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Monte Verità / Ascona, March 19-21, 2003



Swiss Transport Research Conference March 19-21, 2003

Solving the anticipatory route guidance generation problem
using a generalization of secant methods1

Frank Crittin
Institut de Mathématiques
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Abstract

Route guidance refers to information provided to travelers in an attempt to facilitate their de-
cisions relative to departure time, travel mode and route. We are specifically interested in con-
sistent anticipatory route guidance, in which real-time traffic measurements are used to make
short-term predictions, involving complex simulation tools, of future traffic conditions. These
predictions are the basis of the guidance information that is provided to users. By consistent,
we mean that the anticipated traffic conditions used to generate the guidance must be similar to
the traffic conditions that the travelers are going to experience on the network. The problem is
tricky because, contrarily to weather forecast where the real system under consideration is not
affected by information provision, the very fact of providing travel information may modify the
future traffic conditions and, therefore, invalidate the prediction that has been used to generate
it.

Bottom (2000) has proposed a general fixed point formulation of this problem with the follow-
ing characteristics. First, as guidance generation involves considerable amounts of computa-
tion, this fixed point problem must be solved quickly and accurately enough for the results to
be timely delivered to drivers. Secondly the unavailability of analytical forms for the objective
function and the presence of noise due to the use of simulation tools prevent from using clas-
sical algorithms. We propose in this paper an adaptation of the generalized secant method (cf.
the related presentation “A generalization of secant methods for solving nonlinear systems of
equations”) in order to handle the intrinsic characteristics of the consistent anticipatory route
guidance generation, especially the very high dimension associated with real problems.

We present then a number of simulation experiments based on two simulation tools in order
to compare the performances of the diverse algorithms. The first is a simple simulator imple-
menting the framework of the route guidance generation on a small network, which is used to
illustrate the properties of this problem and the behavior of the algorithms. Then, we present
a large-scale case study of size 124575 using DynaMIT, a simulation-based real-time Dynamic
Traffic Assignment system designed to compute and disseminate anticipatory route guidance.
These results point out the real-time potential of the method as its ability to handle large scale
problem.
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1 Introduction

Anticipatory guidance informs travelers about the traffic conditions they will experienced dur-
ing their trip based on prediction of the future condition of the network. But as traffic infor-
mation affects drivers behavior, it may invalidate predicted traffic conditions that were used to
generate it. Therefore the concept of consistency is very important for the generation of reli-
able information. We declare that the guidance is consistent when the forecasts on which it is
based are verified after the reaction of drivers. This problem has been formulated as a fixed
point problem. Due to the fact that the computation of anticipatory guidance involves complex
simulation tools, the distinctive features of this fixed point problem are stochasticity, large scale
and abundant amount of computation. Classical methods to solve the Consistent Anticipatory
Route Guidance (CARG) problem are obviously fixed point methods, unfortunately their slow
behavior make them inadequate for real-time application.

First we have considered this problem as a large scale optimization problem without derivative
(see Bierlaire and Crittin, 2001 for more details). The idea was to consider a population-based
procedure to gather variational information about a local model of the objective function. The
preliminary numerical results were encouraging, especially for real-time applications, as the
method decreases rapidly the objective function in the first iterations. Unluckily the algorithm
often get stuck in a subspace where no improvement can be achieved anymore, due certainly
to the appearance of local minima of the objective function, which are not fixed point of the
initial problem. In that paper (Bierlaire and Crittin, 2001) we had already considered to use a
formulation in terms of resolution of a system of nonlinear equations instead of a minimization
problem.

This paper will describe a new algorithm considering the CARG problem as a resolution of
a system of nonlinear equations. This new method will be a large scale adaptation of a new
class of efficient methods proposed by Bierlaire and Crittin, 2003. The concessions made to
accommodate the constraints of the CARG problem allow us to design a particularly efficient
algorithm for the resolution of large scale systems of equations.

This paper is organized as follow, first we briefly recall the analysis framework which leads to
the formulation of the guidance generation problem in terms of fixed point. Section 3 describes
different possible formulations of fixed point problems with their associated class of algorithms.
Section 3.3.1 identify some existing algorithms especially design to solve large scale systems
of equations and we next describe the large scale adaptation of the Generalized Secant Method
(GSM) described in (Bierlaire and Crittin, 2003). Numerical results presented in Section 5 are
divided into two parts. First we show that this new algorithm is efficient on classical nonlinear
systems of equations and secondly we analyze its performance on the CARG problem. Some
conclusions and perspectives are outlined in Section 6.

2 Consistent anticipatory route guidance

Route guidance refers to information disseminated to road users with the intent of influencing
their route choice decisions. We are interested in here in anticipatory route guidance where
real-time traffic conditions are used to make predictions of the evolution of the network. Hence
information provided to a driver will reflect the conditions that are expected to prevail at network

1
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locations at the times when he will actually be there.

A tricky problem in generating anticipatory route guidance is the fact the system under consid-
eration is affected by the dissemination of information. Indeed, contrarily to weather forecast,
the reactions of the users receiving the guidance can affect the future conditions of the network
and therefore invalidate the predictions on which the guidance was based. The anticipatory
guidance is said to be consistent if the predictions on which the guidance is based are the same
as those that are forecast to result after drivers react to the guidance.

This problem was introduced by Ben-Akiva et al. (1996) and developed in the context of Dyna-
MIT by Ben-Akiva et al. (1997), Ben-Akiva et al., 2002, Ben-Akiva et al., 1998).

2.1 Fixed point formulation

First formulations of the CARG generation as a fixed point problem have been proposed by
Bottom et al. (1999) and developed by Bottom (2000) in his PhD dissertation. This formulation
has been described in (Bierlaire and Crittin, 2001), consequently only a brief overview is given
in the following.

In this framework the traffic network is described as a directed graph with an enumeration
of feasible paths. The transportation demand is given by origin, destination, departure time,
behavorial class and type of access to information. The analysis time horizon is fixed, and
divided into a finite number of fixed time steps. In this manner the CARG problem can be
formulated as a fixed point problem which may be stated as follows:

Find x such that x = T (x) (1)

where x belongs to one of the three sets of variables:

� Path flows P , representing the number of trips of a particular user class traveling from a
given decision point to a given destination at a given time.

� Network conditions C, that are typically represented by time-dependent link impedances
for each time interval in the given time horizon. In most cases, the impedance will be the
link traversal time.

� Guidance messages M are quadruple involving message type, location, time and con-
tents. The exact definition of these variables depends on the specific technology under
consideration.

Each pair of variables sets are related by causal relationship, expressed by the following maps
and diagrammatically represented in Figure 1:

� The Network loading map, denoted by S : P ! C, determines the traffic conditions
that result from the assignment of a given set of time-dependent path flows P over the
network.

� The Guidance map, denoted by G : C ! M , represents the generation of actual mes-
sages M by the ATIS, based on predicted traffic conditions C. The map captures the
technological characteristics of the information system.

2
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Figure 1: Fixed Point Formulation (CARG)

� The Routing map, D : M ! P relates a given set of guidance messages to the resulting
path flows. It captures the drivers response to the information, and is typically based
on behavioral models such as route choice, departure time choice and mode choice (see
Ben-Akiva and Bierlaire, 1999).

And finally T can be described as one the three following compositions:8<
:

If x 2 P then T is defined by D ÆG Æ S
If x 2 C then T is defined by S ÆD ÆG
If x 2 G then T is defined by G Æ S ÆD

(2)

The complexity of transportation systems and the necessicity of capturing traveler behavior
impose the use of disaggregated models and simulation-based tools to compute one of the three
composition map defining T . Consequently these three fixed point problems, defined in (1) and
(2), are non-analytical and stochastic, where the level of stochasticity depends on the simulation
tools used to compute the composite map. Moreover the three variables x involves a high
number of variables producing large scale problems. Indeed if the decision variable associated
with the composite map is the link impedance, the size of the fixed point problem is the number
of links of the network times the number of time steps. As an example if the network contains
1661 links and we want to produce guidance for the next 75 minutes with time step of one
minute the size of the associated fixed point is 124575 as shown for the Swiss network in
subsection (5.2.2).

Remark also that these three composite maps are equivalent with respect to the existence of
a fixed point: if one has a fixed point then they all do, and if one does not then none does.
Unfortunately there is no guarantee that such fixed point exists. Thus in general we will define
the consistency of a point x, belonging to one of the three sets of variables presented above, as
a value kx� T (x)k, for some norm k � k. We will consider that consistency has been achieved,
and roughly speaking the fixed point found, if we find an approximate solution to the CARG
problem defined by:

kx� T (x)k < � (3)

for some small � > 0.

The non-existence of a fixed point has two concrete implications on the guidance generation
problem. First it means that whatever information is sent to travelers, it will never be consistent
with the traffic conditions they will experience, i.e. the guidance is known to have a poor
quality before to be sent to users. Additionally these type of guidance could worsen rather than

3
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improve traffic conditions, as shown in (Arnott et al., 1991) and (Hall, 1996). Moreover, from an
algorithmic point of view the non-existence of a fixed point invalidate theoretical convergence
properties of algorithms used to find it.

3 Existing methods

In this section, we present three different formulations of fixed problems, namely fixed point,
optimization and resolution of nonlinear systems of equations, with their classical associated
resolution methods. Analysis of advantages and drawbacks of each type of methods in the
context of the CARG problem is also given.

3.1 Fixed point methods

The previous section shown route guidance generation problem as a fixed point problem in-
volving one of the three composite maps. Classical algorithms to solve fixed point problems are
iterative methods based on the famous Banach Contraction Principle, which can be described
as follow: Let T : X ! X a mapping accepting x� 2 X as a fixed point, i.e. T (x�) = x�.
Choose a starting point x0 2 X and generate a succession of point of the form:

xk+1 = xk + �k(T (xk)� xk) (4)

where �k 2 [0; 1]. We will refer to averaging methods for this class of algorithms. We present
now some particular implementation of these type of methods. If �k = 1; 8k this method is
called fixed point iteration, method of successive substitution, or nonlinear Richardson itera-
tion. This method has been proved to be convergent by Banach (1922) if the mapping T is
contractant2 . If �k = �; 8k with � 2 [0; 1] this method is referred to as time smoothing algo-
rithm. For the CARG problem Bottom (2000) has tested a number of averaging methods and
kept two as best solution algorithms.

1. The method of successive averages (MSA) define by 4 with �k =
1
k
. Robbins and Monro

(1951) and Blum (1954) have shown, under some conditions, the convergence of this
method to a fixed point, despite noisy evaluations of T . This method has been succes-
sively used for some classical transportation problems, as for example Sheffi and Powell
(1982) who used it for stochastic user equilibrium or Cantarella (1997) who applied this
algorithm to solve two general fixed point formulation of multimode multi-user equilib-
rium problem.

2. The Polyak averaging method is a simple off-line running average of points generate by
(4). More precisely at each iteration we compute a new iterate, say 	k =

Pk

i
xi
k

. Polyak
and Juditsky (1992) have shown that the sequence 	k converge to x� at an optimal rate, if
�k ! 0 slower than o(1=k). Remarkably this procedure theoretically equals or surpasses
asymptotic performances of any iterative methods define by (4).

Remark
2Let D � R

n . K : D ! R
n is contractant if kK(x)�K(y)k � Klipkx� yk 8x; y 2 D with Klip < 1.

4
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� This kind of method are very useful for very large scale problems due to the insignificant
amount of linear algebra associated to the generation of each iterate as well as its small
need of memory as only the last two iterates have to be conserved.

� In the case of consistent route guidance generation the mapping T is given by T , one
of the three composite maps from (2) and as emphasized before there is no evidence of
the existence of a fixed point of T in this case, which invalidates theoretical properties
of convergence proof of these algorithms. Furthermore in practice averaging methods
exhibit a slow convergence on CARG problem.

3.2 Derivatives free optimization methods

Bierlaire and Crittin (2001) have considered the fixed point problem (1) as a nonlinear mini-
mization problem:

min
x

f(x) with f(x) = d(x; T (x)) (5)

where d defines a suitable distance. Notice that if x� is solution of problem (1) then x� is a
global minimum of f with f(x�) = 0. On the contrary if �x is solution of (5) nothing ensure that
T (�x) = �x. (cf. Dennis and Schnabel, 1996). As described above the evaluation of the function
is computationally very expensive, and so global optimization methods are not adapted for this
problem, moreover as we can not compute the derivatives of the objective function we have
to focus on direct search method. Consult (Bierlaire and Crittin, 2001) for a description and
criticisms of existing derivative free algorithms as well as a new method, especially designed
for large scale problems, proposed by the authors. The main drawback of this kind of algorithms
lie in the fact they can be stuck in local minimizer far from the solution of the original problem.
This distinctive feature can explain some mitigated numerical results obtained by these methods.

3.3 Methods solving nonlinear system of equations

Another natural way to express fixed point problems is as resolution of systems of nonlinear
equations written:

F (x) = 0 (6)

with F : Y ! Y , Y � R
n .

The equivalence of this two formulations, i.e. if x� is solution of (1), it is also solution of (6)
and reciprocally, is straightforward setting F (x) = T (x)� x.

As described, in Bierlaire and Crittin (2003) most of methods used to solve problem (6), referred
as quasi-Newton methods, are iterative methods using the following classical framework. At
each iteration k solve:

Bksk = �F (xk); (7)

xk+1 = xk + sk; (8)

and update Bk+1.

5



Swiss Transport Research Conference March 19-21, 2003

In particular, ifBk+1 = rF (xk+1), at each iteration, we obtain the well-known Newton method.
Remark that this method is not adapted to CARG problem while it has to compute derivatives
of F . One way to avoid computation of derivatives is to carry an approximation of the Jacobian.
If these approximations satisfy at each iteration the following secant equation:

Bk+1(xk+1 � xk) = F (xk+1)� F (xk) (9)

they are called secant methods (cf. (Dennis and Schnabel, 1996), (Kelley, 2002), ( Bierlaire
and Crittin, 2003)). The most successful secant methods are the Broyden methods, but are not
really designed to solve large scale systems of equations. The main drawbacks of quasi-Newton
methods when they deal with large scale problems are the storage cost of the matrix Bk+1 and
also the resolution of the associated linear system (7). Therefore very large scale problems, like
route guidance generation problem, imply adaptations of classical methods.

3.3.1 Large scale quasi-Newton methods

We have to distinguish here two kinds of methods. The first type of methods approximate the
Jacobian in a way that not only avoids computation of the derivatives, but also saves linear
algebra work for solving (9), as for example the “Bad” Broyden method proposed by Broyden
(1965). This method allows to avoid the resolution of the linear system as it updates directly
the approximation of the inverse of the Jacobian. Unfortunately, for large scale problems as for
example the consistent anticipatory route guidance, this method is unusable. Due to the size of
the problem, the construction itself of the entire matrix B�1

k is doomed to failure. In this context
limited memory implementation of Broyden’s methods have been proposed (Gomes-Ruggiero
et al., 1991), which are based on a compact representation of matrices B�1

k (Byrd et al., 1994).
Notice that good results have been obtain in optimization but not really for solving nonlinear
systems of equations. At this point the most effective method for large scale method has been
introduced by Martinez and Zambaldi (1992) and is named Inverse-Column Updating method
(ICUM). This is a secant algorithm where B�1

k+1 is obtain from B�1
k by changing only one of

its columns. Following Luksan and Vlcek (1998) this update seems to be the most efficient for
solving large systems of nonlinear equations without computing derivatives. Unfortunately this
method also needs the explicit construction of the matrix B�1

k+1, without, which can be detterent
for very large applications.

We have to cite a second type of methods, called Newton-Krylov methods (cf. Kelley, 2002).
They use, as their names suggest it, Krylov subspaces based on linear solvers to solve system
(7). Despite that Newton-Krylov methods use partial derivatives, and so is helpless in our route
guidance generation problem, this family of algorithms, allowing to perform only matrix-vector
product is especially well adapted for very large scale problems as underlined by Kelley (2002)
and so has to be mentioned.

This short description of the two top rated algorithms to solve large scale nonlinear systems
of equations highlights the need of a specific method to solve the consistent anticipatory route
guidance, in particular with the constraints of non-availability of the derivatives and the neces-
sity of performing only matrix-vector products during the algorithm.

6
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4 Large scale adaptation of GSM

We propose here an adaptation of the General Secant Method proposed in Bierlaire and Crittin
(2003). Motivated first by the performance of this class of algorithms compared with classical
secant methods in medium scale and secondly by the fact that a method considering a population
of iterates to calibrate the approximation of B�1

k+1 is likely to be more robust in the presence of
noise.

As discussed above, we consider the inverse version of GSM, i.e. updating directly the inverse
of the approximation of the Jacobian matrix instead of the Jacobian itself. This formulation
is necessary in large scale cases as it allows to avoid to solve the system (7). We propose to
compute new matrix B�1

k+1 using a least-square approach in order to calibrate our associated
linear model with several previous iterates. Following the approach given in (Bierlaire and
Crittin, 2003) we obtain the following least-square problem:

B�1
k+1 = argmin

J



J � 
 � Yk+1 � � In�n
�� � 
 � Sk+1 � � (B0

k+1)
�1
�

2

F
(10)

where 
 2 R
k+1 is a diagonal matrix with weights ! i

k+1 on the diagonal for i = 0; � � � ; k; the
matrix� contains weights associated with the arbitrary term (B0

k+1)
�1; Yk+1 = (yk; yk�1; : : : ; y0);

Sk+1 = (sk; sk�1; : : : ; s0) with yk = F (xk+1)� F (xk) and sk = xk+1 � xk.

Let A =
�

 � Yk+1 � � In�n

�
and C =

�

 � Sk+1 � � (B0

k+1)
�1
�
, using these notations,

(10) can be written as B�1
k+1 = argmin

J

kA�Ck2F . Solving the normal equations we can directly

compute the associated quasi-Newton step given in (7):

sk = �(CAT )(AAT )�1F (xk) (11)

With a small amount of linear algebra3 we can show that sk defined by (11) is equivalent to the
following: (

1. Solve x = argmin
y

kAy � F (xk)k22
2. Compute sk = �Cx

(12)

Remark that the least-square associated with (12) is now a vector least-square, contrarily to (10)
which is a generalized matrix least-square. Moreover with this formulation there is no need to
store or even construct the matrix B�1

k+1, and consequently the method can be implemented as a
matrix-free algorithm, i.e. only matrix-vector products have to be computed, which is decisive
for large scale problems. The only matrices that we need to store are Yk, Sk, (B0

k+1)
�1, 
 and

�. More precisely, matrices Yk and Sk have size n� (�� 1) where n is the size of the problem
and � the number of iterates kept in the population. The matrix (B0

k+1)
�1 is an a priori matrix

whose role is to overcome the possible underdetermination of the problem (10) which can also
be written as following:

B�1
k+1 = B�1

k +
�
�2 + Yk+1


2Y T
k+1

��1
Y T
k+1


2
�
Sk+1 � B�1

k Yk+1

�
(13)

A classical choice for these matrices is to choose, at each iteration, (B0
k+1)

�1 = B�1
k . In that

case (13) becomes an update formula and local convergence can be proved using the same
approach as Bierlaire and Crittin (2003). Nevertheless this approach can be difficult to apply

3Remarking that AT (AAT )�1 = (ATA)�1AT

7
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on large scale cases due to intensive linear algebra computations and high storage costs. In
addition the choice of this a priori matrix is not fundamental for the behavior of the method.
Therefore we propose to use the identity matrix because of storage cost and numerical stability
considerations. Additionally, considering the CARG problem, the choice of the identity matrix
stands out because it can be shown that if the weights associated to under-determination are
sizeable then the sequence of iterates generated will be close to those generated by averaging
methods.

The matrix 
, as described before, is a diagonal matrix stocked as a vector. It captures the rela-
tive importance of each iterate in the population assigning more weight to points close to xk+1,
and less weight to points faraway. The matrix � apprehends the importance of the arbitrary
term defined by (B0

k+1)
�1. Bierlaire and Crittin (2003) propose to use modified Cholesky fac-

torization of the matrix Sk+1

2ST

k+1 to compute �, addressing both the problem of overcoming
the under-determination and guaranteeing the numerical stability of the associated least-square
(10). Naturally in large scale case this approach is very costly in term of computation time,
moreover the information contained in matrix (B0

k+1)
�1 is low, as we have chosen to set it equal

to identity. As a consequence the only role of � is to ensure the positive definiteness of matrix:

(�2 + Yk+1

2Y T

k+1) (14)

coming from (13), to guarantee the numerical stability of the associated least-square. There-
fore to assure the safely positiveness we first remark that Yk+1


2Y T
k+1 is positive semidefinite.

Indeed for 8x 2 R
n we have:

xTYk+1

2Yk+1x = (xTY T

k+1

T )(
Yk+1x) (15)

= k
Yk+1xk22 (16)

� 0 (17)

Consequently the only dubious case is when eigenvalues of Yk+1
 are close to zero. To elude
this to happen it is sufficient to choose � = �In�n where � 2 R, with first � as small as possible
in order not to perturb too much our model and secondly significantly4 different from zero in
order to make matrix (14) invertible.

We propose to use the LSQR algorithm to solve the least-square defined in (12). This algorithm
proposed by Paige and Saunders (1982), analytically equivalent to a conjugate gradient method,
requires only matrix-vector products, allowing to keep this feature for the whole algorithm and
explicitly account for the problem’s sparsity, since A and C are very sparse by construction.

4.1 Description of the algorithm

Following the observations of the previous section we described the adaptation of GSM meth-
ods for large scale problems. It is an iterative method, called iGSM (inverse General Secant
Method), defined by:

xk+1 = xk + sk (18)

where sk is computed using (12), more precisely:

Algorithm iGSM(x0; F; �; �)

4In terms of machine precision.

8
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1. Compute s1 = �F (x0), k = 1

2. For k = 1; : : : do

(a) Compute xk+1 = xk + sk and evaluate F (xk+1),

(b) Compute si =
xk+1�xi

kxk+1�xik
2
2

and yi =
F (xk+1)�F (xi)

kF (xk+1)�F (xi)k22
for i = max(0; k � �); : : : ; k,

(c) Construct S = (sk sk�1 : : :) and Y = (yk yk�1 : : :),

(d) Solve x = argminykAy� F (xk+1)k22 with A = (Y �In�n) using LSQR algorithm,

(e) Compute sk+1 = �Cx with C = (S �In�n).

Remarks

� Parameter � has to be small in order to perturb the model as little as possible and big
enough to ensure numerical stability. Accordingly we suggest to choose practically � =p
� with � equal to the machine epsilon. It is defined as the smallest number �� such that

1 + �� > 1 and is system dependent.

� Parameter � is the maximum number of previous iterates that we keep in our population
to calibrate B�1

k+1. The size of the parameter is determined by the size of the problem and
the memory availability of the system. We can also consider to keep trace of previous
iterates using a limited memory approach to improve the storage cost of the method.

� The matrices A and C do not need to be explicitly constructed. All we need is to be able
to compute their matrix-vector product to build next iteration. This property is a major
advantage for methods planned to solve very large scale systems of nonlinear equations,
as the CARG problem. To our knowledge it is the only method solving nonlinear systems
of equations without derivatives which has this feature.

5 Numerical results

In this section we present the numerical results of the algorithm described in 4.1. We briefly
show that this algorithm is efficient on classical nonlinear systems of equations and then com-
pare its numerical performances with averaging methods to solve the consistent anticipatory
route guidance problem.

5.1 iGSM solving classical problems

We expose here a preliminary performance analysis of iGSM method, in comparison with clas-
sical algorithms to solve medium scale nonlinear systems of equations. These results tend
to validate the ideas developed in previous sections. We also give a comparison on a classi-
cal large scale problem with a Newton-Krylov algorithm to emphasize the potential of iGSM
method. All algorithms and test functions have been implemented with the package Octave (see
http://www.octave.org/) and computations have been done on a laptop equipped with
1066MHz CPU in double precision. The machine epsilon is about 2.2204e-16.

9
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5.1.1 Performance profile

We have decided to compare the proposed algorithm with three methods on classical problems.
The first one is an hybrid method proposed by Martinez (1982). It is based on conjecture
allowing to choose at each iteration of the algorithm between the Broyden Good or the Broyden
Bad method. This method clearly outperforms both Broyden methods. The second algorithm
is named ICUM (Inverse Column-Updating Method). It has been introduced by Martinez and
Zambaldi (1992) to reduce the computational cost of the Broyden Bad method for large scale
problems. Following Spedicato and Huang (1997) and Ruggiero et al. (1996) this method is
currently considered as the best secant method for large scale problems without derivative.
We also consider the GSM method proposed by Bierlaire and Crittin (2003) to visualize the
impact of the adaptation for large scale cases. Note here that algorithms designed to solve fixed
point problems based on the Banach contraction principle have not been considered as they
are generally not convergent for solving systems of nonlinear equations, because the associated
fixed point equivalent formulation is usually not contractant.

The numerical experiment has been carried out on the same set of test functions as in (Bierlaire
and Crittin, 2003) with dimension 10 and 50. We also present the results in the form of perfor-
mance profiles analysis proposed by Dolan and More (2002). First it appears surprisingly from
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Figure 2: Performance Profile

Figure 2 that the adaptations of GSM algorithm to large scale problems do not deteriorate the
performance of the method as the profile of GSM is very similar to the one of iGSM in terms of
speed of convergence and robustness. The difference of profiles on small values of � between
this two methods can be explained by the fact that using the modified cholesky factorization to
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calibrate � guarantees that the role of � is minimal, but most of the time this diagonal matrix
is very small (near or equal to zero). So choosing � = �In�n, as proposed in section 4, do
not change drastically the behavior of the algorithm, it only slows down a little bit the method.
Remark also the difference of speed of convergence, when they converge, between iGSM and
ICUM, two algorithms design for large scale problems. The reason is mainly that ICUM, at
each iteration, change only one column of approximate Jacobian at each iteration, while iGSM
re-calibrate an entire matrix. In this way iGSM adapts quicker to the function shape, as algo-
rithm progresses, and so converge faster. Same remark can be made about their robustness as
ICUM solves only 30% of proposed problems against 70% for iGSM as shown by Figures 2. It
also shows that the hybrid method converges within a factor 2 of the best algorithm for nearly
all the problems it has been able to solve. This behavior is certainly due to the fact that this
method uses only the last two iterates to update the approximation of the Jacobian, even though
GSM and iGSM use a population of iterates.

5.1.2 Convection-Diffusion example

We will present here results comparing iGSM, Broyden, ICUM and Newton-Krylov method on
a classical large scale problem.

This example, described in details by Kelley (2002), is a semi-linear convection-diffusion equa-
tion of size 961. The objective function is right preconditioned using a fast Poisson solver. We
have examined the performance of this four algorithms in terms of number of evaluations of F.
Note that we have not plotted the result for ICUM as it diverges.
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Figure 3: Convection-Diffusion equation

This result shows that iGSM algorithm is very efficient as shown by Figure 3 even com-
pared with methods using derivatives information to solve nonlinear systems of equations, like
Newton-Krylov methods. Remark the horizontal “step” of the Newton-Krylov method which
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represent the computation of the partial derivatives of F. Moreover the computational time to
reach convergence on this problem is 14.9 [sec] for iGSM and 26.4 [sec] for the Newton-Krylov
method, illustrating the potential of such a method on large scale problems. For comparison,
contrarily to ICUM, the classical Broyden method has converged on this example but in 759.8
[sec], this result is logical while Broyden method is not design for large scale problems. How-
ever notice that in term of behavior the Broyden method is very similar to iGSM. This can be
explain by the fact that when iGSM converges rapidly iterates are relatively distant each other.
Due to the choice of si and yi given in 4.1 it is reasonable that the sequence of iterates is similar
to the one produced by the Broyden method as shown by Figure 3.

5.2 iGSM on the CARG problem

We provide here numerical comparison between averaging methods and iGSM to solve the con-
sistent anticipatory route guidance problem. All algorithms have been implement in C++ and
computations have been done with a laptop equipped with 1066MHz CPU in double precision.
First we use a simple simulator to illustrate the behavior of these algorithms on a small syn-
thetic network. Then we present two case studies to compare the numerical performances of
these algorithms on real networks using DynaMIT system.

5.2.1 Simple Simulator

We present here the first results analysis concerning the anticipatory route guidance problem
using a simple simulator implemented by Bottom (2000). This code implements in C++ a
simple version of the network loading, routing and guidance components maps described in
Section 2.1. This software is intended as a test bed for investigating different problems for-
mulation and solutions methods for the consistent anticipatory route guidance. Runs presented
here were made using a simple 14-link network with a single OD pair and eleven OD paths.
We simulate the evolution of the network for 40 minutes with time intervals of 1 seconds. We
also assume that 50 % of drivers have access to information, with a demand rate of 10800 trips
per hour from origin to destination over 20 minutes. All guidance generation are computed us-
ing the composite link condition map expressed as link impedance, as described in section 2.1.
With this specifications the size of the problem is 33600 (14 � 2400). We produce here four
replications of the problems, all taking the free flow traversal times as initial point. Note that for
the Polyak method the rolling averaging has been performed from iteration 75 based on MSA
iterates.

We see in Figure 4 that iGSM perform very well in the first iterates of every replication, which is
a really good feature for real-time consideration, but struggles afterwards. For MSA or Polyak
methods this struggle, named tail effect by Bottom (2000), arises later and so allows the al-
gorithm to decrease a little bit more the consistency, especially on Figure (4(c)). This can be
explained by the fact that these averaging methods are really designed to handle stochastic prob-
lems, allowing to perform very small steps between each iterate and so accomplishing a sort of
smoothing of the iterates. This feature seems to be effective, mainly with small values of the
consistency. We also see from iteration 75 that Polyak is really powerful and decreases even
more the value of the objective functions, as already pointed out by Bottom (2000).

In Figure (5) we compare the solution obtain by both algorithm for Replication 1, in terms of
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Figure 4: Simple Simulator

density of traffic on each link during the simulation period. It is interesting to notice that the
guidance generated by MSA, which has quasi the same consistency as the one generated by
iGSM, seems to produce more regular flows on links 1 and 2 of the network, while at the end of
the time period iGSM seems to produce smaller flow on link 9. These considerations attempt
to point out that same level of consistency can be produced by different anticipatory guidances,
influencing differently the future state of the network. This statement underlines the necessity
of considering others criteria, in addition to the consistency, to generate consistent anticipatory
route guidance.

5.2.2 DynaMIT

DynaMIT is a state-of-the-art, real-time computer system for traffic estimation prediction and
generation of traveler information and route guidance. DynaMIT is the result of about 10 years
of intense research and development at the Intelligent Transportation Systems Program of the
Massachusetts Institute of Technology (for description and details, see (Ben-Akiva et al., 2002),
(Bottom et al., 1999) and (Ben-Akiva et al., 1998)). DynaMIT is designed to operate in real
time, using traffic volume and control system state data to estimate and predict time-dependent
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Figure 5: Link Volume Trajectories

origin-destination flows and network conditions, and generating descriptive and prescriptive
information that should be consistent with the predicted traffic conditions. DynaMIT’s con-
sistent guidance generation algorithm is currently the time smoothing algorithm described in
section 3.1. We have implemented iGSM algorithm in order to compare results between this
two methods.

Small Networks

The first network, called Florian, is a really small synthetic network composed of 10 links with
only one OD pair. We simulate from 8h00 to 9h00 with interval time of 1 minute and analyze
the guidance generation algorithm for the interval 8h00 to 8h30. The size of the CARG problem
for this tiny network is 300 (30� 10). As shown in Figure (6) the consistency is nearly reached
in 3 iterations using iGSM but it needs more than 10 iterations using time smoothing algorithm
to obtain the same consistency. This can be explained by the fact the initial point is the free flow
traversal time table, which is a very bad starting point in this case. As TS algorithm performs
an averaging between iterates the negative influence of the initial point spreads longer than with
iGSM. The second network is the Central Artery/Third Harbor Tunnel network, currently under
construction at Boston. It is a real medium scale network, with 211 links. The scenario contains
10 OD pairs. We simulate from 7h00 to 8h00 with interval time of 1 minute and analyze the
guidance generation algorithm for the period 7h00 to 7h30 with a time interval of 1 minute. The
size of the fixed point problem associated with the CARG problem is 6330 (211� 30). For this
network the iGSM algorithm reaches the stopping criteria, set at 10e� 5 for this simulation, at
the second iteration. The TS algorithm returns the following sequence of consistency:

Iterations 1 2 3 4 5 6 7 8 9 10 11
Consistency 318.04 7.00 3.50 1.75 0.87 0.43 0.21 0.10 0.05 0.02 0.01

Here again this huge difference of performance between these two algorithms can be explained
by the fact that free flow link traversal is notably a poor starting point, that the time smoothing
algorithm trail behind it all along the iterations. This real example illustrates the impact of
the formulation in term of numerical efficiency. In the first iterates considering the CARG
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Figure 6: Florian Network

problem as solving a nonlinear system of equations clearly outperforms its classical fixed point
formulation.

We already see in this two examples that the behavior of iGSM, compared to the TS algorithm,
with DynaMIT is similar to the one experienced on the simple simulator compared to MSA.
Indeed, iGSM algorithm behaves definitely better than algorithms of type (4) on the first iterates.

Swiss Network

As part of the project “Plan de gestion du trafic: Etude pilote pour la Suisse Occidentale” in
collaboration with the engineer office RGR SA, represented by Mr Robert Grandpierre, and the
Swiss Federal Roads Authority (OFROU) a calibration of DynaMIT has been achieved. This
large-scale network represents the swiss highway system from Geneva to Schaffausen and is
composed of 1661 links. We simulate from 7h00 to 8h15 in the morning with time interval of
one minute and analyze the guidance generation for 75 minutes. The size of the fixed point
problem associated with the CARG problem is 124575 (1661� 75). This big network applica-
tion attests of the applicability of iGSM algorithm on very large problems. One more time, as
it appears in Figure 7 our methods decrease the consistency very fast during the first iterates,
after which it seems to struggle. The TS algorithm reaches the same consistency about 28 itera-
tions later. In terms of real-time applications, the fast decreasing consistency, at the beginning,
associated with iGSM algorithm seems a very good alternative to averaging methods. Those
preliminary results on the consistent anticipatory route guidance problem are very encouraging,
principally for real-time applications, even if a deeper analysis is required to better understand
the algorithm behavior as well as the problem formulation.
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6 Conclusion and perspectives

In this paper we have proposed an adaptation of the generalized secant method described by
Bierlaire and Crittin (2003) to solve the anticipatory route guidance problem. Because GSM
algorithm is not designed for large scale applications we have apply some simplifications to the
method leading to an algorithm performing only matrix-vector products, a very crucial property
for very large scale problems. In order to validate the algorithm’s transformations we have
shown its performance on standard nonlinear system of equations and compared the obtained
results to classical algorithms. These results are very impressive on medium scale problems,
as the efficiency of iGSM is very similar to GSM algorithms. Moreover, it clearly outperforms
ICUM currently considered as one of the best method solving large scale nonlinear system
of equations without derivatives and it is even able to compete with methods using derivative
information as Newton-Krylov methods.

Results concerning the CARG problem have been provided using a simple traffic simulation
software system that has allowed us to emphasize some characteristics of the problem revealed
by the use of different algorithms. It also underlines the good behavior of iGSM in the first
iterates compared to averaging methods presently used to solve the CARG problem. Finally,
we presented results from reals networks using DynaMIT to demonstrate the applicability of
our algorithm to very large problems. But it is clear that further numerical experiences are
needed to really understand the behavior of iGSM algorithm for stochastic problems, and the
CARG problem in particular.

Finally the presented numerical results also open new fields of investigations for the generation
of consistent anticipatory route guidance generation itself, in particular:

� Additional characterizations of CARG problem should be investigated, like the question
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of the nature and interpretation of solutions supplied from different algorithms, as illus-
trated by the differences in terms of traffic pattern for two different guidance nevertheless
with the same consistency. Moreover we can suppose that sometimes the CARG problem
might have multiple approximate fixed point solutions. In that case also we need to be
able to select from among various solutions using other criteria in addition to consistency.

� In this paper we have investigated only one of the three proposed composite maps of
the problem, namely the composite link condition map. Other formulations need to be
investigated, as for example the composite path time map, which appeared to involve the
least amount of stochasticity and hopefully allows iGSM to perform better.

The results obtained with iGSM indicate that this method will be one of the first choice to
solve practical large scale nonlinear system of equation in absence of derivatives information,
especially due to the feature that allows to perform only matrix-vector product, that make it very
cheap in terms of computation time and memory size. We have strong feelings that solving the
consistent anticipatory route guidance problem with a nonlinear system of equations approach
rather than a fixed point approach will permit to really speed up the process of generation of
consistent guidance particularly in the context of real-time applications.
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