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Abstract 

In transportation planning and modelling feasible transportation networks are crucial. To be 
useful, the networks have to fulfil certain requirements: first, the geographical locations of 
network elements (typically nodes and links) have to be accurate; second, the given attributes 
(i.e. number of lanes, length, allowed speed, and so on) of the network elements should hold 
correct information; and—particularly for traffic path finding algorithms—any given network 
should be constructed such, that every node is accessible by any other node via at least one path.

Unfortunately, in practice there is no guarantee that these three requirements are fulfilled. At the 
same time often many different networks are available for the same geographical region. These 
networks often can differ in their emphasis, resulting in differences such as the resolution of the 
network, the correctness of the geographical locations and the correctness / completeness of the 
given attributes. 

To deal with this problem, one is required to match different networks of the same region so 
that attributes can be easily shared between the given networks. 

In this paper some approaches for network matching are described and compared. Unlike other 
approaches attributes of the nodes and links are not used as part of the matching algorithm, 
since they are unreliable. The problem is thus reduced to two directed graph with the addition of 
spatial information–a geo-coded digraph. 

Keywords 

network matching – graph algorithm – transportation planning – Swiss Transport Research 
Conference – STRC 2005 – Monte Verità 
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1. Introduction 

The question about matching different networks describing the same region appears in varies 
topics, like cognitive recognition science (i.e. Fitch et al., 2002), computer vision (i.e. 
Christmas et al., 1995), etc. Even so, the benefit of matching different networks varies, i.e. in 
cognitive recognition science matching is used to find similarities and to extract patterns for 
learning algorithms (i.e. Christmas, 1995) or detection of changes of sewer tunnels in history 
(i.e. Pendyala, 2002). 

In transportation planning and modelling feasible transportation networks are crucial. To be 
useful, the networks have to fulfil certain requirements: first, the geographical locations of 
network elements (typically nodes and links) have to be accurate; second, the given attributes 
(i.e. number of lanes, length, allowed speed, and so on) of the network elements should hold 
correct information; and—particularly for traffic path finding algorithms—any given network 
should be constructed such, that every node is accessible by any other node via at least one 
path. Unfortunately, in practice there is no guarantee that these three requirements are 
fulfilled. At the same time many different networks are available for the same geographical 
region. These networks often can differ in their emphasis, resulting in differences such as the 
resolution of the network, the correctness of the geographical locations and the correctness / 
completeness of the given attributes. To deal with this problem, one is required to match 
different networks of the same region so that attributes can be easily shared between the given 
networks. To share attributes an appropriate matching of the given networks is needed. 

To respect the different benefits of matching networks, this paper shows first approaches how 
any kind of geo-coded networks can be defined as a geo-coded digraph (a directed graph 
based on a coordinate system) and it also shows how a matching can be done while the only 
input are geo-coded digraphs. Unlike other approaches (i.e. Waldner, 2005) attributes of the 
nodes and links are not used as part of the matching algorithm, since they are unreliable. The 
problem is thus reduced to two directed graph with the addition of spatial information–a geo-
coded digraph. 

To describe a geo-coded digraph some definitions have to be made shown in Section 2. The 
following section deals with pre-conditions and classifications of a graph and its elements. 
Also some preparations are made such that the resulting geo-coded digraph can be used by the 
matching algorithm. It is described in detail in Section 4. Then the algorithm is tested against 
sets of test graphs shown in Section 5 to measure the degree of success. The paper finishes 
with a summary and outlook. 
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2. Definitions 

2.1 Geo-Coded Digraphs (GCDG) 

A geo-coded graph  consists of a set of vertices V  and a set of edges . Each 

node is written by a lower case letter 

( EVGCG , )
Vji

E

∈K,, ( ) Eji and each edge by a pair of nodes ∈, . 

Additionally, each vertex i  of a GCG  holds a coordinate pair ( )yx ,

)

ii  based on a given 

coordinate system. 

In a geo-coded digraph  each edge ( EVGCDG , ( )ji,  of the graph has a defined direction, 

where  is the source vertex of the edge,  the sink, resp. Each i j ( )EV ′,

( )EVGCDG ,

GCG  can be mapped 

to a  where each undirected edge can be replaced by two edges in opposite 

direction: 

( ) ( ) ( ){ } VjiEijjiEji ∈∀∈′∈ ,,,,,, a  

Since all nodes in a  have a defined coordinate, the angle ( EVGCDG , ) ( )ji,ϕ  between the 

abscissa and an edge ( ) Eji ∈,  is defined by 

( )( )
( ) ( ) ( ) ] ]ππϕϕ ,,cos ,22, −=

−+−

−
= ji

ijij

ij
ji

yyxx

xx
. 

The cosine is a periodic function. To get a unique angle, we just define the range inside one 
period. Note, that if the source and sink of the edge have the same coordinates, this formula is 
not valid (division by zero). Therefore we need to add the following constraint: 

( )
( ) EiiVi

yyxxEji jiji

∉∈∀⇒

≠∨≠∈∀

,:

:,
 

This constraint is only related to the edges of the graph. It is still allowed to have vertices with 
the same coordinates as long as they are not connected by an edge. It includes also that no 
edge is allowed with the same vertex as the source and the sink. 

With the knowledge of the angle of each edge in a GCDG  the set of incident edges 
 of a vertex i  can be ordered by the following rule: ( ){ } ( ){ }ikji ,, ∪
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Note that for a given edge (  the angle ij, ( )ji,ϕ  is defined as the angle of edge ( . Since the 

order is based on an angle between 

)
] ]

ji,

ππ ,− , we can extend it to a ring structure: The last edge 

in the ordered list defined above therefore can be seen as <  (can be interpreted as “is right 
to”) the first edge. 

2.2 Isomorphism, Topology and Geo-Topological Similarity 

In graph theory isomorphism is well defined (West, 2000). Formally, two graphs  and 

 with graph vertices 

( EVG , )
( )EVG ′′, { }nV ,,2,1V K=′=  are said to be isomorphic if there is a 

permutation p  of V  such that ( )}ji,{  is in the set of graph edges E  if and only if 

 is in the set of graph edges ( ) (( ){ }jpip , ) E′ . Determining if two graphs are isomorphic is 

thought to be neither an NP-complete problem nor a P-problem, although this has not been 
proved (Skiena, 1990). In fact, there is a famous complexity class called “graph isomorphism 
complete” which is thought to be entirely disjoint from both NP-complete and from P. 
However, a polynomial time algorithm is known when the maximum vertex degree (the 
number of edges incident to a vertex) is bounded by a constant (Luks, 1982). The definition of 
isomorphism shows that vertices are not bounded to a position. In geo-coded digraphs 
permutations cannot be done since their vertices are geographically bounded. 

Also the concept of topology is known in graph theory. An unlabeled transitive digraph 
(Sloane, N. J. A. and S. Plouffe, 1995) with  vertices is called topology. Again, vertices are 
not geographically bounded in this definition. Therefore we need to introduce the concept of 
“geo-topology”. For example, if we define a digraph with three vertices and three directed 

edges there is exactly one topology. Considering a 

n

( )EVGCDG , , then there are 822 == 3E  

different topologies shown in Figure 1. 
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Figure 1 Eight geo-topologically different geo-coded digraphs 

 

 

It is easy to find out if two geo-coded digraphs are geo-topologically equal: Two geo-coded 
digraphs  and GCDG( )EVGCDG , ( )EV ′′,  are said to be “geo-topologically equal” if there is 

a permutation p  of V  such that  is in the set of graph edges ( ){ }ji, E  only if { } is 

in the set of graph edges 

( ) ( )( )jpip ,

E′  and ( ) ( )ipi yyipi xxVi =∧=∈∀ :

mplexity i

. With the additional 

information about coordinates of the vertices, the co s ( )EVO . +

We also can easily add fuzziness into this definition: Two geo-coded digraphs ( )EVGCDG ,  

and GCDG  are said to be “geo-topologically ( )EV ′′, r -similar” if there is a permutation  of 

 such that  is in the set of graph edges 

p

V )}({ ji, E  if and only if ( ) ( )( ){ }jpip ,  is in the set of 

graph edges E′  and ( )( ) ( )( )222: iiip yxxrVi +−≥∈ ip y−∀ . In other words, geo-topological r -

similarity between two geo-coded digraphs are given, when a mapping of the vertices exists 
such that the distance between each mapping pair is not bigger than radius r . If ∞→r , the 
question about geo-topological r -similarity is then equal to the question about isomorphism. 

2.3 Street Network 

In transport planning street networks are modelled by graphs. Typically intersections are 
defined by one or more vertices (also called nodes) holding coordinates, connected by 
unidirectional and/or bidirectional edges (also called links or lines). Additionally also 
polylines can be defined to connect the given nodes. Polylines normally have the purpose to 
model curves more precisely according to the real street. By definition, the “nodes” inside a 
polyline (called polypoints) are not a model for an intersection. Therefore, we could say that 
available street networks model each given intersection/bifurcation by nodes, while 
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polypoints only defines curves of a street connecting two intersections. In reality that is not 
always true: sometimes nodes of the network do not necessarily define an intersection. 

However, we do not need to distinguish between intersection nodes and other nodes. We just 
define street network nodes as a geo-coded vertices and network links/polylines as directed 
edges. If a link/polyline is defined as bidirectional we define two directed edges in opposite 
direction. Note, that we do not consider the additional points in a polyline. 

Note that many additional attributes for street network elements can be defined. For example 
a node can include turning rules, a type, etc. Links and polylines typically hold number of 
lanes, length, capacities, and so on. We do not use any of that information in the following 
sections but we keep the mapping between links and edges, nodes and vertices resp. But we 
need to consider one fact about given networks: Because of different requirements sometimes 
additional links and nodes are included in networks that do not exist in reality. Typical 
examples are connector links (see VISUM, http://www.ptv.de or De Palma et al., 1997) that 
are used to connect zones/municipalities to the networks. It is important to remove those 
network elements before mapping the network to a graph. 

With the above described definitions we are now able to create ( )EVGCDG ,  out of any kind 

of street networks. Even more, with an appropriate mapping description, we are able to create 
geo-coded digraphs out of other networks like railroads, rivers, oil-pipelines, etc. 

6 
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3. Graph Pre-Conditions, Vertex Classification and 
Reduction Rules 

3.1 Graph Pre-Conditions 

We now want to match two given geo-coded digraphs ( )EVGCDG ,  and ( EVGCDG )′′,  like 

described in Section 2. First of all, matching does only make sense if the two graphs describe 
the same region and the same network. It is also necessary that both geo-coded digraphs refer 
to the same coordinate system. Even more, we need to assure that both graphs hold common 
parts of information. For example, no match will be possible if one graph models only the 
highways whereas the other one only describes side roads. Let us summarize those pre-
conditions. 

Two geo-coded digraphs  and ( EVGCDG , ) ( )EVGCDG ′′,  that are to be matched have to 

fulfil the following pre-conditions: 

1. VjVi ′∈∀∧∈∀ :  refer to the same coordinate system. jjii yxyx ,,,

2. They describe the same type of network system. 

3. They describe the same region. 

4. ( ) ( ) ( ) ( )EVGCDGEVGCDGEVGCDGEVGCDG ssss ′′⊆′′∃∧⊆∃ ,,,, , such that 

 and GCDG( )EVGCDG , ( )EVss ss ′′,

GCDG

 hold the same information of the network. 

3.2 Vertex Classification and Reduction Rules 

In principle two geo-coded digraphs can be matched if they are geo-topologically similar as 
defined in Section 2.2. This includes that both graphs have to have the same number of edges 
and vertices. But in fact ’s created by given street networks usually differs in the 
amount of edges and vertices, even if they fulfil the above given pre-conditions. Therefore we 
need to “reduce” the graphs in a way by which they do not loose matching information. In 
street networks we need to assure that we do not loose information about the intersections and 
the streets connecting those intersections since those elements are holding all topological 
information of the graph. In a first step, we can partially reduce a graph without concerning 
about the other given one. The rules to reduce a graph depend on the role of a vertex plays in 
it. Therefore we classify the vertices and define the rules according to each classification. 
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Focussing on a given GCDG  we can classify vertices and edges by the amount of 
information they hold. Figure 2 shows the nine classification types of a GCDG . For each type 
we can define a reduction rule such that there is no loss of information of the network. 

 

Figure 2 Classification of a vertex 

 

 

Vertex type “empty”: 

Each occurrence can be removed from the given graph. In fact, there is no reason for having 
empty vertices in networks. 

Vertex type “source” and “sink”: 

Those vertices remain untouched. In the case of street networks, sources and sinks do not 
make much sense since one of the main characteristics of street networks is that they are 
strongly connected digraphs. Sources and sinks do not respect that characteristic. On the other 
hand, river networks holds those vertex types and therefore they should not been excluded. 

Vertex types “dead end”, “one way start” and “one way end”: 

They describe special information about the network. But since they don’t describe an 
intersection, we classify them separately. 
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Vertex type “one way pass” and “two way pass”: 

Those vertices do not give additional information to networks. We can remove them and their 
incident edges by connecting their neighbour vertices with one edge (two edges, resp.). Please 
note, that–with this rule–we implicitly assume that in the street network, no U-turn is allowed. 

There is one important exception we have to consider. It is possible that in a given graph a 
path exists which starts and ends at the same vertex and holds only “one way pass” and “two 
way pass” vertices. If we then follow the rule described in the previous paragraph we would 
end up with an edge with the same vertex as the source and the sink. Therefore, the rule must 
not be applied to those vertices. 

Vertex type “crossing”: 

The remaining vertices are crossings. We leave them untouched. For matching two geo-coded 
digraphs we will concentrate on the “crossing” vertices in the following section. 

Figure 3 shows an example of using the above described rules. As we can see in the bottom 
right loop of the graph, the “one way pass” vertices are not removed, since they are describing 
a path with the same start and end vertex. The other vertices of these types disappear. The 
vertex of type “empty” is also removed. Please note, that the upper left part of the graph are 
reduced in a way that two edges hold the same source (same sink, resp.). It indicates that there 
are two possibilities to reach the “one way start” vertex. 

 

Figure 3 Example of using single graph reduction rules 
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4. Matching Algorithm 

The reduction rules described in Section 3.2 applies to a single  defining a given 
(street) network. Those rules do not decrease the amount of information of this network. In 
other words, if we would remove just one additionally vertex of the resulting reduced 
network, we would loose essential information. Especially this is valid for the vertices of type 
“source”, “sink”, “dead end”, “one way start”, “one way end” and the remaining “one way 
pass”/“two way pass” vertices. Therefore, these vertices stay fixed. 

GCDG

The vertices we mostly focus on are of type “crossing”. For a single graph they obviously 
hold essential information. But if we want to match two GCDG , we need to reduce the 
amount of information that we can find a common base. Figure 4 shows the basic idea of 
reducing two given graphs becoming geo-topologically r -similar (assuming an appropriate 
value for r ). The vertices , ,  and e  of type “crossing” of the white graph are reduced to 
the vertex 

b c d
x  while d ′  and e  of the grey graph are reduced to vertex . If we assume that 

the border vertices are also of type “crossing”, one could say that we can reduce all the 
vertices of each graph to a single vertex. This is in fact also a common base and the resulting 
graphs are geo-topologically similar. But we loose too much information (in this case, all 
information). So, we need to find a common base by which we loose as less information as 
possible. 

′ x′

 

Figure 4 Example of intersection reduction 

 

 

We need to consider also another fact according to intersection reduction. Typically, the 
degree of given information differs for two given networks. For example, one street network 
includes also side roads while the other one just ignores them. Figure 5 shows such an 
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( )eb ′′,  and ( )be ′′,example: In the grey graph the edges  are not modelled. After the 

intersection reduction the two graphs are not geo-topologically similar. When we then remove 
the additional information of the edges ( )x,f  and ( )fx,  of the white graph, geo-topological 

similarity is fulfilled. 

 

Figure 5 Example of intersection reduction with different amount of information 

 

 

There is at last another fact to be considered. Intersections could be modelled in one graph 
whereas in another one they do not occur. This is also true for vertices of type “dead end”, 
“one way start”, “one way end”, “source” and “sink”. Figure 6 shows an example. There is no 
matching intersection for vertex  of the white graph. Therefore  has to be removed. Also 

the “dead end” vertices do not have equivalence in the grey graph, so they are removed, too. 

f f

 

Figure 6 Example of removing intersection and dead ends 
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The core question is how to define an algorithm which first reduces intersections, second 
removes incident edges of the reduced intersections and third removes vertices holding 
additional information which cannot be matched to two given  such that they are geo-
topologically 

GCDG
r -similar with a minimum loss of information of the given graphs. Let us 

summarize the steps described above: 

Given two already classified and reduced geo-coded digraphs  and 

 as described in Section 3, then the matching algorithm is defined as follows: 

( EVGCDG , )
( )EVGCDG ′′,

( )EVGCDG ,

1. Run a crossing reduction algorithm, which detects and reduces vertices of type 
“crossing” of the given graphs. 

2. Run an edge deletion algorithm, which deletes incident edges of the reduced vertices 
of one graph that do not have a counterpart in the other graph. 

3. Run a vertex deletion algorithm, which deletes vertices of any type in one graph that 
does not have a counterpart in the other one. 

The following sections describe the three steps in detail. 

4.1 Crossing Reduction Algorithm 

Like Figure 4 already indicates, the crossing reduction algorithm of two given geo-coded 
digraphs  and ( )EVGCDG ′′, n

VGCDG

 matches intersections such  vertices of 

 are matched with  vertices of ( )E, m ( )EVGCDG ′′, . Since we need to check all 

possible combinations of n  vertices in ( )EVGCDG  with all combinations of m  vertices in 

, the worst case complexity is therefore 

,

)( EVGCDG ′′, ( )mn ⋅O  for each single matching. 

This is far too much and the algorithm would run unfeasibly long for two graphs of 
reasonable size. But we can take advantage of the fact that the graphs are geo-coded and that 
we are searching a match which uses as less as possible vertices of type “crossing”. 

22

Let us first define an appropriate upper limit for  and . We do not define that by a fixed 
number but by a fixed area. This makes more sense since the resolution of the given graphs 
can differ a lot. 

n m

Given two geo-coded digraphs ( )EVGCDG ,  and ( )EVGCDG ′′, , a vertex of type “crossing” 

 that is not already crossing reduced and a given radius , the sets of crossing 

reduction candidates are defined as V  and 

Vi∈ r

V⊆ VV ′⊆

crossing

i i′  such that 

 and ( ) ( )222 −+−≥crossing: ijiji yyxxrVj∈∀ ( ) ( )222′ crossing: ikiki yyxxrVk −+−≥∈∀  with 
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iVn = , iVm ′=  and  are of type “crossing” and not already crossing reduced. Figure 7 

shows a graphical example of the two sets V  and V

kj,

i i′  with 7=n 4 and . =m

 

Figure 7 Example of set of vertices of type “crossing” Vi and V´i

 

 

With the knowledge of the two sets  and iV iV ′  we can now describe the crossing reduction 

algorithm: 

1 For each  of type “crossing” do Vi∈
2  If i  is not already crossing reduced, then 
3   For [ ]nncurrent ,1=  do 

4    For all sets  with i
current

i VV ⊆ current
i nV =

]

current  do 

5     For  do [ mmcurrent ,1=

6      For all sets  with i
current

i VV ′⊆′ current
i mV =′ current  do 

7       If both  and  are connected and current
iV current

iV ′

           matches , then current
iV current

iV ′

8        Reduce  and reduce  current
iV current

iV ′

9        Message “Reduction found with  and ” current
iV current

iV ′
10        Goto line 17 
11       Done (if) 
12      Done (for) 
13     Done (for) 
14    Done (for) 
15   Done (for) 
16   Message “No reduction found with initial vertex i ” 
17  Done (if) 
18 Done (for) 
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Note that the messages on line 9 and 16 indicates that we receive a Boolean answer for each 
initial vertex . Notice: A reduction is also a matching! i

It is necessary to ensure that a current subset  ( , resp.) are connected (see line 

7). Otherwise it is possible that the algorithm interprets a vertex set as one intersection even 
the set holds disjoint parts. See Figure 8 for an example. 

current
iV current

iV ′

 

Figure 8 Example of set of vertices of type “crossing” Vi with two disjoint parts 

 

 

We still need to describe the meaning of “  matches ” (line 7) and “Reduction of 

a set of vertices” (line 8). 

current
iV current

iV ′

4.1.1 Reduction of currentV  

Given a geo-coded digraph ( )EVGCDG ,  and a set of vertices of type “crossing” 

 and \V  with VVji ⊆∈, current currentVk ∈ ( ){ } inside EEji ⊆=,  and ( ) ( ){ } incident EEikki ⊆=,,, , 

then the reduction of V  is a geo-coded digraph current ( )reducedreduced

{ } (reduced

EVGCDG ,  with 

\VlV ∪= )currentV , current

Vi
il Vxx

current
∑

∈

= , current

Vi
il Vyy

current
∑

∈

=  and 

\( )reduced ∪= ( ){ } (ElkklE ,,, ( ))incidentinside ∪
current

current

EE . The added vertex  is called “reduction 

vertex”. It is the substitution of the original set V . Figure 9 shows a graphical 

interpretation of the reduction of V . 

l
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Figure 9 Example of a reduction of set Vcurrent

 

 

4.1.2 Matching of currentV  and  currentV ′

Matching is a binary function. It either returns “true” if the two sets of vertices match or 
“false” if not. 

Given two geo-coded digraphs ( )EVGCDG ,  and ( )EVGCDG ′′, , two sets of connected 

vertices of type “crossing”  and  and a defined angle VV current ∈ current ′∈′ VV [ ]πϕmax = ,0 , 

then their reduced graphs ( )reducedreduced EVGCDG ,  with “reduction vertex”  and l

( )reducedreduced EVGCDG ′′ ,  with “reduction vertex” l′  as defined in Section 4.1.1 defines a 

match of  and V , if and only if there is a ordered mapping of all incident edges currentV current′

incidentE′ incidentof  with a subset of the incident edges l′ E  of l  with incidentincident′

ϕ incident

EE ≤  

according to angle . More precisely, given the ordered lists of the incident edges max E  

of  and l incidentE′ of l′  as defined in Section 2.1, a matching exists if we can build pairs of 

edges  and  with  and  such that the angle 

between the two edges of the pairs are less or equal  and the following is fulfilled: 

( ) (( )ili ′′,,, )l ( ) ( )( )lili ′′,,, Vi∈ reducedVi ∈′reduced ′
maxϕ
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Notice that it is not necessary the all edges of incidentE  belong to a pair while all edges of 
incidentE′

( )ld , ( )lc ′′, maxϕ ′

 are mapped. The graphical interpretation of the above is shown in Figure 10. The 
drawn angles indicate the mapping. Both mappings respect the order and also all edges of one 
of the graphs were used. But the mapping on the right side does not match because the angle 

between edge  and  is greater than . Please notice that  and  do not need to 

have the same position. It is just drawn this way to highlight the angles between two edges. 

l l

 

Figure 10 Example of matching set Vcurrent with V´current

 

 

4.2 Edge Deletion Algorithm 

After running the crossing reduction algorithm described in Section 4.1 we receive two 
resulting geo-coded graphs where some of the vertices of type “crossing” are “reduction 
vertices”. For each of the “reduction vertices” we also have the information which of the 
incident edges were not mapped according to the rule described in Section 4.1.2. In principle 
these edges can be removed from the graphs. Assume that an edge (  incident to the 

“reduction vertex” l  which is not mapped, holds a vertex i  which is not a “reduction vertex”, 
then we cannot remove this edge. Otherwise, the type of vertex  can change (i.e. a “dead 
end” will be changed into a “source”). Therefore, we remove only those edges  where 

both vertices are “reduction vertices” and the edge was not mapped from both sides. 

)il,

i
( )ji,
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4.3 Vertex Deletion Algorithm 

The resulting geo-coded digraphs are still not geo-topologically similar. There are still 
“crossing” vertices which are not “reduced” ones. The graphs also holds vertices of type 
“dead end”, “one way start”, “one way end”, “source” and “sink”. In addition to that, there are 
still “loops” as shown in Figure 3. We now look at each type separately. For the following 

deletion algorithms we will use an area (a circle) of a possible match, called ( )match

match

riA , , which 

is defined by a vertex i as the centre and a given radius r . 

Please note, that in the following we use ( )EVGCDG ,*  and ( )EVGCDG ′′,*  as the given geo-

coded graphs which are already crossing reduced and edge deleted as described above. 

4.3.1 Vertices of type “crossing” that are not already matched 

There are various reasons, why those vertices are not already matched (errors in the 
coordinates or the incident edges could not be match as shown in Figure 10). But there are 
also two other situations we have to consider: 

1. A “crossing” vertex cannot be matched if there is no counterpart in the other graph. 

2. A “crossing” vertex cannot be matched if its counterpart is not of type “crossing”. 

A possible solution to find an appropriate matching can be done by using Dijkstra’s shortest 
path algorithm (Dijkasta, 1959). To use it, we first need to define weights for each edge 

 of the given graphs. These are simple defined by the Euclidian distance between the two 

incident vertices: 

ijw

( )ji,

( ) ( )22
ijijij yyxxw −+−=  

We will denote the shortest path from vertex  to vertex i j  as . For both given geo-coded 

graphs  and 

ijD

( )* EVGCDG , ( )′′*

i

EVGCDG ,  we calculate for each pair of already matched 

“crossing” vertices  and j  ( i  and ′ j′ , resp.) the shortest path  ( , resp.). ijD D ji ′′

Given a “crossing” vertex  that is not already matched and a path  with k ijD ijDk ∈ , 

 and a path  as the counterpart of . ( ) ( ) Dtkks ∈,,, D Dij ji ′′ ij

17 
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1. If there is no vertex , delete all incident edges of k  and set edge . Also 

set an edge , if there is also a path  and . Also update the types of the 

neighbour vertices of . 

jiDk ′′∈′ ( ts, )
( )st, D D

k
ji ij ′′

2. If there is a vertex  and jiDk ′′∈′ k ′  lies inside the area ( )matchrkA , , then delete all 

incident edges which do not belong to path . Also update the neighbour vertices of 

 and also  (it is not a “crossing” vertex anymore). Mark  and k  as matched. If 

 does not lie inside 

ijD

k k k ′

k ′ ( )matchrkA ,

k k ′

D D

, construct the same result as in 1., which means that 

we delete  and . 

Figure 11 shows examples of the two situations described above. The bold edges highlight the 
paths ,  resp. ij ji ′′

 

Figure 11 Example of two cases of a “crossing” vertex that is not matched already 

 

 

Let us at last focus on the vertices which their type was updated (vertex  in Figure 11). It is 

possible that after this step, l  is part of a disjoint sub graph of 

l

( )EV ,*

l k k

GCDG . This is true, if 

 was either part of a path from a “dead end” to vertex  or part of a loop with  as the only 
vertex of type “crossing”. Therefore, we just delete the whole disjoint sub graph. 

18 
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Now, no “crossing” vertices exist anymore which are not matched. This helps a lot for the 
following steps: 

4.3.2 Vertices of type “dead end” 

A vertex  of type “dead end” has a shortest path  to a vertex Vi∈ ijD j  of type “crossing”. If 

there is a vertex i ( )matchriA , D j′V ′∈′  which has a path  to ji ′′ j ’s counterpart  inside the area , 

the whole path  can be matched with . It is possible that iijD jiD ′′ ′  is not a “dead end” vertex. 

In this case, we are allowed to delete the excessive incident edges of i′ . 

4.3.3 Vertices inside a loop 

Because of the step described in Section 4.3.1 vertices Vi∈  inside a loop with the single 

“crossing” vertex j  can only be matched if there is also a loop in  with ( )EVGCDG ′′,* j ’s 

counterpart . j′

D D V∈

4.3.4 Vertices of type “source” or “sink” 

For sources and sinks we can follow the same rule as described in Section 4.3.2. We only 
need to find one path  (  for sinks) for a “source” / “sink” vertex i  to a “crossing” 

vertex 
ij ji

j . But according to street networks, it does not make much sense that a given graph 

holds sources or sinks. In such a case, the user should check why such vertices exist. 

4.3.5 Vertices of type “one way start” or “one way end” 

After the steps of Sections 4.3.1 to 4.3.3 almost all vertices of type “one way start” or “one 
way end” are matched or deleted. If there are still some left then they are part of a chain of 
such vertices. An example is shown in Figure 12. 

 

Figure 12 Example of a chain of “one way start” and “one way end” vertices 
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It is again not completely clear why such situations are modelled in a graph. Nevertheless, we 
can again match the whole path  from one “crossing” vertex to the other one with its 

counterpart  if a path like this exists. Otherwise we delete the path . 

ijD

D Dji ′′ ij

4.4 Summary 

In principle the whole matching algorithm above described for two geo-coded digraphs is 
feasible. But there is one important fact about it we have to point out. The whole algorithm is 
based on three parameters: 

• , that defines the maximum area where the crossing reduction algorithm tries to 

find a vertex sets which can be reduced, 
crossingr

• , that defines the maximum angle between two edges which is allowed for a 

matching, 

maxϕ

• and matchr , that defines the maximum distance for a one-to-one matching in the vertex 
deletion algorithm. 

If at least one of these values is set too small, the matching algorithm almost never finds an 

appropriate matching. On the other hand, we could also set  and crossingr matchr  to infinity, but 

then, the complexity of the algorithm increases too much. 

Let us assume that the three parameters are set to appropriate values, then the two resulting 
geo-coded digraph do not have to be geo-topologically similar. Figure 11, case 2 shows an 
example: The grey graph holds the edge ( )ki ′′, ( )ki, but its counterpart  does not exist. Of 

course it is now very easy to reduce one graph such that they fulfil geo-topological similarity 
but it is not necessary. Since we already found the matching parts of the graph, this last 
reduction is only cosmetics. 
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5. Test Cases 

To test the above described matching algorithm a set of manual generated geo-coded digraphs 
are used. The graphs are set in a defined area of 50 meter width and 30 meter height. Each 
graph holds between 2 and 15 vertices, 1 and 50 edges resp. To respect the pre-conditions 
described in Section 3.1 we create a pair of graphs on a base of one randomly generated 
digraph by adding / removing vertices and edges (still respecting the pre-conditions), by 
adding noise to the coordinates of the vertices and to expand vertices of type “crossing” by 
replacing them with a set of vertices holding the topology of the replaced one. The reason for 

using only such small graphs are that we can define ∞→ ∞→match
crossingr  and  without 

worrying about computation time. The following subsections will present the success rate of 
the matching algorithm based one different classes of pairs of geo-coded digraphs. 

r

Confusion Matrix 

The success rate is measured with the “precision” and “recall” calculation based on the 
confusion matrix (see Witten and Frank, 2000). The confusion matrix is defined as follow 
(see Figure 13): 

• true positives (TP): number of class members classified as class members 

• true negatives (TN): number of class non-members classified as non-members 

• false positives (FP): number of class non-members classified as class members 

• false negatives (FN): number of class members classified as class non-members 

 

Figure 13 Confusion matrix 
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For a set of vertices (representing an intersection or just single vertex like a “dead end”) of 
 and a set vertices of ( )EVGCDG , ( )EV ′′,GCDG , a matching is 

• true positives (TP) if the two sets are representing the same information and the 
matching algorithm finds the match. 

• true negatives (TN) if the two sets are representing different information and the 
matching algorithm does not find the match. 

• false positives (FP) if the two sets are representing different information but the 
matching algorithm finds a match. 

• false negatives (FN) if the two sets are representing the same information but the 
matching algorithm does not find a match. 

Therefore, precision is the fraction of the number of correct matches to the total number of 
matches of the algorithm: 

FPTP
TPprecision
+

=  

Recall is defined as the fraction of the number of correct matches to the total number of 
intersections which have to be matched: 

FNTP
TPrecall
+

=  

If precision and recall are equal to 1, the algorithm produces a perfect match. 

5.1 Matching two geo-topological similar GCDGs 

The two graphs are created out of a given graph. To one of the two graphs we add a certain 
amount of noise with upper limit of [ ]=noiser

1=precision 1=recall

50,0  meters to the coordinates of its vertices. 

Therefore, a perfect match holds only one-to-one matches of the vertices. 

• If the graphs are geo-topologically equal, the algorithm always finds all matching 
(  and ). 

• For a small amount of noise and  greater than zero (around maxϕ 4π ) the algorithm 

finds almost all matching intersections( 99.0≈precision 95.0≈recall and ). If the 

maximum angle is chosen to small then precision and recall decreases rapidly. 
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• If the noise is chosen too large ( ) with large  then the algorithm often 

matches the wrong pair of vertices and sometimes it also produces “reduction 
vertices”. Therefore, the 

40≈noiser maxϕ

0.0≈precision 0.0 and recall . ≈recall

maxϕ

These test cases show that with some amount of noise in the coordinates the algorithm still 
produces a good matching. But if the noise is getting too large (i.e. created by measurement 
errors on the given network) mismatching can occur. The different runs also shows that an 
appropriate maximum angle  lies approximately between 6π  and 3π . 

5.2 Matching two GCDGs while one holds detailed intersection 
information 

The two graphs are created out of a given graph. The “crossing” vertices of one graph are then 
extended with more than one vertex such that some of the incident edges a “crossing” vertex 
are divided into two pieces with an additional vertex. Then these vertices were randomly 
connected by additional edges. Therefore an appropriate match of two intersections is always 
a one-to-many match. 

• For [ 3,6max ππϕ ≈ ]
9.0≈recall

πϕ =max

≈precision 25.0≈recall

 the algorithm finds most of the matching (  and 

). Mismatching occur only because only part of the expanded “crossing” 
vertices are matched to its single counterpart. 

99.0≈precision

• If the angle set  too small or too large the precision and the recall decreases again. 

But even  the algorithm still finds correct matched intersections 

(  and ). 

maxϕ

3.0

5.3 Matching two GCDGs while both holds detailed but different 
intersection information 

This setup is similar to the one above, but this time we also extend the “crossing” vertices of 
the other graph by splitting up another subset of the incident edges of the “crossing” vertex. 

• For [ 3,6max ππϕ ≈ ]
94.0≈precision 89.0

 the algorithm slightly less matching intersections 

(  and ≈recall ). The reason is the same as above. 

•  again should not be too small or too large. maxϕ
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5.4 Matching two GCDGs while one holds additional vertices and 
edges 

The two graphs are created out of a given graph. One stays the same while the other one holds 
additional vertices and edges. Therefore, one graph is a subset of the other one. The maximum 
angle  is set between maxϕ 6π  and 3π . 

• The algorithm almost always finds a perfect match (  and 

). This shows that the edge deletion algorithm and the vertex deletion 
algorithm produce the expected results for those test cases. 

99.0≈precision

99.0≈recall

maxϕ

5.5 Combinations 

The above described four different test sets can be combined to produce “more difficult” pairs 
of graphs. We again keep the maximum angle  between 6π  and 3π . 

Combination of Section 5.2 and Section 5.4: 

The algorithm still works surprisingly well ( 96.0≈precision  and ), because the 

crossing reduction algorithm finds again many of the vertex set which has to be reduced. Then 
the vertex and edge deletion algorithms can work on similar pairs of graphs like described in 
Section 5.4. 

88.0≈recall

Combination of Section 5.3 and Section 5.4: 

Compared to the above combination the algorithm produces more mismatches 
(  and recall ). They occur because the crossing reduction algorithm 

sometimes reduces a vertex set holding a vertex which was added like described in Section 
5.4. Those vertices then cannot be deleted anymore (they are already replaced by a “reduction 
vertex”). 

92.0≈precision 87.0≈

] ]noise noise

Combination of Section 5.1 with Section 5.2, Section 5.3 or Section 5.4: 

We have already seen that too much noise let the algorithm fall apart. Therefore, we will 

define the range of noise as . Of course we do not set . 30,0=r 0=r

• If noiser  is small the algorithm still produces feasible precision and recall values 
(  and [ ]1,8.0≈precision [ ]98.0,7.0≈recall ). This is quite expecting since the different 

parts of the algorithm do not react too much one a small amount of noise. 
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• If noiser  is increased to values between 20 and 30 meter the outcome of the algorithm 
varies a lot for different pairs of input graphs (  and 

). It is not that easy to see why this happen. One possible answer is 

that sometimes the noise changes the geo-topology of a graph while sometimes the 
geo-topology remains the same. 

[ ]9.0,0.0≈precision

[ ]9.0,0.0≈recall

maxϕ

match

To sum up, the different test runs show that the algorithm reacts quite sensitive on noise. Also 
a feasible maximum angle  has to be defined. On the other hand it shows that the 

crossing reduction algorithm finds at least an appropriate amount of correct reductions. The 
edge and vertex deletion algorithms are quite stable. 

But we have to point out that all these tests are done on really small graphs. We also do not 

know yet how the algorithm reacts on the parameters  and crossingr r  when they are set to a 

finite size. 
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6. Summary and Outlook 

Matching two geo-coded digraphs is clearly not a trivial task. Nevertheless, the graph 
matching algorithm presented in this paper shows some promising results. Even more, the 
algorithm do not use any additional information available in different networks except of the 
position of the vertices. This makes the algorithm usable to any kind of input networks. 

But we have to point out that there is much more analysis to do. The graph matching 
algorithm is only tested against small (randomly generated) graphs. It is now of interests to 
see how the algorithm behaves on “real” and larger networks. 

Last but not least it is not completely clear if two geo-coded digraphs can be perfectly 
matched. It is also to discuss if “crossing reduction” is the right way to go to match two 
networks. Figure 14 shows how the reduction algorithm interprets intersection differently 
depending on the given networks. The upper reduction is done assuming that the four white 
vertices describe one intersection (i.e. a roundabout). The grey graph holds less information 
and the intersection is modelled as a “one way end” vertex. In the lower case the grey graph 
has more information but still modelling the same intersection as one vertex. The crossing 
reduction algorithm now interprets the four white vertices as three separate intersections even 
though the white graph has not changed. 

 

Figure 14 Different interpretation of an intersection of the crossing reduction algorithm 
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