
IterativeRoutePlanningfor ModularTransportationSimulation

BryanRaney
�
andKai Nagel

�
Dept.of ComputerScience,ETH Zürich

CH-8092Zürich,Switzerland

March7, 2002

Abstract

TheTRANSIMS(TRansportationANalysisandSIMulationSystem)projectis a largescaletransportation
systemprojectproducedby LosAlamosNationalLaboratoryfor transportationplanning.In TRANSIMS,
all processesarerepresentedonthemicroscopiclevel. Theseprocessesrangefrom decisionsof individuals
abouttheir daily activitiesall theway to signaloperationsandtraffic movements.TRANSIMS consistsof
severalmodules,someof whicharelistedhere:

� Routeplanner, whichgeneratestravel plansfor eachdriver.
� Micro-simulation, which executesall planssimultaneouslyandin consequencecomputesthe inter-

actionbetweendifferenttravelers,leadinge.g.to congestion.
� Feedback: The above modulesare interdependent.For example,plansdependon congestionbut

congestiondependson plans. This is solved via an iterative method,wherean initial plansset is
slowly adapteduntil it is consistentwith theresultingtravel conditions.

As part of the eventualgoal of implementingthe TRANSIMS software for all of Switzerland,we are
runningsimulationsonatest-casewith theSwitzerlandtransportationnetwork. Weuseasimilarsimulation
framework asfoundin TRANSIMS,but with ourown, simplerversionsof thethreemodules.

We discusstheoperationandinteractionof thesemodules,andbring to light a combinedflaw in our
routeplannerandfeedbackmodules.This flaw initially causedseveralunrealisticsimulationresults,such
asfreewaysbeingavoidedby vehiclesin favor of lower-capacityroads.Weillustrateseveralimprovements
madeto themodelinglogic of themodulesin aneffort to correcttheseproblems,andcomparesimulation
resultsfrom thevariousmethods.

We alsodiscussthe resultsof our mostsubstantialimprovement,which is the additionof a database
thatgiveseachdriver a “memory” of its pastroutesfrom earlieriterations,plus theperformanceof those
routes.Whena new plan-setis generated,eachdriverchoosesa routefrom thosein its memory, basedon
their relativeperformance.Thissolutionappearsto beveryrobust,becauseit doesnotdependonhaving a
routeplannerthatworksperfectlyall thetime.

1 Intr oduction

There is an emerging consensusthat large scaletransportationsimulationsconsistof several cooperating
softwaremodules,someof thembeing:

� Traffic simulation module – This is wheretravelersmove throughthestreetnetwork by walking,car,
bus,train,etc.

� Modal choiceand route generation module – The travelersin the traffic simulationusuallyknow
wherethey areheaded;it is the taskof this moduleto decidewhich modethey take (walk, bus, car,
bicycle, ...) andwhich route.

�
raney@inf.ethz.ch�
nagel@inf.ethz.ch

1

� Activity generationmodule– Thestandardcausewhy travelersareheadedtowardacertaindestination
is thatthey wantto performaspecificactivity atthatlocation,for examplework,eat,shop,picksomeone
up,etc.Theactivity generationmodulegeneratessyntheticdaily plansfor thetravelers.

� Life style, housing, land use,fr eight, etc. – Theabove list is not complete;it reflectsonly themost
prominentmodules. For example,the whole importantissueof freight traffic is completelyleft out.
Also, at the land use/housinglevel, therewill probablybe many modulesspecializinginto different
aspects.

� In addition,thereneedtobeinitialization modules, suchasthesyntheticpopulationgenerationmodule,
which takescensusdataandgeneratesdisaggregatedpopulationsof individual peopleandhouseholds.
Similarly, it will probablybenecessaryto generategooddefault layoutsfor intersectionsetc.without
alwaysknowing theexactdetails.

Theabove modulesinteract,andtheinteractiongoesin bothdirections:for example,(theexecutionof) plans
lead(s)to congestion,yet (the expectationof) congestioninfluencesplans. Any large scaletransportation
packageneedsto resolve this logicaldeadlockin ameaningfulway.

Realityseemsto approachtheissueof feedbackby aslow system-widelearningprocess:Peoplepre-plan
majorpiecesof their life (likewhenandwherethey work) a long time in advanceandnormallyonly re-adjust
small piecesof their scheduleswhenneeded[1]. More precisely, they pre-planandre-adjuston many time
scales,wherethetimescaleis relatedto themagnitudeof theadjustment:workplacesandhomelocationsare
re-adjustedon time scalesof several years,while thedecisionto make a detourto buy someice creammay
happenwithin seconds.In consequence,a simulationsystemis facedwith two challenges:

1. Modelingadaptationandlearningon all time scales– In principle,a transportationsimulationshould
simulateseveral thousanddaysin sequence,andthedecisionsof the individual peopleshouldunfold
on their particulartime scalesaspointedout above. In particular, travelersshouldbe ableto replan
while en route. While this soundssimple in principle, it is difficult in practice,becauseonewants
to avoid a large monolithicsoftwarepackageandthusto separatethe traffic flow simulationfrom the
strategic decision-makingof thetravelers.Thisbecomesparticularlyrelevantfor paralleltransportation
simulations,sincenow thestrategic planningneedsto beseparatedfrom thetraffic simulationalsofor
performancereasons.This is not thetopic of thispaper;see[2, 3] for moreinformation.

2. Behavioral realismvs. fast relaxation– In practice,simulatingseveral thousanddaysin sequenceis
difficult to do becauseof computationalresourcelimitations. It is alsoquestionableif this would yield
usefulresultswithoutadeepunderstandingof thelearningdynamics.As areactionto this,mathematical
modelingof transportationscenarios,aswell asof economicsin general,in thepasthasreliedon the
notion of a Nashor UserEquilibrium (UE). As is well known, in a UE no traveler can improve by
unilaterallychangingher/hisbehavior. Theadvantageis that this prescribesa stateof thesystemand
it doesnot matterhow the computationalsystemfinds it – asopposedto a realisticmodelingof the
transientlearningdynamics.Today, we however increasinglyrecognizethat socio-economicsystems
do not operateat a UserEquilibrium point; for example,for thehousingmarket it is assumedthat the
systemis permanentlyin thetransients[4].

This secondpoint is the focusof this paper. Our approachto the problemis to designa framework which
admitsall the differentviews to the problem. That is, the framework shouldaswell converge to the User
Equilibrium (assumingit is uniqueandanattractor– this is a difficult discussionbut againoutsidethescope
of this paper)asit shouldallow for experimentationwith differentbehavioral hypotheses.We entirelycon-
centrateon day-to-dayreplanningalthoughour resultswill alsoapplyto within-dayreplanning.In particular,
we will demonstratethat the introductionof an agentdatabase,which keepstrack of agents’paststrategies
andtheirperformances,will greatlyimprove bothplausibilityandrobustnessof thesystem.

Throughoutthispaperweusethetermagent to referto anentitywithin thesimulationcapableof making
decisionaboutits actions(suchastherouteto take from point � to point �). Sinceoursimulationdoesnotyet

2

involve landuseor othernon-transportationactivities, anagentis presentlyequivalentto a traveler, a person
usingthetransportationnetwork.

The structureof this paperis asfollows: Section2 describesthe specificmoduleswe areusingin this
study. Section3 introducesthe traffic scenarioswe areapplyingthosemodulesto. Following that, Sec.4
describessomeresultsfrom theday-to-dayreplanningof our feedbacksystem,whichturnedout to havesome
implausibleimplications. We continuethe sectionby describingsomealterationswe madeto the feedback
mechanismto try to resolve the problems,andthe resultsof thosechanges.Next we presentin Sec.5 the
agentdatabase,a completelydifferentandmorerobust approachto solvingtheproblemsencounteredin the
previoussection.We finish with conclusionsin Sec.6. For reference,we have providedAppendixA, which
listssomeof thesourcecodeusedin our framework andwith theagentdatabase.

2 The Modules

Themoduleswhich areimportantfor this studyarethetraffic micro-simulation,therouter, andthefeedback
mechanism,whichcontrolstheinteractionbetweenthemicro-simulationandtherouter.

2.1 QueueMicr o-Simulation

As atraffic micro-simulationweuseanimprovedversionof aso-called“queuesimulation”[5]. Theimprove-
mentsrefer to an implementationon parallelcomputers,andto an improved intersectiondynamics,which
ensuresa fair sharingof theintersectioncapacityamongincomingtraffic streams[6]. Thedetailsof thetraf-
fic simulationarenot particularlyimportantfor this paper;we expectmany traffic simulationsto reproduce
similar results.Theimportantfeaturesare:

� Plansfollowing. Thefeedbackframework generatesindividual routeplansfor eachindividual vehicle,
andthetraffic simulationneedsto have travelers/vehicleswhich follow thoseplans.

This impliesthatthetraffic simulationneedsto bemicroscopic,thatis, all individual travelers/vehicles
are resolved. Beyond that, it doeshowever not prescribethe dynamics;everything is possiblefrom
smoothparticlehydrodynamicswhereparticlesaremovedaccordingto aggregatedandsmoothedquan-
tities (e.g.[7, 8]) to virtual realitymicro-simulations(e.g.[9]).

� Computationalspeed. We needto run many simulationsof 24-hourdays– usually about50 for a
singlescenario. This meansthatacomputationalspeedof 100timesfasterthanrealtimeon a network
with several thousandsof links andseveral millions of travelersis desirable. Our queuesimulation
demonstratesthatthis is feasible.

� Simulationoutput.Theframework needsacertaintypeof simulationoutputto function.Theseoutputs
aresimpleanddo not requiresophisticatedprogrammingskills or a sophisticatedoutputsubsystemof
themicro-simulation(asopposedto, say, Ref. [9]). Theserequirementsarethat the traffic simulation
outputs(i) thetime every time a vehicle/traveler leavesa link, and(ii) a dumpof thelocationsof each
vehicle/traveler in thesystemin specifiedintervalsof time. Thefirst oneis theinformationfrom which
link travel timesarecomputed;thelatteris in factnecessaryfor debuggingandvisualizationonly.

� Congestionbuild-up andqueuespillback.Althoughthis is nota requirementfor theframework in gen-
eral, the resultsof thepresentpaperdependon the fact that congestionnormally startsat bottlenecks
(i.e. wheredemandis higherthancapacity),but thenspills backwardsinto thesystemandacrossinter-
sections.Oncesuchcongestionis there,it takesa largeamountof time to resolve it; in fact,if thereare�

vehiclesin aqueueupstreamof abottleneckandthecapacityof thebottleneckis 	 , thentheamount
of time to clearthe queueis

��
 	 . The modelshouldreflect this, and it shouldreflect that physical
spacethatthequeuedvehiclesoccupy in thesystem.

3

2.2 Router

In addition, we needa router, i.e. a modulethat generatespathsthat guide vehicles/travelers throughthe
network from a givenorigin to a givendestination.In addition,thevehicles/travelershave startingtimes,and
therouterneedsto besensitive to congestionin thesensethatit tendsto avoid congestedlinks.

Therouterwe have usedfor thepresentstudyis basedon Dijkstra’s shortest-pathalgorithm,but “short-
ness”is measuredby the time it takesan agentto travel down a link (roadsegment)in thenetwork. These
timesdependon how congestedthelinks are,andsothey changethroughouttheday. This is implementedin
thefollowing way: Theway a Dijkstra algorithmsearchesa shortestpathis by expanding,from thestarting
point of thetrip, a network-orientedversionof a wave front. In orderto make thealgorithmtime-dependent,
thespeedof thiswave front alonga link is madeto dependonwhenthiswave front entersthelink.

That is, for eachlink � we needa function �������� which returnsthe link “cost” (� link travel time) for a
vehicleenteringat time � . This informationis takenfrom a run of thetraffic simulation.In orderto make the
look-upof �������� reasonablyfast,we aggregateover 15-minbins,duringwhich thefunction is keptconstant.
That is, for exampleall vehicles/travelers enteringa link between9am and 9:15amwill contribute to the
averagelink travel timeduringthattime period.

2.3 Feedback

Finally, we needthe feedbackmechanismto couplerouterandtraffic simulation. Initially, we planall trips
basedon freespeedtravel times,andfeedthetraffic simulationswith thoseplans.Fromthenon,every timea
traffic simulationrun completes,therouteplannerusesthetraffic simulationoutputto updatethetravel-time
(costof utilization) associatedwith eachlink in thenetwork. After the routeplannerupdatesits view of the
network, it generatesnew plansfor asubset(typically a randomlyselected10%)of thedrivers,andtheentire
updatedplan-setis fed backinto themicro-simulationfor anotherrun. We repeatthis processasmany times
asnecessary(about50) until the system“relaxes”. Relaxationis asof now not measuredby a quantitative
criterion,but via judgingvisualizeroutput.This will eventuallychange.

Figure1 givesanideaof theimprovementin thesystembroughtaboutby theiterativescheme.Thefigure
shows two snapshotsof vehiclepositionsin theGotthardscenario,describedin Sec.3. The left sideof the
figure shows a snapshotof the vehiclesin the midst of the initial iteration (number0), 2-3 hoursafter all
vehicleshave left theirstartinglocations,for theircommondestination.In this iterationdemandis notknown,
soeachtravelerassumesfreespeedtravel times,andchoosesa routeasif it is theonly driver in thenetwork.
Thus,the freewaysareall in use,andno alternative routeshave beenexplored. The right sideof thefigure
shows thesamesituation,but 49 iterationslater. Here,thedriverstake into accountthecongestioncausedby
othervehicleson theroadways,somany moreroutesareexplored. In the49th iteration,fewer travelerstake
the“middle” pathsthroughtheAlps (suchastheGotthardtunnel)thanin the0th iteration,insteadelectingto
take thewesternor easternpaths.

3 The Scenario

Thegoalof ourwork is a full 24-hoursimulationof all of Switzerland,includingtransittraffic, freight traffic,
andall modesof transportation.This will involve about7.5million travelers,andmorethan20 million trips
(includingshortpedestriantrips etc.).A moreshort-termgoal is a full 24-hoursimulationof all of cartraffic
in Switzerland.For this,we will have about10 million trips.

Our network consistsof 10572 nodesand28622 links. This network is provided by the Swisstrans-
portationplanningauthorities.Besidesthestandardattributesfor geographicallocationandlength,the links
have speed,capacity, andtype attributes. As of now, no streetlayout,not even the numberof lanes,is part
of that information;also,no informationabouttraffic signalsis known. This makesusingthe TRANSIMS
micro-simulationdifficult sinceit needsthat information. This is oneof the reasonswhy we useour queue
simulationasdescribedabove.

4

N

Destination

N

Destination

Figure1: Exampleof relaxationdueto feedback.LEFT: Iteration0 at9:00– all travelersassumethenetwork
is empty. RIGHT : Iteration49at 9:00– travelerstake morevariedroutesto try to avoid oneanother.

In orderto testour modulesandour framework, we usea so-calledGotthard scenario. In this scenario,
50’000 travelers/vehiclesstart,with a randomstartingtime between6amand7am,at randomlocationsall
overSwitzerland,andwith adestinationin Lugano/Ticino. Althoughthisscenariohassomeresemblancewith
vacationtraffic in Switzerland,its main purposeis to testthecongestiondynamicsof themicro-simulation,
andits interactionwith thefeedbackframework. Thiswill becomeclearlaterin thetext.

4 Link Travel Time Feedback

Evenwithin theframework asdescribedabove,thereis considerableflexibility in how to interpretthedifferent
pieces.Oneof thesepiecesis how to aggregatethelink travel times:While thetraffic simulationgenerateslink
entryandexit timesfor eachindividualvehicle,therouterneedslink traversaltimesasafunctionof link entry
time. As pointedout above, theselatter timesalsoneedto be aggregatedin orderto reducecomputational
overhead.

Oneissueis if to uselink entryor link exit timesasthebasisfor aggregation.Theway therouterworks,
onewould like the averagetravel time of all vehiclesenteringduring a specificperiodof time. In termsof
simulationlogic, this is awkwardsinceoneneedsto keepinformationaboutwhenthe lastvehiclebelonging
to suchabatchhasactuallyleft thelink.

As a result,TRANSIMS averagesover vehiclesleaving the link during a specificperiodof time. This
hashowever thedisadvantagethatnow theaveragedinformationis no longerconsistentwith therouter– for
example,a link travel time for vehiclesexiting a link between9 and9:15is not thesameasa link travel time
for vehiclesenteringa link between9 and9:15.

This issuecanbeaddressedby “backdating”[10], thatis, onecalculatestherespective link enteringtimes.
TRANSIMS doesthatafter theaveraginghastaken place.For example,assumethat theaveragelink travel
time for vehiclesexiting between9 and9:15 is 10 min, andtheaveragelink travel time for vehiclesexiting
between9:15 and9:30 is 15 min. By backdating,onewould arrive at the result that all vehiclesentering
between8:50 and9:05 need10 min, andall vehiclesenteringbetween9:00 and9:15 need15 min. This
clearly leadsto gapsandoverlaps;TRANSIMS usespiece-wiselinear functionsto interpolatebetweenthe
periods.

In our approach,we decidedto completelyseparatetheaggregationfrom themicro-simulation.That is,
themicro-simulationis askedto outputeventinformationeverytimeavehicleleavesalink (this is information
that alsothe TRANSIMS traffic simulationcangenerate).A post-processingstepthenaggregatesthis data
into theinformationneededby therouter.

For thepost-processing,weuseapairof AWK scripts.Thefirst script,(seeSec.A.1 for listing), readsthe

5

Side Roads

N

Freeway

Side Roads

N

Freeway

Figure2: A freeway andsideroadswith theoriginal travel time feedbackstrategy at 19:00(left) and20:00
(right). Thesideroadscontainmany vehicleswhile thefreeway containsvery few or none.

eventsfile producedby themicro-simulation,filters theeventsmarkingvehiclesexiting links, andcompiles
themtogetherinto an intermediatefile that lists, for eachvehicle,the time it enteredandexited eachlink in
its plan. It alsocreatesa secondfile that lists the arrival timesof eachvehicleat its destination.Coupled
with the (alreadyknown) startingtimesof the travelers’ routes,this secondoutputfile enableseachtraveler
to calculatethetotal travel time of its plan.Thesecondscript(seeSec.A.2 for listing), aggregatestheoutput
of thefirst script, to determinetheaveragetravel-timeon the links. For eachlink in thenetwork, this script
keepsa runningcountof thenumberof vehicleswhoenteredthelink duringeachtimebin of theday;aswell
asa runningsumof the total amountof time thatgroupof enteringvehiclesspenton the link. Dividing the
sumby thecountfor eachlink andtimebin combinationgivestheaveragetravel timefor thatlink duringthat
timebin.

4.1 Initial Results

We rantheabove setupwith theGotthardscenario.In this sectionwe presenttheinitial resultsof thatsimu-
lation.

For the following, we concentrateon an about50 km � 100 km sectionnorth of Lugano. For better
exposition,theorientationof theplotswill berotatedby 90degrees,sothatLuganonow is to theright andthe
Alps areto theleft. Fig.2 showssnapshotsof thesituationat19:00andat20:00.Theseandall othersnapshots
areafter49 feedbackiterations.In general,thevehiclesarejammedup becausetherearebottlenecksinside
Luganofor thevehiclesto reachtheirdestination.

Theimplausiblefeatureof theseplots is that therearetraffic jamson thesideroadswhile thefreeway is
empty. Notethatthereis noen-routereplanning,andsotheplan-following vehiclesarestuckwith theirplans
for thewholedurationof their trips.

After furtherinvestigation,we foundthattheproblemwascausedby thefactthattherouterwill not react
“f astenough”if traffic is moving well at thebeginningof thetimebin, but notat its end.Carsthatareon that
link at thebeginningof thetime bin will leave soonerthantherouterexpects,but thoseplacedat theendof
thetimebin will leave laterthanexpected.

As anexample,supposea link � hasa free-speedtravel-timeof 3 minutes,andtherouteris considering
routingtwo agents� and � on thatlink duringthetimebin from 7:00to 7:15.Supposefurtherthat � is close
to free-flowing at7:00,but getscongestedby 7:15. Its averagetravel-timeduringthis timebin is calculatedto
be5 minutes.

If agent� startsouton thelink nearthebeginningof thetimebin, say7:03,it hasaclearrideandwill be
off the link in, say, 4 minutes.If agent� startsout on the link closerto theendof thetime bin, say7:10, it

6

Side Roads

N

Freeway

Side Roads

N

Freeway

Figure3: A freeway andsideroadswith theoffset time bins strategy at 19:00(left) and20:00(right). The
sideroadscontainmany vehicleswhile thefreeway containsvery few or none.

getsinto thatcongestionandhasa longertravel time,say9 minutes.Theresultis thatagent� is oneminute
aheadof therouter’s schedulefor it, while � is 4 minutesbehindschedule.

Overall, therearefour cases:

� Congestionbuilding up, andvehicleearly in time bin. Thenthevehiclewill be fasterthanthe router
thinks.Thevehiclewill befaster, andsincecongestionis justbuilding up, it will alsobefasterin other
partsof thesystem,thusamplifying theinitial error.

� Congestionbuilding up, andvehicle late in time bin. The the vehiclewill be slower thanthe router
thinks. Thevehiclewill fall behind,andsincecongestionis building up, it will fall behindfurther in
otherpartsof thesystem,thusamplifying theinitial error.

� Congestiongoingaway, andvehicleearly in time bin. Thenthevehiclewill beslower thantherouter
thinks. The vehiclewill fall behind,but by falling behindwill encounterlesscongestion,which will
limit how muchit fallsbehind.

� Congestiongoing away, andvehicle late in time bin. Thenthe vehiclewill be fasterthan the router
thinks.Thevehiclewill befaster, but by beingfasterit will encountermorecongestion,whichwill limit
how far aheadof scheduleit is.

Fromthisdescriptionit is clearthatin particularthefirst two casesareaproblemsincethedynamicstendsto
amplify theerrors.In orderto testourhypothesis,wedescribetwo modificationsto therouterin thefollowing.

4.2 Offsetting the Time Bins

How do we fix this problem?Sincetheproblemseemsto betherouter’s reactionto a link’s transitionfrom
free-flowing to congestion,we considergiving the routeran “early warning” aboutimpendingcongestion
build up. We do this by simply offsettingall the time bin dataso that it is aheadof reality by onebin. This
causesthe router to usethe 7:15-7:30time bin informationwhenit is calculatinglink costsbetween7:00
and7:15. That way, it will start instructingagentsto avoid congestedlinks before thoselinks actuallyget
congested.Thisstrategy will alsocausetherouterto placemorevehiclesonlinks undergoingtransitionsfrom
congestedto free-flowing atanearliertime. Basedon thereasoningabove,however, this situationshouldnot
causetoomuchof aproblem.

Figure3 shows theoutcomeof thisstrategy. Wecanseethatthefreeway is still emptyingearlierthanthe
sideroads.Thisstrategy, by itself, doesnot seemto helpusat all in this case.

7

Side Roads

N

Freeway

Side Roads

N

Freeway

Figure4: A freeway andsideroadswith themaximumtravel time strategy at 19:00(left) and20:00(right).
At 19:00thesideroadscontainsomevehicleswhile thefreeway is mostlyempty. At 20:00thesideroadsare
now emptywhile thefreeway containsa few vehicles.

4.3 Maximum vs. AverageTravel-Time

Anotherissuewith the datausedby the routeris that it is an averageof the travel timesexperiencesby the
vehicles. As statedabove, if the routerunder-predictsthe travel-time for an agenton a link during a time
bin, thatagentwill bebehindschedule.But, if therouterover-predicts,thenit is not a big problem.Instead
of giving therouteranearlywarning,we alter therouter’s view of the links sothat it paysmoreattentionto
thetravel timesof thosevehicleswho experiencedcongestionon the links. In otherwords,we biasthedata
againstcongestedlinks. Thesimplestway to do this is to take themaximumtravel-timeexperiencedon each
link duringeachtimebin, ratherthantheaverage.

Figure4 shows theresultof this strategy. Thisstrategy alsodoesnot fix theproblembecausethefreeway
still practicallyemptiesearlierthanthesideroads.In thiscase,however, wenoticethata few vehiclesusethe
freeway afterthesideroadsareclear. But thenumberof vehicleson thefreeway is toosmallcomparedto the
sideroad.Weseemto begettingsomeimprovement,at least.

4.4 Combining Maximum and Offset

Neitheroffsetting the travel timesdata,nor biasingit toward the maximumreportedtravel time seemedto
completelyfix theproblemof the implausibleresults.We now try, asa new strategy, thecombinationof the
two. We take themaximumtravel timesinsteadof theaverage,pluswe offset theresultingtravel timesdata
by onebin. This shouldimprove the“early warning” to theroutergivenby theoffsetmethod,sinceonly the
mostdelayeddriverswill betheonesreportingtheir experiencesto therouter.

Figure5 shows theoutputfrom this result.As wecansee,thesideroadsfinally emptybeforethefreeway
does,asweexpectedfrom thebeginning.

4.5 Conclusion

After enoughanalysis,“combining maximumandoffset” finally solved theproblem. We essentiallyhadto
greatlyexaggeratetherouter’sview of thelinks undergoingtransitionfrom free-flowing to congestedregimes,
sothatit couldreactin time to move travelersaway from thoselinks to avoid thecongestion.

This solutionwastailoredfor this specificproblem,however. If thereareotherroutingproblemsthatwe
discoveratalatertime,wemayhaveto adjustourtravel timereportingstrategy again.Suchadjustmentscould
conflictwith thecurrentmethod,bringingbacktheproblemof emptyfreewayswith congestedsideroads.We
would like amorerobustsolution,whichcanwork evenif flawsexist in therouteror thefeedbacksystem.

8

Side Roads

N

Freeway

Side Roads

N

Freeway

Figure5: A freeway andsideroadswith thecombinedoffsettime binswith maximumtravel time strategy at
19:00(left) and20:00(right). Thesideroadsarefinally empty, while thefreewaynow containsvehicles.This
is whatis expectedfrom thescenario.

In thenext sectionwepresentanalternativesolutionto themaximumand/oroffsetstrategies,whichmoves
away from adjustingthetravel timesreporting,to adjustingthebehavior of thetravelers.

5 The Agent Database

5.1 Concept

In theabove methods,all agentsforgot their previousplanswhennew oneswerecreated,on theassumption
that the new oneswere alwaysbetterthan the old ones. But, if the router is flawed, or not obtainingthe
properinformation,this might not (always)betrue. So,we now give theagentsa memoryof their pastplans
(decisions),andtheoutcome(performanceof plans)of thosedecisions.We allow themto choosetheir new
planbasedontheperformanceof theroutesin theirmemory. New, untestedroutesfrom therouteriterationare
giventop priority, but if anagenthastried all of his/herplansbefore,thenhe/shechoosesoneby comparing
their performancevalues. This strategy meansthat more thanour original 10% replanningfraction of the
agentswill changetheir plansat a giveniteration.Thesechangeswill be“informed” decisions,though– not
randomexploration.

By giving theagentsamemory, wemustgive themawayto selectrememberedroutes.For agivenplan–
asa whole– we canfind thetotal time takento traversetheroute.This will bea measureof theperformance
of theroute.Agentscancompareperformanceof rememberedroutes,andchooseonebasedon performance
information,withoutknowing anythingelseabouttheroutes.

Theideahereis thatwedon’t needto fix therouterto beperfect,aslongasit generatesreasonableroutes
mostof thetime. Wecanusetheoriginal routerandtravel timereportingstrategies(averagedtravel timesand
non-offset time bins),andstill getbehavior thatmakessense.

In comparison,TRANSIMSalsousesadatabase,calledthe“IterationDatabase,” whichstoresinformation
aboutagentsand their experiencesfrom previous iterations. This databaseis meantto be usedto choose
specificsetsof agentsfor replanning,but to our knowledge,doesnot storepreviously discardedroutesfor
laterre-use.[9]

5.2 Implementation of the Agent Database

We introducea databaseinto the iteration framework to give the agentsmemoryof their plans. Currently,
this databaseis implementedin MySQL, anopen-sourcerelationaldatabasemanagementsystem.Eachtime
the routergeneratesa new (initial or updated)plan-set,thoseplansareaddedto the database,alongwith

9

planstable:
agent plan num is new start time plan

1 1 0 25200 � text string1 �
1 2 1 25200 � text string2 �
2 1 0 25380 � text string3 �
...

...
...

...
...

travel timestable:
agent plan num travel time

1 1 462
1 2 0
2 1 1047
...

...
...

flagstable:
agent plan num flag

1 1 1
1 2 0
2 1 1
...

...
...

Figure6: Exampletablesin the agentdatabase.The “agent” and“plan num” fields arecombinedinto the
primary key for all threetables. The “plan” field of the planstablecontainsa text string consistingof link
identifiersandotherinformationthattherouterrequires.

the identifying numberof their correspondingagent,and the startingtime of the plan. The databasealso
stores,for eachplan,themostrecentlymeasuredtravel time (performancemeasurement)madeby theagent
for thatplan;anda flag that,whentrue,markstheplanasbeingtheoneusedby its agentin themostrecent
micro-simulation.For new, untriedplansgeneratedby therouter, thetravel-timeis consideredto bezero,and
the agentis forcedto alwayschoosethat plan next. SeeFig. 6 for an exampleof how the databasestores
information,andSec.A.4 for theactualMySQL codeusedto interactwith thedatabase.

Oncethenew setof planshasbeenenteredinto thedatabase,thetravel timestableis joinedwith theflags
tableandoutputinto a file. This file is readby a scriptwhich usesthe travel-timesinformationto make the
choicefor eachagentof its next plan. SeeSec.A.3 for the listing of this script. The script writes a new
file with updatesto the flagstable,which is thenwritten into the database.The flagsindicatethat the plan
is chosenin thecurrentiteration. Oncethedatabaseknows which plansto choose,it writes thatsetof plans
(only theoneswith flag � 1) to theinput file for themicro-simulation,andthemicro-simulationis executed.

After the simulationis finished,its eventsoutput is parsedinto entry andexit times for eachagenton
eachlink of their route.Theseentryandexit timesareaggregatedinto the15minutetimebinnedtravel-times,
whichareusedby therouterto generateits next 10%planset.(PleaseseeSec.4 for amoredetaileddescription
of thesescripts,or Secs.A.1 andA.2 for thelistingsof them.)At this timeanotherfile is createdthatindicates
thearrival timeof eachagentat its destinationlink. Thisfile is readbackinto thedatabase,theplanstarttimes
aresubtractedfrom thearrival times,andthetravel-timesareupdated.This only occursfor planswhich are
flaggedin theflagstableashaving beenusedin the last iteration. In otherwords,only oneplanperagentis
updatedwith thetravel time.

At this point, thedatabaseis readyfor thenext iteration,whentherouterwill againgeneratea new setof
plansthatmustbeenteredinto thedatabase.

5.3 How plansare actually chosenbasedon performance

Theonly detailleft outof theaboveexplanationis how theperformance(total travel-time)informationis used
by theagentsto choosetheirplanfor thenext iteration.

Eachagentusesthe following model to comparethe utility functionsof its rememberedplans. This
functionis definedastherelative probability, � , of choosingagivenplan (out of ! plans)for anagent� :

�����"�"#%$ &'�)(*�,+�-/.0�2143657�"�"#%$ &'� (1)

10

where 3 is an empirical constant,and ���2#7$ & is the total travel time known by agent � for its plan . This
resemblesbothaBoltzmanndistribution in physicsanda logit modelin discretechoicetheory[11].

Equation1 is only a relative probability;in orderto have theprobabilitiesfor all ! plansof agent� sumto
1, we mustnormalizetheprobabilities.Let �98 bethenormalizedprobability:

� 8 ����� #7$ & �)(*� �:���"#%$ &'�;=< &?>0@ �����2#7$ &A� (2)

Next, we calculatethecumulative probabilitysums:

B)#7$ &C(*�
&D
E >0@

� 8 ���2#7$ E � (3)

Agent � next draws a randomnumber, FHGJI KML%NO� . It thenchoosesplan suchthat
B 	 #7$ & is aslarge as

possible,but is lessthan F :
B)#%$ &C�PFRQ B)#7$ &TS0@ (4)

The end result of thesecalculationsis that agentsare most likely to choosethe plan with the highest
performance,second-mostlikely to choosetheplanwith thesecondhighestperformance,etc. Sincea plan’s
performanceis overwrittenby new triesof thatplan,if theplanimprovesits performance,it is morelikely to
bechosenin thefuture. If it’s performancedegradesuponreuse,it will betried lessoftenin thefuture.

Thevalueof 3 determineshow likely it is thata“non-best”planwill bechosen.For theGotthardscenario,
we chosethevalueof 3 so thatabout90%of theagents,in the initial iterationsat least,would choosetheir
bestpossibleplan. In otherwords,we allowedonly 10%(of the90%who werenot replannedin thecurrent
iteration)to retry “non-best”plans. Specifically, we set 3 to be @U�V�W . This allows the relaxationto progress
rapidly in theearlyiterations,andgivesagentstheability to occasionallygive “non-best”plansthechanceto
improve.

5.4 Resultsof Agent Databaseon the Gotthard Scenario

Figure 7 shows the resultsof using the original strategy from Sec.4 plus the agentdatabase,with plans
selectedasdescribedabove. As onecansee,thefreewayproblemis avoidedwhentheagentshavememoryof
their plans.If therouterstartsputtingtoo many agentson thesideroads,somewill eventuallytry out anold
planthatusedthefreeway andfind thatit hasa goodperformance,sowill likely usethatplanagain.As long
asthey rememberoneor moreplansthatutilize the freeway, theagentscandecidefor themselvesto useit,
bypassingthesideroadchoiceof therouter. Thus,theagentdatabasegivesanaddedflexibility androbustness
to thesystem,sothatevenwith aflawedrouteror feedbackmechanism,theresultscomeout satisfactorily.

Thisvalueof 3 wechoseseemedto work well, but futurework will likely needto exploretheoutcomeof
othervaluesfor this constant.

6 Conclusion

Thepurposeof this paperandthis studyis to demonstratethat for multi-moduletransportationsimulations,
not only is the functionality of the singlemodulesimportant,but alsohow they interact. In particular, an
agent-basedimplementationof theinterfacesbetweenthemodulesis capableof correctingfor artifactsin the
modules.An agent-basedrepresentationmeansthattravelersareconsideredasagents,which have a memory
of different strategies and their respective performances.In general,they chosethe strategy with the best
performance,but from time to time re-try oneof theotherstrategiesjust to checkif its performanceis still
unchanged.Also from time to time,new strategiesaregeneratedandaddedto thepool.

In this particularexample,we applythis approachto routefeedbackfor dynamictraffic assignment.The
problemwasthat the routerusesaggregatedfeedbackinformationfrom the micro-simulation,andthat this

11

Side Roads

N

Freeway

Side Roads

N

Freeway

Figure7: A freeway andsideroadswith theagentdatabasestrategy at 19:00(left) and20:00(right). As with
the “max andoffset” strategy, thesideroadsareemptying,while the freeway containsvehicles.This shows
theagentdatabaseis asolutionto thefreeway problem.

aggregationwith mostplausiblealgorithmsleadto artifactsin the resultingtraffic. Specifically, the router
under-estimatedlongdistancetravel times,leadingto thefactthattherouterassumedtheexistenceof conges-
tion for laterpartsof the trip while in fact thecongestionwaslong gone.This resultedin travelersusingthe
sideroadswherethefreewaywouldhavebeenmuchbetter. Theuseof theagentdatabasesolvesthisproblem
withoutanychangesin therouter. Thatis, evenwhentherouterconsistentlygeneratesfaultyplans,theagent
databaseapproachwill compensatefor this aslongasat leastsomeof theroutesareplausible.

TheapproachwasimplementedusingMySQL asadatabase,andperl/awk asscriptinglanguages.Further
detailsaregivenin thetext.

Acknowledgments

Wewouldliketo thanktheSwissregionalplanningauthority(Bundesamtfür Raumentwicklung)andMilenko
Vrtic at theInstitutefor TransportationPlanning(IVT) of ETH Zürichfor providing theSwitzerlandnetwork;
AndreasVöllmy for theGotthardscenarioinitial plansetdata;andNurhanCetinfor theparallelqueuesimu-
lation.

References

[1] S.T. DohertyandK. W. Axhausen.Thedevelopementof aunifiedmodellingframework for thehouse-
hold activity-travel schedulingprocess. In Verkehr und Mobilität, number66 in StadtRegion Land.
Institut für Stadtbauwesen,TechnicalUniversity, Aachen,Germany, 1998.

[2] K. Nagel.Distributedintelligencein largescaletraffic simulationsonparallelcomputers,in preparation.
Seewww.inf.ethz.ch/personal/nagel/papers.

[3] K. Nagel. Routing in iterated transportation simulations, in preparation. See
www.inf.ethz.ch/personal/nagel/papers.

[4] P. Waddell,A. Borning, M. Noth, N. Freier, M. Becke, andG. Ulfarsson. Microsimulationof urban
developmentandlocationchoices:D esignandimplementationof UrbanSim. Networksand Spatial
Economics, in press.

12

[5] C. Gawron. An iterative algorithmto determinethe dynamicuserequilibrium in a traffic simulation
model. InternationalJournalof ModernPhysicsC, 9(3):393–407,1998.

[6] N. CetinandK. Nagel. Parallelqueuemodelapproachto traffic microsimulations.In SwissTransport
Research Conference, MonteVerita,Switzerland,March2002.

[7] DYNAMIT, 1999.MassachusettsInstituteof Technology, Cambridge,Massachusetts.Seeits.mit.edu.

[8] H.S.Mahmassani,T. Hu, andR. Jayakrishnan.Dynamictraffic assignmentandsimulationfor advanced
network informatics(DYNASMART). In N.H. GartnerandG. Improta,editors,Urban traffic networks:
Dynamicflowmodelingandcontrol. Springer, Berlin/New York, 1995.

[9] TRANSIMS,TRansportationANalysisandSIMulationSystem,since1992.Seetransims.tsasa.lanl.gov.

[10] I. PorcheandS.Lafortune.Oncombineddynamictraffic assignmentandtraffic-responsivesignalcontrol
problem.TransportationResearch C, submitted.Also at www.eecs.umich.edu/porche/.

[11] M. Ben-Akiva andS.R. Lerman.Discretechoiceanalysis. TheMIT Press,Cambridge,MA, 1985.

[12] J.A. Bottom.Consistentanticipatoryrouteguidance. PhDthesis,MassachusettsInstituteof Technology,
Cambridge,MA, 2000.

[13] E. Cascettaand C. Cantarella. A day-to-dayand within day dynamicstochasticassignmentmodel.
TransportationResearch A, 25A(5):277–291,1991.

[14] R. Palmer. Brokenergodicity. In D. L. Stein,editor, Lecturesin theSciencesof Complexity, volumeI of
SantaFe InstituteStudiesin theSciencesof Complexity, pages275–300.Addison-Wesley, 1989.

[15] M. Rickert andK. Nagel.Experienceswith asimplifiedmicrosimulationfor theDallas/Fort Wortharea.
InternationalJournalof ModernPhysicsC, 8(3):483–504,1997.

[16] R.J.Beckmanetal. TRANSIMS–Release1.0– TheDallas-FortWorthcasestudy. LosAlamosUnclas-
sifiedReport(LA-UR) 97-4502,LosAlamosNationalLaboratory, seetransims.tsasa.lanl.gov, 1997.

[17] J.HofbauerandK. Sigmund.Evolutionarygamesandreplicatordynamics. CambridgeUniversityPress,
1998.

[18] H.S. MahmassaniandS. Peeta.Network performanceundersystemoptimal anduserequilibrium as-
signments:Implicationsfor advancedtraveler informationsystems.TransportationResearch Record,
1408:83–93,1993.

[19] J.D.Holland. Adaptationin Natural andArtificial Systems. BradfordBooks,1992(reprintedition).

[20] M. Ben-Akiva. Routechoicemodels. Presentedat the Workshopon “Human Behaviour andTraffic
Networks”, Bonn,December2001.

[21] K. Nagel.Individualadaptionin apath-basedsimulationof thefreewaynetwork of Northrhine-Westfalia.
InternationalJournalof ModernPhysicsC, 7(6):883,1996.

[22] H. Unger. An approachusingneuralnetworksfor thecontrolof thebehaviour of autonomousindividuals.
In A. Tentner, editor, High PerformanceComputing1998, pages98–103.The Societyfor Computer
SimulationInternational,1998.

[23] H. Unger. ModellierungdesVerhaltensautonomerVerkehrsteilnehmerin einervariablenstaedtischen
Umgebung. PhDthesis,UniversitaetRostock,in preparation.

[24] Chr. Gloor. Modelling of autonomousagentsin a realistic roadnetwork (in german). Diplomarbeit,
SwissFederalInstituteof TechnologyETH, Zürich,Switzerland,2001.

13

[25] S.Weinmann.Simulationof spatial learningmechanisms. PhDthesis,SwissFederalInstituteof Tech-
nologyETH, Zürich,Switzerland,in preparation.

[26] M. Rickert. Traffic simulationon distributedmemorycomputers. PhD thesis,University of Cologne,
Germany, 1998.Seewww.zpr.uni-koeln.de/̃ mr/dissertation.

A SourceCode

A.1 read events.awk

This script readstheeventsoutputof themicro-simulatorandconvertsit into entry time andexit time pairs
for eachvehicleon eachlink. It alsooutputsthearrival timesof theagentsat theirdestinations.

Interface:
Type Name Comment
Input File events.trv travelereventsfile from micro-simulator
OutputFile events.startend thestartingandendingtimesfor each

vehicleoneachlink in its plan
OutputFile END TIMES whenvehiclesfinishedtheir routes

#!/bin /awk -f

This script reads a SINGLE (consolidated) SORTEDevents file and
figures out when each car entered and exited each link in its plan.

BEGIN {
OFS = "\t";
print "VEHICLE ", " LINK", "ENTRY", "EXIT ";

}

main pattern -- executed for each line of input file
{

Skip header line (s)
if ($1 == " TIMESTEP") {

next ;
}

timestep = $1 + 0;
vehicleid = $2;
link = $3;
fromnode = $4; # ignored for now
flag = $5;

Assuming file is sorted by timestep .

Store information for END_TIMES output
if (first_time [vehicleid] == "") {

first_time [vehicleid] = timestep ;
last_time [vehicleid] = timestep ;

} else if (timestep > last_time [vehicleid]) {
last_time [vehicleid] = timestep ;

}

if (last_time [vehicleid] < first_time [vehicleid]) {
print "Something is wrong! ABCDEFG" > "/dev/ stderr ";

}

Ignoring initial link entry, since we do not know where the
parking accessory really is on the link.

flag == 2 means a "normal " link exit .

14

if (flag == 2) {

if (older_time [vehicleid] != "") {

print vehicleid , old_link [vehicleid],
older_time [vehicleid],
old_time [vehicleid];

if (old_time [vehicleid] <= older_time [vehicleid]) {
print "Something is wrong ! ZYEW" > "/ dev/ stderr ";

}

}

older_time [vehicleid] = old_time [vehicleid];
old_time [vehicleid] = timestep ;
old_link [vehicleid] = link ;

}

}

END {
for (v in last_time) {

print v, last_time [v] > "END_TIMES";
}

}

A.2 parse link times entry.awk

Interface:
File Type Filename Comment
Input File events.startend thestartingandendingtimesfor eachvehicle

on eachlink in its plan,from readevents.awk
OutputFile summary.tim travel-timesfile for therouter

#!/bin /awk -f

Read the output of read_events .awk , and transform it into something
resembling a TRANSIMS travel -times summary file , for reading by the
router .

this is for where tt is time_bin of *** ENTRY*** time , not exit time

figure out which 15- minute time bin to store data into
function calc_time_bin (time) {

want times to map like so:
...21600 => 21600
21601...22500 => 22500
22501...23400 => 23400

this is the original time -binning strategy ; subtract 1 to get
offset (so that 7:15 read from the input file goes into 7:00’ s
bin
if ((time % 900) == 0) {

return int (time / 900) - 1;
} else {

return (int (time / 900));
}

}

function print_data () {

print ll , -1 , (tt +1) * 900 , count [ll, tt]+0 , sum[ll, tt]+0 ,
-1 , -99 , -1 , 0 , 0 , -1;

}

15

BEGIN {
OFS = "\t";
SUBSEP = OFS;

min_time_bin = 10000.0;
max_time_bin = -10000.0;

min_link = 100000000.0;
max_link = -1.0;

expected format of TRANSIMS travel times files
we aren ’t using most of these fields
print "LINK" , "NODE" , "TIME" , "COUNT" , "SUM" , "SUMSQUARES" ,

"TURN" , "LANE" , "VCOUNT" , " VSUM" , "VSUMSQUARES" ;
}

NR > 1 {

vehid = $1;
link = $2 + 0.0;
entry_time = $3 + 0.0;
exit_time = $4 + 0.0;

travel_time = exit_time - entry_time ;

time_bin = calc_time_bin (entry_time);

For MAXIMUMstrategy , replace the 2 lines below with
if (travel_time > max[link , time_bin]) {
max[link, time_bin] = travel_time ;
count [link , time_bin] = 1;
}
... and replace "sum " everywhere with "max "

count[link, time_bin] ++;
sum[link , time_bin] += travel_time ;

sumsquared [link, time_bin] += (travel_time * travel_time);

links_seen [link] = 1;
time_bins_seen [time_bin] = 1;

if (link > max_link) { max_link = link; }
if (link < min_link) { min_link = link; }

if (time_bin > max_time_bin) { max_time_bin = time_bin ; }
if (time_bin < min_time_bin) { min_time_bin = time_bin ; }

let user keep track of how far into the input file we are
if (NR % 100000 == 0) {

print "line : " NR >> "/dev/ stderr ";
}

}

END {

go through the time bins of the day
for (tt = min_time_bin ; tt <= max_time_bin ; tt ++) {

go through the links of the network
for (ll = min_link ; ll <= max_link ; ll++) {

if ((ll, tt) in count) {

print_data ();

16

once a link is outputted , it should continue to be
outputted , to show that it is empty
output_link [ll] = 1;

} else if (ll in output_link) {

deal with links that have vehicles on them for more than 15
minutes
count [ll ,tt] = count [ll,tt -1];
sum[ll,tt] = sum[ll, tt-1] - count [ll,tt]*900;

if (sum[ll, tt] <= 0) {
sum[ll , tt] = 0;
count[ll,tt] = 0;

}
(the logic behind the above is that , as soon as the queue should be
resolved , we report zero vehicle entries so the link is unreported .)
(The router uses free -speed travel -times for links during time bins
they are unreported for a time bin.)
the router also ignores links with 0 count

print_data ();
}

}
}

}

A.3 pick plans.exp-Bt.awk

Thisscriptperformsthedecision-makingof theagents.Foreachagent,it choosesoneof theplansremembered
by thatagentbasedon theperformanceof therememberedplans.SeeSec.5.3for thedecisiondescription.

Interface:
File Type Filename Comment
Input File travel times.out travel timesandflagsoutputfrom

database
Input Parameter seed seedfor therandomgenerator
OutputFile flag update.in updateof flagstablefor database

#!/bin /awk -f

Reads a file of agent , plan_num , travel_time , and flag.
Chooses a new plan_num for each agent based on the travel_time .

The probabilistic version -- chooses plan_num based on utility
function exp(- beta*travel_time).

BEGIN {
#1 beta = 1.0/3600.0/6.0;
#2 beta = 1.0/3600.0;
#3 beta = 1.0/1000.0;

beta = 1.0/360.0;
OFS = "\t";
assert ((seed != ""), "I need a seed value !");
srand(seed);

}

function assert (is_true , msg) {
if (! is_true) {

print "ERROR (agent=" old_agent "): "msg > "/dev /stderr ";
error = 1;
exit (1);

}
}

17

function choose_plan_num (chosen_last ,p) {

assert (((1 in tt) && (1 in fl)), "No plans ?");

sum = 0;
chosen_last = 0;

p = 1;
while (p in tt) {

if (tt[p] == 0) {
return p; # ALWAYSchoose brand -new plans (tt=0)

}
prob [p] = exp(- beta * tt[p]);
sum += prob [p];
assert ((p in fl), "Plan " p " is in tt but not fl!");
if (fl[p] == 1) {

assert ((chosen_last == 0) , "Too many chosen plans !");
chosen_last = p;

}
p++;

}
max_p = p - 1;

assert ((chosen_last != 0), "No chosen plans !");

p = 1;
sum_list [0] = 0;
while (p in tt) {

norm_prob [p] = prob[p] / sum;
sum_list [p] = sum_list [p-1] + norm_prob [p];
p++;

}

if (sum_list [max_p] != 1) {
sum_list [max_p] = 1;

}

r = rand ();
p = 1;
while (r >= sum_list [p] && ((p+1) in sum_list)) {

p++;
}

assert ((p <= max_p && p > 0),
"final p (" p") is out of bounds ; max_p=" max_p);

return p;
}

function update_flags (pn,p,q) {
pn = choose_plan_num ();
for (p in tt) {

print old_agent , p, p == pn;
}
delete tt;

}

NR == 1 {
old_agent = $1;

}

Assuming input is sorted by agent ($1) then by plan_num ($2)

{
agent = $1;
plan_num = $2;
travel_time = $3;
flag = $4;

18

if (agent != old_agent) {

choose a plan_num for the agent and print its new flags
update_flags ();

}

tt[plan_num] = travel_time ;
fl[plan_num] = flag ;

old_agent = agent;
}

END {

if (error == 1) {
exit (1);

}

choose a plan_num for the agent and print its new flags
update_flags ();

}

A.4 SQL codefor Agent Database

A.4.1 CreateDatabase
Create the database and set up the tables
To be executed just once, at the beginning of the iteration .

DROPDATABASEIF EXISTS agent_db ;

CREATE DATABASEIF NOT EXISTS agent_db ;

USE agent_db ;

store the plans themselves ; we have some minimal information about
the plan plus the actual plan stored as a text string (which is what
the simulator reads and the router outputs)

is_new tells us that the plan has not been tried yet ; its default is
1, so that newly added plans are automatically marked is_new

CREATE TABLE plans (
agent INT UNSIGNEDNOT NULL DEFAULT 0,
plan_num INT NOT NULL AUTO_INCREMENT,
is_new TINYINT UNSIGNEDNOT NULL DEFAULT 1,
start_time INT UNSIGNEDNOT NULL DEFAULT 0,
plan TEXT NOT NULL,
PRIMARY KEY (agent, plan_num)

) ;

store the most recent performance (utility ?) of the plans
CREATE TABLE travel_times (

agent INT UNSIGNEDNOT NULL DEFAULT 0,
plan_num INT NOT NULL DEFAULT 0,
travel_time INT NOT NULL DEFAULT 0,
PRIMARY KEY (agent, plan_num)

) ;

the flag tells whether or not the plan has been chosen by the agent
for this iteration
CREATE TABLE flags (

agent INT UNSIGNEDNOT NULL DEFAULT 0,
plan_num INT NOT NULL DEFAULT 0,
flag TINYINT UNSIGNEDNOT NULL DEFAULT 0,
PRIMARY KEY (agent, plan_num)

19

) ;

The “flag” and“travel time” attributesarestoredin separatetablesbecauseMySQL doesn’t allow the
databaseto updatea tableusinginformationfrom that table. So,eitherlarge temporarytablesmustbeused,
or theinformationusedto updatea tablemustbestoredin aseparatetable.

A.4.2 ReadPlansinto Database

After creatingthedatabase,therouteris runto generatesomeplans.Plansareconvertedinto aformatsuitable
for readingandsavedunderthefile “plans.for.db”.

Read (new /initial) plans into database

UPDATE plans SET is_new = 0 WHEREis_new <> 0;

LOAD DATA LOCAL INFILE ’plans .for. db’
INTO TABLE plans
FIELDS TERMINATEDBY ’,’
LINES TERMINATEDBY ’\ n\n’

(agent,
start_time ,
plan) ;

The plans are automatically marked as new (default of is_new is 1)

Add entries to flags that correspond to the new plans .

INSERT INTO flags
SELECT agent , plan_num , 0
FROM plans
WHERE is_new = 1;

Add entries to travel_times that correspond to the new plans.

INSERT INTO travel_times
SELECT agent , plan_num , 0
FROM plans
WHERE is_new = 1;

A.4.3 Output Travel Times
Output entire (updated) travel -times table , so the external script
can choose the new set of plans.

Also , output the flag so we know which plan was chosen last time (if
any)

LOCK TABLES travel_times READ, flags READ ;

SELECT
travel_times .agent ,
travel_times .plan_num ,
travel_time ,
flag

INTO OUTFILE ’/iteration /output /location /travel_times .out ’
FROM

travel_times ,
flags

WHERE
travel_times .agent = flags .agent AND
travel_times .plan_num = flags .plan_num

GROUPBY

20

agent ,
plan_num ;

not unlocking here -- that will be done when we read the flags .

Theoutputof theabove is thenprocessedby pick plans.exp-Bt.awk to updatetheflags(seenext sub-section).
(seeSec.A.3).

A.4.4 Update Flagsand Output Plans
Choose new set of plans based on performance , and update flags

CREATE TEMPORARYTABLE tmp (
agent INT UNSIGNEDNOT NULL DEFAULT 0,
plan_num INT NOT NULL DEFAULT 0,
flag TINYINT UNSIGNEDNOT NULL DEFAULT 0,
PRIMARY KEY (agent, plan_num)

) ;

READ lock of travel_times is overridden here

LOCK TABLES flags WRITE , plans READ ;

LOAD DATA LOCAL INFILE ’flag_update .in’ INTO TABLE tmp ;

REPLACEINTO flags
SELECT *
FROM tmp ;

DROPTABLE tmp ;

Output chosen plans

SELECT plan
INTO OUTFILE ’/iteration /output /location /plans .out’
FIELDS TERMINATEDBY ’,’
ESCAPEDBY ’’
LINES TERMINATEDBY ’\ n\n’
FROM

plans ,
flags

WHERE
plans .agent = flags. agent AND
plans .plan_num = flags .plan_num AND
flags .flag = 1 ;

UNLOCKTABLES ;

A.4.5 Update Travel Times

After themicro-simulatoris run,theeventsfilesareparsed.TheEND TIMES file createdby readevents.awk
(seeSec.A.1) is usedhereto updatetravel timesof theplansin thedatabase.

Update travel - times

First run read_events .awk to create END_TIMES file

CREATE TEMPORARYTABLE end_times (
agent INT UNSIGNEDNOT NULL DEFAULT 0,
end_time INT NOT NULL DEFAULT 0

) ;

LOAD DATA LOCAL INFILE ’END_TIMES’ INTO TABLE end_times ;

21

LOCK TABLES travel_times WRITE , flags READ , plans READ ;

We’re overwriting old travel times with new ones; we could also
average or something to not lose the old information completely

REPLACEINTO travel_times
SELECT

flags .agent ,
flags .plan_num ,
(end_times .end_time - plans .start_time) AS travel_time

FROM
flags ,
plans ,
end_times

WHERE
flags .agent = plans. agent AND
flags .agent = end_times .agent AND
flags .plan_num = plans .plan_num AND
flags .flag = 1 ;

DROPTABLE end_times ;

22

