailableto all processors.Each
paradigmhasits own advantagesanddisadvantages.

In theshared-addressspaceapproach,thevariablesareglobally accessibleby
all processors.Despitemultipleprocessorsoperatingindependently, they sharethe
samememoryresources.Only oneprocessorcanaccessthe sharedmemorylo-
cationat a time. Thus,accessingthe memoryshouldbe provided in a mutually
exclusive fashionsinceaccessesto thesamevariableat thesametime by multiple
processorsmight leadto inconsistentdata.Shared-addressspaceapproachmakes
it simplerfor the userto achieve parallelismbut sincethe memorybandwidthis
limited, severebottlenecksareunavoidablewith theincreasingnumberof proces-
sors.Also, theuseris responsiblefor providing thesynchronizationconstructsin
orderto provide concurrentaccesses.

In themessagepassingapproach,thereareindependentcooperatingprocesses
(or processors).Eachprocessorhasa private local memoryin order to keepthe
variablesanddata. If anexchangeof the informationis neededbetweenthepro-
cessors,theprocessorscommunicateandsynchronizeby passingmessageswhich
aresimplesendandreceive instructions.With thismethod,eachprocessorcanac-
cessits own memoryvery rapidly. But usershave to sendandreceive dataamong
processors.

Themessagepassingparadigmis usuallyprovidedwith thelibrary extensions
addedto thesequentialprogramminglanguages.PVM([9]), MPI([5]), P4([8]) are
themostcommonmessagepassinglibrariesandprograms.

PVM refersto ParallelVirtual Machine,which is a softwarepackagethatal-
lows aprogrammerto createandaccessaparallelcomputingsystem.Thecompo-
nentsof sucha systemarethemachinesconnectedthroughthenetwork(s). These
machinesmight bein thesamenetwork aswell asseparatedthroughthe internet.
Also,they maybehomogenenousor heterogeneousin termsof theoperatingsys-
temrunningon thosehosts.Theideais to bring togetheravarietyof architectures
undera centralizedcontrol.ThusaPVM userdividesa probleminto subtasksand
assignseachsubtaskto oneprocessorin thesystem.

PVM is basedontheparallelmessage-passingmodel.Messagesareexchanged
betweentasksvia theconnectingnetworks. If thecommunicationis donebetween
two differenttypesof machinesthatdo not have a commonrepresentationfor the
data,thendataconversionis doneautomatically. Initializationandterminationof a
processaretheuser’s responsibilities.Theusershouldalsousestandardinterface
routinesdefinedin PVM in order to exchangedataand to synchronizewith the
otherprocesses.

MPI standsfor MessagePassingInterface. It providesa standardfor writing

6

message-passingprograms. It wasdesignedfor high performanceon both mas-
sively parallelmachinesandon workstationclusters. It providesmorethan100
functionsasa library. It alsodefinesan interfacefor FortranandC. Therearea
coupleof implementationsof MPI on differentarchitectures/systems. It alsosup-
port heteregenouscomputingasPVM does.A comparisonof MPI andPVM can
befoundin [3].

Thereareseveralotherlibrariesin theliteratureandthey havemoreor lessthe
sameproceduresandusage.Someof themarecommercialproductsbut onecan
find freeavailablelibraries(suchasPVM) too.

5 Graph Partitioning

Graphpartitioning is a techniquefor executinga setof tasksin parallelso asto
balancethe load andminimize communicationsamongprocessors.Oncewe are
able to handlesplit links, we needto partition the whole transportationnetwork
graphin anefficient way. Efficientmeansseveralcompetingthings:Minimize the
numberof split links; minimize the numberof other domainseachCPU shares
links with; equilibratethecomputationalloadasmuchaspossible.

Thereareseveralalgorithmsandsoftwarefor graphpartitioning.Oneapproach
to domaindecompositionis orthogonalrecursive bisection.Althoughlessefficient
thanMETIS (explainedbelow), orthogonalbisectionis useful for explaining the
generalapproach.In our case,sincewe cut in the middle of links, the first step
is to accumulatecomputationalloadsat thenodes:eachnodegetsa weightcorre-
spondingto thecomputationalloadof all of its attachedhalf-links.

Nodesarelocatedat their geographicalcoordinates.Then,a vertical straight
line is searchedsothat,asmuchaspossible,half of thecomputationalload is on
its right andtheotherhalf on its left. Thenthe larger of the two piecesis picked
and cut again, this time by a horizontal line. This is recursively doneuntil as
many domainsareobtainedasthereareCPUsavailable.Theorthogonalbisection
for Portland200000links network is shown in Fig. 4. It is immediatelyclearthat
undernormalcircumstancesthis will bemostefficient for a numberof CPUsthat
is a power of two. With orthogonalbisection,we obtaincompactand localized
domains,andthenumberof neighbordomainsis limited.

Anotheroptionis to usetheMETIS library for graphpartitioning[4]. METIS
usesmultilevel partitioning. What thatmeansis that first thegraphis coarsened,
then the coarsenedgraphis partitioned,and then it is uncoarsenedagain,while
usingan exchangeheuristicat every uncoarseningstep. The coarseningcanfor
examplebedonevia randommatching,whichmeansthatfirst edgesarerandomly
selectedsothatnotwo selectedlinks sharethesamevertex, andthenthetwo nodes

7

at theendof eachedgearecollapsedinto one. Oncethegraphis sufficiently col-
lapsed,it is easyto find a good or optimal partitioning for the collapsedgraph.
Duringuncoarsening,it is systematicallytried if exchangesof nodesat thebound-
ariesleadto improvements.“Standard”METIS usesmultilevel recursivebisection:
Theinitial graphis partitionedinto two pieces,eachof thetwo piecesis partitioned
into two pieceseachagain,etc.,until thereareenoughpieces.Eachsuchsplit uses
its own coarsening/uncoarsening sequence.k-METIS meansthat all k partitions
are found during a singlecoarsening/uncoarsening sequence,which is consider-
ably faster. It alsoproducesmoreconsistentandbetterresultsfor largek.

Thenumberof split links fromMETIScanbeapproximatedas�������������������� "!�#����� for the20024-linksnetwork mentionedabove; for ahigherresolutionnetwork
with 200000links we obtain �$�%���&�('*)+������� "! [6]. � is thenumberof CPUs.The
orthogonalbisectionmethod,on theotherhand,scales�$�%��� as ,-����� . Therefore,
METIS considerablyreducesthenumberof split links.

Suchempiricalresultson graphpartitioningcanbe usedto computethe the-
oreticalefficiency. Efficiency is optimal if eachCPUgetsexactly thesamecom-
putationalload. However, becauseof the granularityof the entities(nodesplus
attachedhalf-links) thatwe distribute, load imbalancesareunavoidable,andthey
becomelargerwith moreCPUs.We definetheresultingtheoreticalefficiency due
to thegraphpartitioningas

.�/"02143 loadonoptimalpartition
loadon largestpartition 5 (1)

wheretheloadontheoptimalpartitionis just thetotal loaddividedby thenum-
berof CPUs. We thencalculatedthis numberfor actualpartitionsof bothof our
200000links andof our 200000linksPortlandnetworksasshown in Fig. 3 (from
[11]). The resultshows that, accordingto this measurealone,our 200000 links
network would still run efficiently on 128 CPUs,andour 200000linksnetwork
would runefficiently on up to 1024CPUs.

6 AdaptiveLoad Balancing

Loadbalancingis an importantissuefor a parallelsystem.It shouldbesolved in
orderto enabletheefficientuseof parallelcomputersystemssuchthattheloadson
differentCPU shouldbe assimilar aspossibleandall CPUsshouldbekeptbusy
asmuchaspossible.

Theefficiency measurefrom thelastsectiongivesinformationaboutprobable
load imbalancedueto the granularityof the smallestunits, which are the nodes

8

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256 1024

m
ax

 e
ffi

ci
en

cy6

number of CPUs

e2 network (20k links)

OB
METIS

METIS (k-way)

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256 1024

m
ax

 e
ffi

ci
en

cy6

number of CPUs

allstr network (200k links)

OB
METIS

METIS (k-way)

Figure3: Theoreticalefficienciesbasedon graphpartitioningalgorithms

with attachedhalf-links. Theapproachin that sectionassumesthat thecomputa-
tional loadof thoseunitsdependson thelengthsof theattachedlinks only. Some
applications,suchastraffic simulations,do not have constantcomputationalloads
on thoseunits, becausethe computationalload dependson the numberof vehi-
cleson thoselinks which in turn dependson traffic. Thus,we shouldoptimize
the averageresponsetime of both singletasksandthe overall applicationin par-
allel in order to provide equalload on the CPUsandto minimize delaysin data
communicationbetweentheseCPUs.

Thereareseveralcommonapproachesto adaptationof theloadbalancing.One
ideais alternatingbetweenafew differentmethodsby definingasystemasheavily,
mediumor lightly loadedandissuingdifferentpoliciesfor eachsituation.

Anotherapproach,thatis usedhere,is to learnfrom theoutputsof theprevious
runs. The loadson CPUsdependon the actualvehicle traffic in the respective
domains. Sincewe aredoing iterations,we arerunningsimilar traffic scenarios
over andover again. We usethis featurefor an adaptive load balancing:During

9

Figure4: From[11]. Partitioningof thedomain.Left: After orthogonalbisection.
Right: After theadaptive loadbalancing.

run time we collect theexecutiontime of eachlink andeachintersection(node).
Thestatisticsareoutputto file. For thenext run of themicro-simulation,thefile
is fed back to the partitioning algorithm. In that iteration, insteadof using the
link lengthsas load estimate,the actualexecutiontimesareusedasdistribution
criterion.

Fig.4 (right) shows the new domainsafter adaptive load balancinghasbeen
employed. Oneclearly seesthat the sizesof the domainsaredifferent from the
partitioningof theemptynetwork (Fig. 4 left).

To verify the impactof this approach,we monitoredthe executiontimesper
time-stepthroughoutthe simulationperiod. Figure 5 depictsthe resultsof one
of the iterationseries. For iteration1, the load balancerusesthe link lengthsas
criterion. The executiontimesarelow until congestionappearsaround7:30 am.
Then,theexecutiontimesincreasefivefold from 0.04secto 0.2sec.In iteration2
theexecutiontimesarealmostindependentof thesimulationtime. Note thatdue
to the equilibration,theexecutiontimesfor early simulationhoursincreasefrom
0.04secto 0.06sec,but thiseffect is morethancompensatedlateron.

The figure also containsplots for later iterations(11, 15, 20, and 40). The
improvementof executiontimes is mainly due to the route adaptationprocess:
congestionis reducedandthe averagevehicledensityis lower. On the machine
sizeswherewe have tried it (up to 16 CPUs),adaptive loadbalancingled to per-
formanceimprovementsupto a factorof 1.8. It shouldbecomemoreimportantfor
largernumbersof CPUssinceloadimbalanceshave astrongereffect there.

10

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

5 6 7 8 9 10 11 12

ex
ec

ut
io

n
tim

e
on

 s
lo

w
es

t C
P

N
 [s

]

7

simulation time [h]

it 1
it 2
it 5

it 11
it 15
it 20
it 40

Figure5: From[11]. Executiontimeswith externalload feedback.Theseresults
wereobtainedduringtheDallascasestudy[1, 10].

7 Evaluation of Performance of the parallelized micro-
simulation

Thesizeof inputusuallydeterminestheperformanceof asequentialalgorithm(or
program)evaluatedin termsof executiontime. However, this is not the casefor
theparallelprograms.Whenevaluatingparallelprograms,besidesthe input size,
the computerarchitectureandalsothe numberof the processorsshouldbe taken
into consideration.

Therearevariousof metricsto evaluatetheperformanceof aparallelprogram.
Executiontime,SpeedupandEfficiency arethemostcommonmetricsto measure
theperformanceof aparallelprogram.Wewill discussthesemetricsin thefollow-
ing subsections.

7.1 Execution Time

Theexecutiontime of a parallelprogramis definedasthetotal time elapsedfrom
thetimethefirst processorstartsexecutionto thetimethelastprocessorcompletes

11

theexecution.During execution,a processoris eithercomputingor communicat-
ing. Therefore, 8$9 �&: 3 8<; 0 � 9 �<:	� 8<; 020 9 �<: 5 (2)

whereT is theexecutiontime,p is thenumberof processors,
8 ; 0 � is thecom-

putationtimeand
8&; 020 is thecommunicationtime.

Thetimerequiredfor thecomputation,namely,
8&; 0 � canbecalculatedroughly

in termsof theserialexecutiontime (run time of thealgorithmon a singleCPU)
andthenumberof processors.Thus,8&; 0 � 9 �&: 3 8>=�@? A �B�DC+EGFIH 9 �&:	�DC /"021 9 �<:GJLK (3)

where
8 =

is theserialexecutiontime, p is thenumberof CPUs; C+EMFNH includes
overheadeffects(for example,split links needto beadministeredby bothCPUs);C /"0O1 = 1/.P/"0O1 - 1 includestheeffectof unequaldomainsizesasshown in Equation
1 in graphpartitioningsection.

Time for communicationtypically hastwo contributions: Latency andband-
width. Latency is thetime necessaryto initiate thecommunication,andin conse-
quenceit is independentof themessagesize. Bandwidthdescribesthenumberof
bytesthatcanbecommunicatedpersecond.Sothetime for onemessageis8 0 �RQ 3 8 �TS��VU 0 �WQX 5

where
8 �YS is thelatency, U 0 �WQ is themessagesize,andb is thebandwidth.

However, for many of today’scomputerarchitectures,bandwidthis givenby at
leasttwo contributions:nodebandwidth,andnetwork bandwidth.Nodebandwidth
is thebandwidthof theconnectionfrom theCPUto thenetwork. If two computers
communicatewith eachother, this is themaximumbandwidththey canreach.For
thatreason,this is sometimesalsocalledthe“point-to-point” bandwidth.

The network bandwidthis given by the technologyand topologyof the net-
work. Typical technologiesare 10Mbit Ethernet,100Mbit Ethernet,FDDI, etc.
Typicaltopologiesarebustopologies,switchedtopologies,two-dimensionaltopolo-
gies(e.g.grid/torus),hypercubetopologies,etc.A traditionalLocalAreaNetwork
(LAN) uses10Mbit Ethernet,and it hasa sharedbus topology. In a sharedbus
topology, all communicationgoesover thesamemedium;that is, if severalpairs
of computerscommunicatewith eachother, they have to sharethebandwidth.

For example,in our100MbitFDDI network (i.e. anetwork bandwidthof
X 1+Z S =

100Mbit)atLosAlamosNationalLaboratory, wefoundnodebandwidthsof aboutX 1+/ = 40Mbit. Thatmeansthat two pairsof computerscouldcommunicateat full

12

nodebandwidth,i.e. using80 of the100Mbit/sec,while threeor morepairswere
limited by the network bandwidth. For example,five pairs of computerscould
maximallyget100/5= 20Mbit/seceach.

A switchedtopologyis similar to abustopology, exceptthatthenetwork band-
width is givenby thebackplaneof theswitch. Often, thebackplanebandwidthis
highenoughto haveall nodescommunicatewith eachotheratfull nodebandwidth,
andfor practicalpurposesonecanthusneglect the network bandwidtheffect for
switchednetworks.

If computersbecomemassively parallel,switcheswith enoughbackplaneband-
width becometoo expensive. As a compromise,suchsupercomputersusuallyuse
a communicationstopologywherecommunicationto “nearby” nodescanbedone
at full nodebandwidth,whereasglobalcommunicationsufferssomeperformance
degradation.Sincewe partitionour traffic simulationsin a way that communica-
tion is local, we canassumethatwe do communicationwith full nodebandwidth
on a supercomputer. That is, on a parallelsupercomputer, we canneglect thecon-
tribution comingfrom the

X 1+Z S -term.This assumes,however, thattheallocationof
streetnetwork partitionsto computationalnodesis donein someintelligent way
whichmaintainslocality.

As aresultof thisdiscussion,weassumethatthecommunicationtimepertime
stepis

8&; 0O0 9 �<: 3 ���W[]\ ? A�^ 1 \ 9 �<: 8 �YS�� �����P� 9 �<:� U \ 1+/X 1+/ �_������� 9 �&: U \ 1`/X 1+Z S J 5 (4)

where ���W[]\ is the numberof sub-time-steps.Sincewe do two boundaryex-
changespertimestep,���W[]\ = 2 for the1999TRANSIMSmicro-simulationimple-
mentation.^ 1 \ is the numberof neighbordomainseachCPU talks to. All information
which goesto thesameCPUis collectedandsentasa singlemessage,thusincur-
ring thelatency only onceperneighbordomain.For p = 1,

^ 1 \ is zerosincethere
is no otherdomainto communicatewith. For p = 2, it is one. For �ba c and
assumingthat domainsarealwaysconnected,Euler’s theoremfor planargraphs
saysthattheaveragenumberof neighborscannotbecomemorethansix. Basedon
asimplegeometricargument,we use^ 1 \ 9 �<: 3 ' 9ed�f �g#D�P: 9Wf �h#i�P:"jN� 5

whichcorrectlyhaŝ 1 \ 9 �P: 3 � and̂ 1 \�alk for �malc . NotethattheMETIS
library for graphpartitioningdoesnot necessarilygenerateconnectedpartitions,
makingthispotentiallymorecomplicated.

13

8 �YS is the latency (or start-uptime) of eachmessage.
8 �YS between0.5 and2

millisecondsare typical valuesfor PVM on a LAN. Next are the termsthat de-
scribeour two bandwidtheffects. ���%��� 9 �<: is thenumberof split links in thewhole
simulation.Accordingly, ������� 9 �&:"jN� is thenumberof split links percomputational
node. U \ 1`/ is thesizeof themessagepersplit link.

X 1`/ and
X 1+Z S arethenodeand

network bandwidths,asdiscussedabove.
In consequence,thecombinedtime for onetimestepis8$9 �<: 3 8 =� A �2�DC EGFIH 9 �<:	�DC /"021 9 �<: J �

���W[]\ ?on ^ 1 \ 9 �<: 8 �TS�� �$�%��� 9 �<:� U \ 1`/X 1`/ �_���%��� 9 �<: U \ 1+/X 1+Z S�p K
Accordingto whatwe have discussedabove, for �qarc thenumberof neigh-

borsscalesas
^ 1 \s,ut�v ^ow � andthenumberof split links in thesimulationscales

as ���%����, f � . In consequencefor C+EGFIH and C /I0O1 smallenough,wehave:� for asharedor bustopology,
X 1+Z S is relatively smallandconstant,andthus8$9 �&:�, �� �x�O� �f � � f �qa f �qy� for a switchedor a parallelsupercomputertopology, we assume

X 1+Z S 3 c
andobtain 8$9 �<:�, �� �x�2� �f � az�{K

Thus, in a sharedtopology, adding CPUs will eventually increasethe simula-
tion time, thusmaking the simulationslower. In a non-sharedtopology, adding
CPUswill eventuallynot make thesimulationany faster, but at leastit will not be
detrimentalto computationalspeed.The dominantterm in a sharedtopologyfor�|a}c is thenetwork bandwidth;thedominanttermin a non-sharedtopologyis
thelatency.

Thecurvesin Fig. 6 areresultsfrom this predictionfor a switched100Mbit
EthernetLAN; dots and trianglesshow actualperformanceresults[6]. The top
graphshows the time for onetime step,i.e.T(p), andthe individual contributions
to this value. Onecanclearlyseethat for morethan64 CPUs,thedominanttime
contribution comesfrom the latency.The bottomgraphshows the real time ratio
(RTR) ~ � ~ 9 �<:O� 3 � �8�9 �<: 3 � w . t8$9 �&:�5

14

which sayshow muchfasterthanreality thesimulationis running. � � is thedura-
tion asimulationtimestep,which is � w . t in TRANSIMS-1999.This figureshows
that even somethingas relatively profane as a combinationof regular Pentium
CPUsusinga switched100Mbit Ethernettechnologyis quitecapablein reaching
goodcomputationalspeeds.For example,with 16 CPUsthe simulationruns40
timesfasterthanrealtime; thesimulationof a24hourtimeperiodwould thustake
0.6 hours. Thesenumbersrefer to the Portland200000 links network. Included
in theplot (blackdots)aremeasurementswith a computeclusterthatcorresponds
to this architecture.Thetriangleswith lower performancefor thesamenumberof
CPUscomefrom usingdual insteadof singleCPUson thecomputationalnodes.
Note that thecurve levelsout at aboutforty timesfasterthanreal time, no matter
whatthenumberof CPUs.As onecanseein thetopfigure,thereasonis thelatency
term,whicheventuallyconsumesnearlyall thetime for a timestep.This is oneof
the importantelementswhereparallelsupercomputersaredifferent: For example
theCrayT3D hasamorethana factorof tenlower latency underPVM [2].

Fig. 7 showssomepredictedrealtimeratiosfor othercomputingarchitectures.
For simplicity, we assumethat all of themexcept for onespecialcaseexplained
below usethesame500MHzPentiumcomputenodes.Thedifferenceis in thenet-
works: We assume10Mbit non-switched,10Mbit switched,1Gbit non-switched,
and1Gbit switched.Thecurvesfor 100Mbit arein betweenandwereleft out for
clarity; valuesfor switched100Mbit Ethernetwerealreadyin Fig. 6. Oneclearly
seesthat for this problemandwith today’s computers,it is nearly impossibleto
reachany speed-upon a 10Mbit Ethernet,even whenswitched. Gbit Ethernetis
somewhat moreefficient than100Mbit Ethernetfor small numbersof CPUs,but
for largernumbersof CPUs,switchedGbit Ethernetsaturatesat exactly thesame
computationalspeedastheswitched100MbitEthernet.This is dueto thefactthat
we assumethat latency remainsthe same– after all, therewasno improvement
in latency whenmoving from 10 to 100Mbit Ethernet.FDDI is supposedlyeven
worse[2].

Thethick line in Fig. 7 correspondsto theASCI BlueMountainparallelsuper-
computerat Los AlamosNationalLaboratory. On a per-CPU basis,this machine
is slower thana 500 MHz Pentium. The higherbandwidthandin particularthe
lower latency make it possibleto usehighernumbersof CPUsefficiently, andin
factoneshouldbeableto reacha real time ratio of 128accordingto this plot. By
then,however, thegranularityeffect of theunequaldomains(Fig. 3) would have
setin, limiting thecomputationalspeedprobablyto about100timesrealtimewith
128CPUs.We actuallyhave somespeedmeasurementson thatmachinefor up to
96 CPUs,but with a considerablyslower codefrom summer1998.We omit those
valuesfrom theplot in orderto avoid confusion.

Fig. 7 (bottom)shows predictionsfor thehigherfidelity Portland200000links

15

0

0.05

0.1

0.15

0.2

0.25

1 4 16 64 256 1024

w
a

ll
cl

o
ck

 t
im

e
 p

e
r

tim
e

 s
te

p

�

number of CPUs

Portland EMME/2 network (20 000 links)

Tcmp(x)
Tlat(x)

Tnode(x)
Tnet(x)

T(x)
Jun 00; Pentium Cluster

Jun 00; Pentium Cluster Dual CPUs

0.25

0.5

1

2

4

8

16

32

64

128

1 4 16 64 256 1024

re
a

l t
im

e
 r

a
tio�

number of CPUs

Portland EMME/2 network (20 000 links)

1/T(x)
Jun 00; Pentium Cluster

Jun 00; Pentium Cluster Dual CPUs

Figure6: 100Mbit switchedEthernetLAN. Top:From[6]. Individual time contri-
butions.Bottom:CorrespondingRealTimeRatios.Theblackdotsreferto actually
measuredperformancewhenusingoneCPUperclusternode;thecrossesreferto
actuallymeasuredperformancewhenusingdual CPUsper node(the y-axis still
denotesthenumberof CPUsused).Thethick curve is thepredictionaccordingto
themodel.Thethin linesshow theindividual timecontributionsto thethick curve.

16

0.25

0.5

1

2

4

8

16

32

64

128

1 4 16 64 256 1024

re
al

 ti
m

e
ra

tio�

number of CPUs

Portland EMME/2 network (20 000 links)

ASCI Blue Mountain parallel supercomputer
Gbit switched

Gbit non-switched
10 Mbit switched

10 Mbit non-switched

0.25

0.5

1

2

4

8

16

32

64

128

1 4 16 64 256 1024

re
al

 ti
m

e
ra

tio�

number of CPUs

Portland TIGER network (200 000 links)

ASCI Blue Mountain parallel supercomputer
Gbit switched

Gbit non-switched
10 Mbit switched

10 Mbit non-switched

Figure7: From[6]. Predictionsof realtimeratiofor othercomputerconfigurations.
Top: With Portland20024 links network. Bottom: With Portland200000 links
network. Note that for the switchedconfigurationsand for the supercomputer,
the saturatingreal time ratio is thesamefor bothnetwork sizes,but it is reached
with differentnumbersof CPUs. This behavior is typical for parallelcomputers:
They areparticularlygoodat runninglarger andlargerproblemswithin thesame
computingtime. All curves in both graphsarepredictionsfrom our model. We
have someperformancemeasurementsfor theASCI machine,but sincethey were
donewith an older andslower versionof the code,they areomitted in order to
avoid confusion.

17

network with thesamecomputerarchitectures.Theassumptionwasthat thetime
for one time step, i.e.

8 =
of Eq. (3), increasesby a factor of eight due to the

increasedload.This hasnotbeenverifiedyet. However, thegeneralmessagedoes
not dependon the particulardetails: Whenproblemsbecomelarger, then larger
numbersof CPUsbecomemoreefficient. Note that we againsaturate,with the
switchedEthernetarchitecture,at 80 timesfasterthanreal time, but this time we
needabout64 CPUswith switchedGbit Ethernetin order to get 40 timesfaster
than real time — for the smallerPortland200000 links network with switched
Gbit Ethernetwe would need8 of the sameCPUsto reachthe samereal time
ratio. In shortandsomewhatsimplified:As longaswehaveenoughCPUs,wecan
micro-simulateroadnetworksof arbitrarily largesize, with hundredsof thousands
of links and more, 40 times fasterthan real time, even without supercomputer
hardware. — Basedon our experience,we are confidentthat thesepredictions
will be lower boundson performance:In thepast,we have alwaysfoundwaysto
make thecodemoreefficient.

7.2 Speed-Upand Efficiency

We have castour resultsin termsof the real time ratio, sincethis is themostim-
portantquantitywhenonewantsto geta practicalstudydone.In this section,we
will translateour resultsinto numbersof speed-up,efficiency which allow easier
comparisonfor computingpeople.

Speedupachieved by a parallelalgorithm is definedas the ratio of the time
requiredby the bestsequentialalgorithm to solve a problem,

8$9 �P: , to the time
requiredby parallelalgorithmusingp processorsto solve thesameproblem,

8$9 �<: .
Forsimplicity,

8$9 �P: is calculatedby runningtheparallelprogramononeprocessor.
WecandefinetheSpeedupasin thefollowing formula

U 9 �&:2� 3 8$9 �P:8$9 �<: 5
wherep is againthe numberof CPUs. Dependingon the viewpoint, for

8$9 �P:
oneuseseithertherunningtime of theparallelalgorithmon a singleCPU,or the
fastestexisting sequentialalgorithm. SinceTRANSIMS hasbeendesignedfor
parallel computingand sincethere is no sequentialsimulationwith exactly the
sameproperties,

8$9 �P: will betherunningtimeof theparallelalgorithmonasingle
CPU.For time-steppedsimulationssuchasusedhere,thedifferenceis expectedto
besmall.

Speedupis limited by acoupleof factors.First, thesoftwareoverheadappears
in the parallel implementationsincecodelengthof a parallel implementationis
morethantheoneof sequentialprogram.Second,speedupis generallylimited by

18

thespeedof theslowestnodeor processor. Thus,we needto make surethateach
nodeperformsthesameamountof work. i.e. thesystemis loadbalanced.Third,
if thecommunicationandcomputationcannotbe overlapped,thenthecommuni-
cationwill reducethespeedof theoverall application.To avoid this, theparallel
programshouldkeeptheprocessorsbusyasmuchaspossible.

A final limitation of theSpeedupis known asAmdahl’s Law - SerialFraction.
This statesthat the speedupof a parallel algorithm is effectively limited by the
numberof operationswhich mustbeperformedsequentially. Thus,let’s define Uastheamountof thetimespentby oneprocessoronsequentialpartsof theprogram
and � asthe amountof the time spentby oneprocessoron partsof theprogram
that canbeparallelized.Then,we canformulatetheserialrun-timeas

8$9 �P: := S
+ P andtheparallelrun-timeas

8$9 �<: := S + P/N. Therefore,theserialfraction �
will be �� 3 U8�9 �P:�5
andthespeedupU 9 �<: is expressedasU 9 �<:B� 3 U �_�U ���� 5
or in termsof serialfraction,it would beU 9 �<:B� 3 ��x� ="���� 5
.

As anillustration,let ussay, wehaveaprogramcontaining100operationseach
of which take 1 time unit. If 80 operationscanbedonein paralleli.e. P = 80 and
20 operationsmustbedonesequentiallyi.e. S = 20. thenby using80 processors,
theSpeedupwould be 100 / 21 ¡ 5 i.e. a speedupof only 5 is possibleno matter
how many processorsareavailable.

Now noteagainthattherealtimeratio is

~ � ~ 9 �&: 3 � w . t�j 8$9 �&:�K Thus,in order
to obtain the speed-upfrom the real time ratio, onehasto multiply all real time
ratiosby

8$9 �P:"j 9 � w . t�: . On a logarithmicscale,a multiplicationcorrespondsto a
linear shift. In consequence,speed-upcurvescanbeobtainedfrom our real time
ratio curvesby shifting thecurvesup or down sothatthey startat one.

This alsomakesit easyto judgeif our speed-upis linearor not. For example
in Fig. 7 bottom,thecurve which startsat 0.5 for 1 CPUshouldhave anRTR of
2 at 4 CPU,anRTR of 8 at 16 CPUs,etc. Downwarddeviationsfrom this mean
sub-linearspeed-up.Suchdeviationsarecommonlydescribedby anothernumber,
calledefficiency, anddefinedas � 9 �<:�� 3 8$9 �P:"jN�8$9 �<:

19

0.0001

0.001

0.01

0.1

1

1 4 16 64 256 1024

ef
fic

ie
nc

y

number of CPUs

Portland TIGER network (200 000 links)

ASCI Blue Mountain parallel supercomputer
Gbit switched

Gbit non-switched
10 Mbit switched

10 Mbit non-switched

Figure8: From [6]. Efficiency for the sameconfigurationsasin Fig. 7 bottom.
Notethatthecurvescontainexactly thesameinformation.

.
It is obvious thatan idealsystemwith p processorshasa speedupequalto p.

However, this is not the casein practicesincein a parallelprogram,a processor
cannotuse100%of its time for thecomputation.It shouldalsoconsumesomeof
its time for thecommunication.Therefore,we caninterprettheefficiency formula
above as a measureof the percentageof time for which a processoris utilized
effectively. Ideally, efficiency equalsto 1 but in practiceit is between0 and 1
dependingonhow aprocessoris employed.

Fig. 8 containscurvesof theefficiency

�
asa functionof thenumberof CPUs� for someof thecasesdiscussedabove. Noteagainthattheseplotscontainnonew

information,they arejustre-interpretationsof thedatausedfor Fig. 8 bottom.Also
notethat in our logarithmicplots,

� 9 �<: will just be thedifferenceto thediagonal� 8$9 �P: . Efficiency canpointoutwhereimprovementswouldbeuseful.

20

8 Summary

This paperexplainsa parallelizationmethodfor the wide areamicro traffic sim-
ulations. Thesekind of simulationsshouldbe parallelizedin orderto achieve an
efficient usein termsof computingresources.Our approachhereis to run sucha
simulationonaclusterof PCswhichis muchmoreaffordablethanto buy aparallel
computer.

Parallelcomputingcomeswith someimportantissuessuchasdomaindecom-
position, datasharing/exchanging and communicationbetweenprocessors.We
representour approacheson theseissueswhich will affect the performanceof a
parallelsystem.

A well-behaved parallel systemis load balanced. In order to achieve load
balancing,oneshouldbe carefulwith the domaindecomposition.If the parallel
applicationdoesnot have constantloadson the processors,it is betterto usea
dynamic/adaptive methodto disaggregatethedomainontoprocessors.

Datasharingamongprocessorscanbeemployedby usingeithershared-address
spacemethodor messagepassingapproach.Messagepassingis moreefficient in
termsof bandwidthandmemoryusage.Eachprocessoris independentbut at the
sametime in acooperationwith theotherprocessorswhennecessary. As thename
implies, thecommunicationis donethroughthemessagesexchangedamongpro-
cessors.

Wefinally demonstratehow computingtimefor aparalleltraffic micro-simulation
can be systematicallypredicted. An importantresult is that a typical city with
20024 links network runsabout40 timesfasterthanreal time on 16 500 MHz
Pentiumcomputersconnectedvia switched100Mbit Ethernet.Theseareregular
desktop/LANtechnologies.Whenusingthe next generationof communications
technology, i.e. Gbit Ethernet,we predict the samecomputingspeedfor a much
largernetwork of 200000links with 64 CPUs.

References

[1] R.J. Beckmanet al. TRANSIMS–Release1.0 – The Dallas-FortWorth
casestudy. Los Alamos UnclassifiedReport (LA-UR) 97-4502,seetran-
sims.tsasa.lanl.gov, 1997.

[2] J.J.Dongarra,I.S. Duff, D.C. Sorensen,andH.A. vanderVorst. Numerical
linear algebra for high-performancecomputers. Software, Environments,
andTools.SIAM Societyfor IndustrialandApplied Mathematics,Philadel-
phia,1998.

21

[3] W. GroppandE. Lusk. Why arepvmandmpi sodifferent?

[4] METIS library. www-users.cs.umn.edu/˜ karypis/metis/metis.html.

[5] MPI: MessagePassingInterface.Seewww-unix.mcs.anl.gov/mpi/mpich.

[6] K. NagelandM. Rickert. Parallelimplementationof theTRANSIMSmicro-
simulation,submitted.Seewww.inf.ethz.ch/̃ nagel/papers.

[7] W. Niedringhaus,J.Opper, L. Rhodes,andB. Hughes.IVHS traffic modeling
usingparallelcomputing:Performanceresults. In Proceedingsof the Inter-
nationalConferenceon Parallel Processing, pages688–693.IEEE,1994.

[8] The p4 parallel programming system. See http://www-
fp.mcs.anl.gov/ lusk/p4/.

[9] PVM: Parallel Virtual Machine. See
www.epm.ornl.gov/pvm/pvm home.html.

[10] M. Rickert. Traffic simulation on distributed memorycomputers. PhD
thesis, University of Cologne, Germany, 1998. See www.zpr.uni-
koeln.de/̃ mr/dissertation.

[11] M. Rickert and K. Nagel. Dynamic traffic assignmenton paral-
lel computers. Future generation computer systems, in press. See
www.inf.ethz.ch/̃ nagel/papers.

[12] TRANSIMS, TRansportationANalysisandSIMulationSystem,since1992.
Seetransims.tsasa.lanl.gov.

22

