
1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

1e+06

0 20 40 60 80 100 120 140 160 180 200

R
el

at
iv

e 
N

on
lin

ea
r 

R
es

id
ua

l

Number of Evaluations of F

BROYDEN GOOD METHOD
GSM METHOD

A generalization of secant methods for solving
nonlinear systems of equations

Frank Crittin, ROSO-IMA-EPFL
Michel Bierlaire, ROSO-IMA-EPFL

Conference paper STRC 2003
Session Model and Statistics

STRC
3rd Swiss Transport Research Conference
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Abstract

Many problems in transportation can be formulated as fixed point problems, or equivalently
as a systems of nonlinear equations, as for example multi-user equilibrium problems, planning
problems, and consistent anticipatory route guidance generation. These fixed point problems
are often characterized by the fact that there is no analytical form of the objective function, the
computational cost of evaluating the function is generally high, the dimension is very large and
stochasticity is present. Therefore classical algorithms to solve linear systems of equation based
on derivatives information or involving line search are unlikely to be attractive in this context.

In this paper we introduce a new class of methods for solving nonlinear systems of equations
motivated by the constraints described above. The main idea is to generalize classical secant
methods by building the secant model using more than two previous iterates. This approach al-
lows to use all the available information collected through the iterations to construct the model.
We prefer a least-square approach to calibrate the secant model, as exact interpolation requires
a fixed number of iterates, and may be numerically problematic. We also propose an explicit
control of the numerical stability of the method.

We show that our approach can lead to an update formula à la Broyden. In that case, we proof
the local convergence of the corresponding quasi-Newton method. Finally, computational com-
parisons with classical methods, based on performance profiles, highlight a significant improve-
ment in term of robustness and number of function evaluations. We also present preliminary
numerical tests showing the robust behavior of our methods in the presence of noisy nonlinear
system of equations. Numerical results of this method apply to the consistent anticipatory route
guidance will be provided in the other presentation (“Solving the anticipatory route guidance
generation problem using a generalization of secant methods”.

Keywords

Quasi-Newton methods - population based generation - fixed point problems - 3rd Swiss Trans-
port Research Conference - STRC 2003 - Monte Verità
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1 Introduction

Many problems in transportation can be formulated as fixed point problems or equivalently, as
shown in the following, as resolutions of systems of nonlinear equations. For example, traffic
equilibrium models can be formulated as well as variational inequality, nonlinear complemen-
tarity or fixed point problems as demonstrated by Patriksson (1994). A practical modelization
is given by Cantarella (1997) who presents a fixed point formulation of multi-mode multi-user
equilibrium assignement with elastic demand. Another example as been proposed by Cascetta
and Postorino (2001) who suggest fixed point approach to estimate Origin-Destination matrix
using traffic counts. Another type of problems is the generation of anticipatory route guidance.
Travel guidance refers to information provided to users in an attempt to facilitate their decision.
But because traffic information affects drivers behavior, it may invalidate predicted traffic con-
ditions that were used to generate it. This problem has also been formulated as a fixed point
problem by Bottom (2000) and a new solution algorithm have been designed by Bierlaire and
Crittin (2003) based on an adaptation of methods proposed in this paper.

In transportation fixed point formulations are mainly used to establish theoretical existence
and uniqueness results given by the Banach Contraction Principle (Banach, 1922), which also
allows the specification of convergent algorithms. But, from a practical point of view, methods
proposed to solve fixed point problems are not really efficient compared to algorithms solving
nonlinear systems of equations. Unfortunately transportation problems formulated as fixed
point problems have generally the following characteristics:

� no analytical form of the objective function,

� high computational costs of evaluating the function,

� large scale problems,

� presence of stochasticity.

Therefore even classical algorithms solving nonlinear systems of equations, often based on
derivatives information or involving line search, are unlikely to be attractive in this context. It is
the reason why we propose a new class of algorithms designed to take this features into account.

We consider the standard problem of identifying a fixed point of a given mapping. More pre-
cisely let T : Rn ! R

n a continuously differentiable function, the fixed point problem can be
expound as finding x 2 R

n such that:

T (x) = x: (1)

In the same way we can characterize resolution of a nonlinear system of equations as finding
x 2 R

n such that:
F (x) = 0 (2)

where F : Rn ! R
n is a continuously differentiable function. The proof of equivalence of

this two formulations, i.e. if x� is solution of (1), it is also solution of (2) and reciprocally, is
straightforward setting F (x) = T (x)� x. So in the following we will restrict to the resolution
of systems of nonlinear equations without loss of generality.

Since Newton, this problem has received a tremendous amount of attention. Newton’s method
and its many variations are still intensively analyzed and used in practice. The philosophy

1
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of Newton-like methods is to replace the nonlinear function F by a linear model, which ap-
proximates F in the neighborhood of the current iterate. The original Newton method invokes
Taylor’s theorem and uses the first derivative matrix (or Jacobian) to construct the linear model.
When the Jacobian is too expensive to evaluate, secant methods build the linear model based
on the secant equation. Because secant methods exhibit a decent rate of convergence (q-super-
linear), they have been intensively analyzed in the literature.

The secant equation imposes that the linear model perfectly matches the nonlinear function F
at two successive iterates. If the number of unknowns n is strictly greater than 1, an infinite
number of linear models verify the secant equation. Therefore, each secant method derives a
specific update formula which arbitrarily picks one linear model among them. The most com-
mon strategies are called “least-change updates” and select the linear model which minimizes
the difference between two successive models.

In this paper, we provide a class of algorithms generalizing these methods. They are also based
on a linear model. Instead of using only two successive iterates to determine it, we maintain
a “population” of iterates. Indeed, in the presence of expensive function evaluation, we want
to incorporate all the acquired information about the function to calibrate at best the model.
Also, we expect a population-based approach to be more robust in the presence of noise in the
function.

An important feature of our method is that we do not impose an exact match between the model
and the function. Instead, we use a least-square approach to request that the model matches the
function “as much as possible”. This class of algorithms exhibits a faster convergence and a
greater robustness than quasi-Newton methods for most numerical tests that we have performed
(Section 5) at a cost of substantial linear algebra computation. Therefore it is valuable when
the cost of evaluating F is high in comparison with the numerical algebra overhead. In this
paper, we present the class of algorithms (Section 3) and prove that they are locally convergent
(Section 4).

2 Quasi-Newton methods

Quasi-Newton methods consider at each iteration the linear model

Lk(x;Bk) = F (xk) +Bk(x� xk) (3)

which approximates F (x) in the neighborhood of xk and computes xk+1 as a solution of the
linear system Lk(x;Bk) = 0. Consistently with most of the publications on this topic, quasi-
Newton methods can be summarized as methods based on the following iterations:

xk+1 = xk � B�1
k F (xk): (4)

followed by the computation of Bk+1. Of course the most illustrious quasi-Newton method is
the pure Newton method where Bk = J(xk) = rF (xk)

T is the Jacobian of F evaluated at
xk, that is a n � n matrix such that entry (i; j) is @Fi=@xj . We refer the reader to Dennis and
Schnabel (1996) for an extensive analysis of Newton and quasi-Newton methods.

Broyden (1965) proposes a class of quasi-Newton methods based on the secant equations, im-
posing the linear model Lk+1 to exactly match the nonlinear function at iterates xk and xk+1,

2
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that is
Lk+1(xk) = F (xk);
Lk+1(xk+1) = F (xk+1):

(5)

Subtracting these two equations and defining yk = F (xk+1) � F (xk) and sk = xk+1 � xk we
obtain the classical secant equation:

Bk+1sk = yk (6)

Clearly, if the dimension n is strictly greater than 1, there is an infinite number of matrices
Bk+1 satisfying (6). An arbitrary decision must consequently be made. The “least-change
secant update” strategy, proposed by Broyden (1965), consists in selecting among the matrices
verifying (6) the one minimizing variations between two successive models Lk(x) and Lk+1(x).
It leads to the following update formula

Bk+1 = Bk +
(yk � Bksk) s

T
k

sTk sk
: (7)

This method has been very successful, and has been widely adopted in the field. However,
we believe that the philosophy of interpolating the linear model on only two iterates and so
forgetting all the information given by previous iterates could be too restrictive, incurring the
risk that the arbitrariness introduced by the method plays an overly important role. Therefore,
we propose here to use more than two past iterates to build the linear model, expecting a better
approximation of the actual tangent model.

This idea has already been considered. Dennis and Schnabel (1996) say that “In fact, multivari-
ate generalizations of the secant method have been proposed ... but none of them seem robust
enough for general use.” Later, they write “Perhaps the most obvious strategy is to require
the model to interpolate F (x) at other past points... One problem is that the directions tend to
be linearly dependent or close to it, making the computation of (the approximation matrix) a
poorly posed numerical problem”.

There are few attempts to generalize this approach in the literature. A first generalization of
the secant method is the sequential secant method proposed by Wolfe (1959) and discussed by
Ortega and Rheinboldt (1970). The idea is to impose exact interpolation of the linear model on
n+ 1 iterates instead of 2:

Lk+1(xk�j) = F (xk�j); j = 0; 1; : : : ; n: (8)

or, equivalently,
Bk+1sk�j = yk�j; j = 0; : : : ; n; (9)

where si = xk+1 � xi, and yi = F (xk+1)� F (xi), for all i. If the vectors sk; sk�1; : : : ; sk�n+1
are linearly independent, there exists exactly one matrix Bk+1 satisfying (9), which is

Bk+1 = ~Yk+1 ~S
�1
k+1 (10)

where ~Yk+1 = (yk; yk�1; : : : ; yk�n+1) and ~Sk+1 = (sk; sk�1; : : : ; sk�n+1).

Quoting Ortega and Rheinboldt (1970) “...(sequantial methods) are prone to unstable behavior
and ... no satisfactory convergence results can be given”. Nevertheless Gragg and Stewart
(1976) propose a method which avoid instabilities by working with orthogonal factorizations
of the involved matrices. Martinez (1979) gives three implementations of the idea proposed by
Gragg and Stewart (1976) and some numerical experiments.

3
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Multi-step quasi-Newton methods have been proposed by Moghrabi (1993), Ford and Moghrabi
(1997) and Ford (1999) in the context of nonlinear programming. An interpolating path is built
based on previous iterates, and used to produce an alternative secant equation. Interestingly, the
best numerical results were obtained with no more than two steps.

We believe that the comments about the poor numerical stability of those methods found in
major reference texts such as Dennis and Schnabel (1996) and Ortega and Rheinboldt (1970)
have not encouraged more researchers to investigate generalizations of Broyden’s method. We
provide here such a generalization with robust properties and exhibiting an excellent behavior
on numerical examples.

3 Population-based generalization

We propose here a class of methods calibrating a linear model based on several previous iterates.
The difference with existing approaches is that we do not impose the linear model to interpolate
the function. Instead, we prefer to identify the linear model which is as close as possible to the
nonlinear function, in the least-squares sense.

At each iteration, we maintain a finite population of previous iterates. Without loss of generality,
we present the method assuming that all previous iterates x0; : : : ; xk+1 are considered. Our
method belongs also to the quasi-Newton framework defined by (4), where Bk+1 is computed
as follows.

Bk+1 = argmin
J

 
kX

i=0

!i
k+1F (xi)� !i

k+1Lk+1(xi; J)
2
2
+
�J � �B0

k+1

2
F

!
(11)

where Lk+1 is defined by (3) and B0
k+1 2 R

n�n is an a priori approximation of Bk+1. The role
of the second term is to overcome the under-determination of the least-square problem based
on the first term and also control the numerical stability of the method. The matrix � contains
weights associated with the arbitrary term B0

k+1, and the weights !i
k+1 2 R

+ are associated
with the previous iterates. Equation (11) can be written in matrix form as follows: Bk+1 =

argmin
J

J � Sk+1 In�n
�� 
 0k�n

0n�k �

�
�
�
Yk+1 B0

k+1

�� 
 0
0 �

�
2

F

where 
 2 R
k+1 is a diagonal matrix with weights ! i

k+1 on the diagonal for i = 0; � � � ; k. The
normal equations of the least-square problem lead to the following formula:

Bk+1 = B0
k+1 +

�
Yk+1 � B0

k+1Sk+1
�

2ST

k+1

�
�2 + Sk+1


2ST
k+1

��1
; (12)

where Yk+1 = (yk; yk�1; : : : ; y0) and Sk+1 = (sk; sk�1; : : : ; s0).

The role of the a priori matrixB0
k+1 is to overcome the possible under-determination of problem

(11). For example, choosing B0
k+1 = Bk (similarly to classical Broyden-like methods) exhibits

good properties. In that case, (12) becomes an update formula, and local convergence can be
proved (see Section 4).

The weights !i
k+1 capture the relative importance of each iterate in the population. Roughly

speaking, they should be designed in the lines of the assumptions of Taylor’s theorem, that is

4



Swiss Transport Research Conference March 19-21, 2003

assigning more weight to points close to xk+1, and less weight to points which are faraway. The
matrix � captures the importance of the arbitrary terms defined by B0

k+1 for the identification
of the linear model. The weights have to be finite, and � must be such that

�2 + Sk+1

2ST

k+1 (13)

is safely positive definite. To ensure this property we describe below three possible approaches
for choosing �2: the geometrical approach, based on specific geometric properties of the pop-
ulation, the subspace decomposition approach, decomposing Rn into the subspace spanned by
the columns of Sk+1 and its orthogonal complement, and the numerical approach, designed to
guarantee a numerically safe positive definiteness of (13).

The geometrical approach assumes that n + 1 members of the population form a simplex, so
that the columns of Sk+1 span Rn , and (13) is positive definite with � = 0. In that case, (12)
becomes

Bk+1 = Yk+1

2ST

k+1

�
Sk+1


2ST
k+1

��1
: (14)

If there are exactly n + 1 iterates forming a simplex, the geometrical approach is equivalent
to the interpolation method proposed by Wolfe (1959), and (14) is exactly (10), as Sk+1 is
square and non singular in that case. This approach have not shown good numerical behavior
in practice as mentioned in Section 2. Also, it requires at least n + 1 iterates, and may not be
appropriate for large-scale problems.

The subspace decomposition approach is based on the QR decomposition of Sk+1. We denote
by r the rank of Sk+1, with r � n, and we have Sk+1 = QR, where

Q =
�
Q1 Q2

�
(15)

with Q1 is (n�r), Q2 is (n�n�r), and R is (n�k). The r columns of Q1 form an orthogonal
basis of the range of Sk+1. We define now � such that

�2 =

�
0r�n
QT

2

�
(16)

that isQT whereQT
1 has been replaced by a null matrix. With this construction�2+Sk+1


2ST
k+1

is invertible and the weights associated with the arbitrary matrix B 0
k+1 are null in the subspace

generated by the columns of Sk+1. In the case where Sk+1 spans the entire space then r = n
and �2 is a null matrix. Consequently, (12) is equivalent to (14).

With the subspace decomposition approach, the changes of F predicted by Bk+1 in a direction
orthogonal to the range of Sk+1 is the same as the one predicted by the arbitrary matrix B0

k+1.
This idea is exactly the same as the one used by Broyden (1965) to construct his so called
Broyden’s Good method. Actually, the classical Broyden update (7) is a special case of our
update formula (12), if B0

k+1 = Bk and the population contains just two iterates xk and xk+1.
The secant equation (6) completely defines the linear model in the one-dimensional subspace
spanned by sk = xk+1� xk, while an arbitrary decision is made for the rest of the model. If we
define !k

k+1 = 1 and �2 is given by (16), we can write (12) as

Bk+1 = Bk + (yk �Bksk) s
T
k

�
�2 + sks

T
k

��1
: (17)

The equivalence with (7) is due to the following equality

sTk
�
�2 + sks

T
k

��1
= sTk

1

sTk sk
; (18)

5
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obtained from the fact that sTk�
2 = 0, by (16).

Numerical problems may happen when the columns of Sk+1 are close to linear dependence.
These are the problems already mentioned in the introduction, and reported namely by Ortega
and Rheinboldt (1970) and Dennis and Schnabel (1996). Clearly, such problems do not occur
when Sk+1 has exactly one column, which leads to the classical Broyden method.

The numerical approach is designed to address both the problem of overcoming the under-
determination, and of guaranteeing numerical stability. It is directly inspired by the modified
Cholesky factorization proposed by Schnabel and Eskow (1991). The modified Cholesky fac-
torization of a square matrix A creates a matrix E such that A + E is safely positive definite,
while computing its Cholesky factorization. It may namely happen that A has full rank, but
with smallest eigenvalue very small with regard to machine precision. In that case, E is non
zero despite the fact that A is non singular. We apply this technique with A = Sk+1


2ST
k+1 and

E = �2. So, if the matrix Sk+1

2ST

k+1 is safely positive definite, �2 = 0 and (12) reduces to
(14). If not, the modified Cholesky factorization guarantees that the role of the arbitrary term �
is minimal.

We conclude this section by emphasizing important advantages of our generalization combined
with the numerical approach. Firstly, contrarily to interpolation methods, our least-square
model allows to use more than p points to identify a model in a subspace of dimension p
(where p � n). This is very important when the objective function is expensive to evaluate.
Indeed, we make an efficient use of all the available information about the function to calibrate
the secant model. It is namely advantageous compared to Broyden’s method, where only two
iterates are used to build the model. Secondly, the numerical approach proposed above controls
the numerical stability of the model construction process, when a sequence of iterates may be
linearly dependent. Finally, the fact that existing methods are special cases of our approach
allows to exploit all the theoretical and practical properties already published in the literature,
and simplifies their extension to our context. We apply this principle is the local convergence
analysis in the next section. The main drawback is the increase in numerical linear algebra as
the least-square problem (11) must be solved at each iteration.

4 Local convergence analysis

We show that if �2 is determined by the numerical approach described in Section 3, algorithm
(4), where Bk+1 is defined by (12) in his update form (i.e. B0

k+1 = Bk), locally converges to a
solution of (2) if the following assumptions are verified.

(P1) F : Rn ! R
n is continuously differentiable in an open convex set D.

(P2) The system of equations has a solution, that is 9x� 2 D such that F (x�) = 0.

(P3) J(x) is Lipschitz continuous at x� with constant Klip, that is

kJ(x)� J(x�)k � Klipkx� x�k 8x 2 D: (19)

in the neighborhood D.

(P4) J(x�) is non-singular and there exists  > 0 such that kJ(x�)�1k < .

6
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Assumptions on the algorithm:

(A1) The algorithm is based on the iteration (4) with x0 and B0 as initial guess.

(A2) Bk is generated by (12) with B0
k+1 = Bk.

(A3) �2 is computed using the numerical approach.

(A4) 8i � k, we have !i
k+1 �M! for all k.

(A5) The size of the population P is bounded above by MP .

The notation k � k is used for the l2 vector norm kxk = (xTx)
1

2 , and for any matrix norm
which is consistent with the l2 norm in the sense that kAxk � kAkkxk for each x 2 R

n and
A 2 R

n�n . In particular, the l2 matrix norm and the Frobenius norm are consistent with the l2
vector norm. For the sake of simplification, we denote !i

k+1 = !i, S = Sk+1, Y = Yk+1 and
Ip = f1; : : : ; pg. The proof uses some lemma. Lemma 1 and 2 are classical results from the
literature. Lemma 3–5 are technical lemma related to our method. Their proofs are provided in
the appendix.

Lemma 1 Let F : Rn �! R
n be continuously differentiable in the open convex D � R

n ,
x 2 D, and let J be Lipschitz continuous at x in the neighborhood D with constant K lip. Then
for any u; v 2 D;

kF (v)� F (u)� J(x)(v � u)k � Klip

kv � xk+ ku� xk

2
kv � uk : (20)

Proof. See, for example, Dennis and Schnabel, 1996. �

Lemma 2 Let A;C 2 R
n�n and assume that A is invertible, with kA�1k � �: If kA� Ck � �

and �� < 1, then C is also invertible andC�1
 � �

1� ��
: (21)

Proof. This lemma is known as the Banach Perturbation Lemma. (See, for example, Ortega
and Rheinboldt, 1970). �

Lemma 3 If assumptions (A4)-(A5) are verified, then

kS
2STk � 2MPM
2
! max
i2Ik+1

kxi � x�k2; (22)

k
2STk �
p

2MPM
2
! max
i2Ik+1

kxi � x�k: (23)

where x� is solution of (2).

Lemma 4 If assumptions (P1),(P2) and (P3) are verified then:

k(Y � J(x�)S)k �
p

2MPKlip max
i2Ik+1

�
kxi � x�k2

�
(24)

where x� is solution of (2).

7
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Lemma 5 If assumption (A3) is verified, then

k
�
�2 + S
2ST

��1
k �

1

�
(25)

where � > 0.

The parameter � in Lemma 5 controls the may we perturb S
2ST . It guarantees that the smallest
eigenvalue of

�
�2 + S
2ST

�
is strictly greater than � and, therefore, safely positive in a finite

arithmetic context if � is properly chosen. Schnabel and Eskow (1991) suggest to choose � =
(macheps)

1

3 where macheps is the machine epsilon.

Theorem 6 Let assumptions (P1) to (P3) hold for the problem and assumptions (A1) to (A5)
hold for the algorithm. Then there exist two non-negative constants �1 and �2 such that for
each xk and Bk:

kBk+1 � J(x�)k �
�
1 + �1maxi2Ik+1 kxi � x�k2

�
kBk � J(x�)k

+ �2maxi2Ik+1 kxi � x�k3 :
(26)

Proof. From the update formula (12), and defining

T1 = I � S
2ST (�2 + S
2ST )�1

T2 = (Y � J(x�)S)
2ST (�2 + S
2ST )�1;

we obtain

kBk+1 � J(x�)k = kBk � J(x�) + [(J(x�)S � J(x�)S) + (Y � BkS)] 

2ST (�2 + S
2ST )�1k

� kT1kkBk � J(x�)k+ kT2k:

From Lemma 3 and 5 we obtain

kT1k � kIk+ kS
2STkk(�2 + S
2ST )�1k (27)

� 1 + �1 max
i2Ik+1

kxi � x�k2; (28)

with �1 =
2
�
MPM

2
! > 0. We conclude the proof using Lemma 3, 4 and 5 to show that:

kT2k � k(Y � J(x�)S)kk
2STkk(�2 + S
2ST )�1k (29)

� �2 max
i2Ik+1

kxi � x�k3: (30)

with �2 =
2
�
KlipMPM

2
! > 0. �

Theorem 7 Let assumptions (P1) to (P3) hold for the problem and assumptions (A1) to (A5)
hold for the algorithm. If, for each r 2]0; 1[ there exists "(r) and Æ(r) such that

kx0 � x�k � "(r) (31)

and
kB0 � J(x�)k � Æ(r) (32)

then the sequence xk+1 = xk�B�1
k F (xk) is well defined and converges q-linearly to x� with q-

factor at most r. Furthermore, the sequences fkBkkgk and
�
kB�1

k k
	
k

are uniformly bounded.

8
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Proof. The structure of the demonstration is similar to the proof of Theorem 3.2 in Broyden
et al. (1973). We have purposedly skipped some identical technical details.

First choose "(r) = " and Æ(r) = Æ such that

(1 + r) (Klip"+ 2Æ) � r (33)

and �
2�1 + �2

�

1� r

�
�2

1� r2
� Æ: (34)

We invoke Lemma 2 with � =  and � = 2Æ to prove that B0 is non-singular and

kB�1
0 k < (1 + r): (35)

Note that assumption 2Æ < 1 for Lemma 2 is directly deduced from (33).

The improvement after the first iteration, that is

kx1 � x�k � rkx0 � x�k (36)

is independent of the specific update formula and, therefore, is proven in Broyden et al. (1973).

The result for iteration k is proven with an induction argument based on the following recur-
rence assumptions:

kBm � J�k � 2Æ (37)

kxm+1 � x�k � rkxm � x�k (38)

for all m = 1; : : : ; k � 1.
We first prove that kBk � J�k � 2Æ using Theorem 6. From (26) we deduce
kBm+1 � J(x�)k � kBm � J(x�)k

� �1 max
i2Im+1

kxi � x�k2 kBm � J(x�)k+ �2 max
i2Im+1

kxi � x�k3

� �1r
2(m+1)"22Æ + �2r

3(m+1)"3 (39)

Summing both sides of (39) for m ranging from 0 to k � 1, we deduce that

kBk � J(x�)k � kB0 � J(x�)k+

�
2�1Æ + �2

"

1� r

�
"2

1� r2
(40)

� 2Æ; (41)

where (41) derives from (32) and (34).

The fact that Bk is invertible and kB�1
k k � (1 + r) is again a direct application of the Banach

Perturbation Lemma 2. Following again Broyden et al. (1973), we can now obtain (38) for
m = k, concluding the induction proof. �

9



Swiss Transport Research Conference March 19-21, 2003

5 Performance evaluation

We present here a preliminary analysis of the performance of our method, in comparison with
classical algorithms. All algorithms and test functions have been implemented with the package
Octave (see http://www.octave.org/) and computations have been done on a laptop
equipped with 1066MHz CPU in double precision. The machine epsilon is about 2.2204e-16.

The numerical experiments were carried out on a set of 30 test functions, seven with fix dimen-
sion and 23 with dimension n = 6; 10; 20; 50; 100. This set is composed of the four standard
nonlinear systems of equations proposed by Dennis and Schnabel (1996) (that is, Extended
Rosenbrock Function, Extended Powell Singular Function, Trigonometric Function, Helical
Valley Function), three functions from Broyden (1965), five functions proposed by Kelley
(2002) in his new book on Newton’s method (that is, Arctangent Function, a Simple Two-
dimensional Function, Chandrasekhar H-equation, Ornstein -Zernike Equations, Right Pre-
conditioned Convection-Diffusion Equation), three linear systems of equations (see Appendix)
and the test functions given by Spedicato and Huang (1997). For each problem, we have used
the starting point proposed in the original paper. In order to challenge even more the algorithms,
we have also considered 10x0 as another starting point for each problem. The total experimental
design is therefore composed of 244 problems. The results include only problems which have
been solved at least by one of the considered methods, that is 124 problems.

The algorithms that have been considered are based upon the undamped quasi-Newton method,
i.e. without any step control or globalization methods. This allows us to compare their speed
of convergence, in term of number of function evaluations, and their robustness without intro-
ducing a bias due to the step control or the globalization method. All the algorithms have the
following structure:

� Given F : Rn ! R
n , x0 2 R

n and B0 2 R
n�n

� While stopping criteria is not verified:

– Find s solving Bks = �F (xk),

– Evaluate F (xk+1) where xk+1 = xk + s,

– Compute Bk+1,

with the following characteristics: the initial Jacobian approximation B0 is the same for all
algorithms and equal to the identity matrix. The stopping criteria is a composition of three
conditions: small residual, that is kF (xk)k=kF (x0)k � 10e�6, maximum number of iterations
(k � 200 for problems of size n � 20 and k � 500 for problems of size n = 50 and n = 100),
and divergence, diagnosed if kF (xk)k � 10e10.

Consequently, the algorithms differ only by the method to compute Bk+1. We consider four of
them:

1. Broyden’s Good Method (BGM), using the update (7).

2. Broyden’s Bad Method (BBM), also proposed by Broyden (1965). It is based on the
following secant equation:

sk = B�1
k+1yk: (42)

10
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and directly computes the inverse of Bk:

B�1
k+1 = B�1

k +

�
sk � B�1

k yk
�
yTk

yTk yk
: (43)

Broyden (1965) describes this method as “bad”, that is numerically unstable. However,
we have decided to include it in our tests for the sake of completeness. Moreover, as
discussed below, it does not always deserve its name.

3. The Hybrid Method (HMM) proposed by Martinez (1982). At each iteration, the al-
gorithm decides to apply either BGM or BBM. Martinez (2000) observes a systematic
improvement of the Hybrid approach with respect to each individual approach. As dis-
cussed below, we obtain the same result.

4. Our Generalized Secant Method (GSM), defined by (12) in its update form with B0
k+1 =

Bk using the numerical approach described in Section 3, with � = (macheps)
1

3 . Con-
trarily to what is presented in the theoretical analysis, we consider only p = max(n; 10)
previous iterates in the population. Indeed, including all previous iterates may generate
memory management problems, and anyway does not significantly affect the behavior of
the algorithm. The weights are defined as

!i
k+1 =

1

kxk+1 � xik2
8i 2 Ip (44)

The measure of performance is the number of function evaluations to reach convergence. We are
presenting the results following the performance profiles analysis method proposed by Dolan
and More (2002).

If fp;a is the performance index of algorithm a on problem p, then the performance ratio is
defined by

rp;a =
fp;a

minaffp;ag
; (45)

if algorithm a has converged for problem p, and rp;a = rfail otherwise, where rfail must be strictly
larger than any performance ratio (45). For any given threshold �, the overall performance of
algorithm a is given by

�a(�) =
1

np
�a(�) (46)

where np is the number of problems considered, and �a(�) is the number of problems for which
rp;a � �.

In particular, the value �a(1) gives the probability that algorithm a wins over all other algo-
rithms. The value lim�!rfail�a(�) gives the probability that algorithm a solves a problem and,
consequently, provides a measure of the robustness of each method.

We first present the performance profile for all algorithms described above on all problems on
Figure 1. A zoom for � between 1 and 4 is provided in Figure 2.

The results are very satisfactory for our method. Indeed, we observe that GSM is best on nearly
70% of the problems, and is able to solve more than 90% of the problems. From Figure 2,
we note also that when GSM is not the best method, it converges within a factor of 1.5 of the
best algorithm for more than 80% of the problems. We also confirm results by Martinez (2000)

11
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Figure 1: Performance Profile

showing that the Hybrid method is more reliable than BGM and BBM. Indeed, it converges on
more than 80% of the problems, while each Broyden method converges only on 60% of the
cases. Moreover, HMM wins as often as BBM does, but is more robust, as its performance
profile grows faster than the profile for BBM. The relative robustness of BGM and BBM is
comparable.

The performance profile analysis strongly depends on the number of methods that are being
compared. Therefore, we like to present a comparison between BGM and GSM only, as BGM
is probably the most widely used method. The significant improvement provided by our method
over Broyden’s method is illustrated by Figure 3, based on problems solved by at least one of
the two methods, that is 112 problems.

We conclude this section by a preliminary analysis of the behavior of our method in the presence
of noise in the function. Indeed, we speculate that the use of a larger sample of iterates to
calibrate the secant model smooths the impact of noise on the method.

We consider a generalized noisy nonlinear system of equations described by:

G(x) = Fs(x) + �(x) (47)

where Fs is a smooth nonlinear system of equations and �(x) is a random perturbation. Simi-
larly to Choi and Kelley (2000), we assume that the noise decreases near the solution, and we
propose

�(x) � N(0; �2kx� x�k2): (48)

We consider the problem described in Section 7.4 in the Appendix. We have selected a problem
where BGM is better than GSM in the deterministic case. The results for 4 levels of stochasticity
are presented in Figure 4. For each value of the parameter � in (48), we plot the relative
nonlinear residual, that is kG(xk)k=kG(x0)k, against the number of function evaluations.
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Figure 4(a) illustrates the deterministic case, with �(x) = 0, where BGM is slightly better than
GSM. When a noise with small variance (� = 0:001, Figure 4(b)) is present, GSM decreases
the value of the residual pretty quickly, while the descent rate of BGM is much slower. When
the variance of the noise increases (� = 0:05 in Figure 4(c), and � = 1 in Figure 4(d)), the
BGM is trapped in higher values of the residual, while GSM achieves a significant decrease.
We have performed the same analysis on other problems, and observed a similar behavior, that
is a better robustness of GSM when solving a noisy system of equations.

6 Conclusion and perspectives

We have proposed a new family of secant methods, based on the use of more than two iterates to
identify the secant model. Contrarily to previous attempts for multi-iterate secant methods, the
key ideas of this paper are (i) to use a least-square approach instead of an interpolation method
to derive the secant model, and (ii) to explicitly control the numerical stability of the method.

A specific instance of this family of methods provides an update formula. We have provided a
proof of the local convergence of a quasi-Newton method based on this update formula. More-
over, we have performed extensive numerical experiences with several algorithms. The results
show that our method produces significant improvement in term of robustness and number of
function evaluations compared to classical methods. Finally, we have provided preliminary
evidences that our method is likely to be more robust in the presence of noise in the function.

The main drawback of our approach is the relatively high cost in numerical linear algebra, as
a least-square problem has to be solved at each iteration. This has not been addressed in this
paper, as only the number of function evaluations is under consideration, but it may become
cumbersome for large problems. Several techniques can be considered to improve the perfor-
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mance, like imposing a specific structure to Bk+1 (e.g. tridiagonal) in order to reduce the size of
the least-square problem. Also, techniques inspired by limited memory update can be analyzed
in this context as well.

A theoretical analysis of a globally convergent version of our method must also be performed.
We also conjecture that the local convergence rate is super-linear. And most importantly, the
general behavior of the algorithm for solving noisy functions requires further analysis.

There are several variants of our methods that we plan to analyze in the future. Firstly, following
Broyden’s idea to derive BBM from (42), an update formula for B�1

k+1 can easily be derived in
the context of our method:

B�1
k+1 = B�1

k +
�
�2 + Yk+1


2Y T
k+1

��1
Y T
k+1


2
�
Sk+1 � B�1

k Yk+1
�
: (49)

From preliminary tests that we have performed, the “Good” and “Bad” versions of our method
compare in a similar way as BGM and BBM.

Secondly, non-update instances of our class of methods can be considered. In that case, the arbi-
trary matrix B0

k+1 in (11) may be different from Bk. In that case, choosing a matrix independent
from k would allow to apply Kalman filtering (Kalman, 1960) to incrementally solve (11) and,
consequently, improve the numerical efficiency of the method. For large scale problems, an
iterative scheme such as LSQR (Paige and Saunders, 1982) has been considered. LSQR can
also improve the efficiency of Kalman filter for the incremental algorithm (see Bierlaire and
Crittin, 2001).

In (Bierlaire and Crittin, 2003) we propose an adaptation of GSM to solve the consistent antici-
patory route guidance problem following the propositions described above. Results are impres-
sive as this algorithm clearly outperforms classical fixed point methods. Moreover preliminary
results also indicate a very good behavior on nonlinear systems of equations compared to state-
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(b) Small variance noise
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(c) Normal variance noise
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Figure 4: Behavior with stochasticity

of-the-art large scale algorithms.

Finally, the ideas proposed in this paper can easily be tailored to optimization problems, where
the symmetry and positive definiteness of the matrix can be explicitly exploited.
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7 Appendix

7.1 Proof of Lemma 3

kS
2STk � kS
k2 (50)

�
kX
i=1

k!isik
2 (51)

� kmax
i2Ik

(j!ijksik)
2 (52)

� kmax
i2Ik

(j!ijkxk+1 � ~x+ ~x� xik)
2 (53)

� 2kmax
i2Ik

j!ij
2 max
i2Ik+1

kxi � ~xk2 (54)

� 2MPM
2
! max
i2Ik+1

kxi � ~xk2 (55)

for all ~x 2 R
n�n , in particular with ~x = x� which proves (22).

k
2STk2 �
kX
i=1

k!2
i sik

2 (56)

� kmax
i2Ik

�
j!ij

2ksik
�2

(57)

� kmax
i2Ik

j!ij
4max

i2Ik
kxk+1 � ~x+ ~x� xik

2 (58)

� 2kmax
i2Ik

j!ij
4 max
i2Ik+1

kxi � ~xk2 (59)

for all ~x 2 R
n�n . We obtain (23) with ~x = x�:

k
2STk �
p

2MPM
2
! max
i2Ik+1

kxi � x�k (60)

7.2 Proof of Lemma 4

Writing explicitly a column of the matrix A = Y � J(x�)S

a�j = F (xk+1)� F (xi)� J(x�)(xk+1 � xi) (61)

with a�j defining the column j of A = (aij).

Using (61) and Lemma 1 we can write:
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kY � J(x�)Sk2 �
kX

j=1

ka�jk
2 (62)

� kmax
i2Ik

kF (xk+1)� F (xi)� J(x�)(xk+1 � xi)k
2 (63)

� kK2
lipmax

i2Ik

�
kxi � x�k � kxk+1 � x�k

2
kxk+1 � xik

�2

(64)

� 2kK2
lip max

i2Ik+1
kxi � x�k2 max

i2Ik+1
kxi � x�k2 (65)

Taking the square root on both side:

kY � J(x�)Sk �
p

2MPKlip max
i2Ik+1

kxi � x�k2 (66)

7.3 Proof of the Lemma 5

Let A 2 R
n�n , we denote by �m(A) and �M(A) its smallest and largest eigenvalues, respec-

tively. So we can write using the definition of the l2 norm:

k(�2 + S
2ST )�1k = �M((�2 + S
2ST )�1) (67)

=
1

�m(�2 + S
2ST )
: (68)

Froms assumption (A3), �2 is computed using the modified Cholesky factorization, proposed
by Schnabel and Eskow (1991), with parameter � . Therefore,

�m(�
2 + S
2ST ) � �; (69)

which concludes the proof.

7.4 Description of problem analyze in Figure 4

The considered problem is the following system of equations:

fi = xi �

P4
j=1 x

3
j + 1

8
i = 1; : : : ; 4 (70)

with initial point x0 = (1:5; : : : ; 1:5). The solution of this system is x� = (0:20432; : : : ; 0:20432).

7.5 Linear problems in the tests set

We have tested three linear problems of the form Ax = b. They have been designed to challenge
the tested algorithms.

1. For the first, the matrix A is the Hilbert matrix, and vector b is composed of all ones.
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2. The second problem is based on the matrix A such that aij = j if i + j = n + 1, and
aij = 0 otherwise. All entries of the right-hand side b are -10. Its structure is designed so
that the identitiy matrix is a poor approximation.

3. The third problem is based on a Vandermond matrix A(v) with v = (�1;�2; : : : ;�n).
All entries of the right-hand side b are -1.

The starting point for all those problems is x = (1; : : : ; 1)T .
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