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Abstract 
The commonly used techniques for measuring capacity are mainly based on evolutionary 
concepts. These have been established due to the lack of detailed traffic information and 
limited capacity to evaluate the data. This situation has changed but is still far from the 
optimal state of full information, which surely never will be achieved. 

Though having detailed information about traffic flow, mean values are widely used to 
design transport infrastructures. The Swiss Norm provides factors to calculate hourly values 
from the average annual daily traffic by neglecting the variance. This could easily lead to 
wrong assumptions. If non-linear travel-time functions are used e. g. in assignment models, 
this variance must be included, for a calculation with a mean traffic flow underestimates the 
travel times. 

Other engineering sciences offer modern techniques to build risk sensitive models. The 
resistance and load are handled as random values and no longer as mean values. A concept 
similar to the Euro Code is applied to estimate the breakdown probability of roads depending 
on the traffic volume. This could be used as a proxy for the quality of service and for a 
detailed cost benefit analysis. 

Keywords 
Design concepts – transport infrastructure – demand and capacity as random variables 

Citation 
Bernard, M. (2005) New design concepts for transport infrastructures, 5th Swiss Transport 
Research Conference, Ascona. 



Swiss Transport Research Conference 
________________________________________________________________________________March 9-11, 2005 

2 

1. Introduction 

In this paper a general design concept should be presented that treats capacity and traffic flow 
as random variables. That means that these values are described by their distribution and not 
by their maximum (capacity) or mean value (traffic flow). It will be shown that the traffic 
flow is normally distributed within time windows. Given the normal distribution calculations 
of the probabilistic design concept could be simplified and feasible for application. The 
method shown here could be used to estimate the probabilities of the traffic flow being larger 
than the capacity for given scenarios. These results could easily be integrated into a cost-
benefit analysis with a focus on the most expensive traffic scenarios concerning generalised 
costs. This design concept is in contrast to the 30th-hourly-volume concept which neglects the 
hours of the highest traffic flow. 

1.1 Common understanding of capacity and levels of service 

Hitherto concepts based on intensive measurements to identify the maximum occurred 
volume. Qualitative characteristics in combination with parameters had to be found to 
describe the traffic flow. The basic attributes are car-following distances, mean speed and – 
by combing both – the traffic flow. 

These concepts do not show explicitly a separation of load and resistance of the system. The 
resistance of the system could be compared with the maximum capacity that was identified by 
the maximum traffic flow observed for one hour. The expression “maximum capacity” is 
misleading in this context as it is actually the maximum observed traffic flow. Design 
concepts in general describe a maximum resistance (capacity) as the mean of a series of strain 
test of the system till its breakdown. This is a major problem in transport engineering, as it is 
not possible to run tests under ideal conditions with a controlled traffic load. Nevertheless 
factors regarding structural facilities and alignment effects have been identified. These 
variables reduce the maximum capacity under ideal conditions. The load is adapted by not 
concerning for example 30 hours with the year’s highest volume. This is equivalent to some 
kind of reciprocal safety coefficient, for it lowers the safety instead of increasing it. But the 
raw traffic flow describes the load of the system not in every way. Therefore it is seen that a 
breakdown occurs not only because of a high traffic flow but also while the flow is relatively 
low. 

While Bureau of Public Roads (1950) mainly uses means to describe the traffic flow, later 
studies tried to explain variability by adding new variables and categories. Improvements 
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could be found in Highway Research Board (1965). The Poisson distribution is used to 
describe the distributions of time spacing between vehicles as a function of the traffic volume. 
A further extension of the existing models is the introduction of levels of service (LoS), 
regarding the observed coherence that traffic flow is dependent on the actual volume and 
density. In Highway Research Board (1965) six levels of service (A to F) are defined. 
Qualitatively they are shown in Figure 1. 

The observed behaviour varies from country to country and in time periods of few years. The 
concentrated efforts of continuous counts made it possible to publish modified distributions of 
headways and loads to regularly provide fundamental diagrams for many countries. 

Figure 1 Levels of Service (LoS) in Highway Research Board (1965) 

 

Source: Highway Research Board (1965) 

1.2 30th hourly volume as design traffic flow 

Design concepts commonly use the 30th hourly volume, described in Bureau of Public Roads 
(1950). The 30th hourly volume was chosen because of a flattening of the slope at this point. 
Antusch (1981) adds that this property could only be observed for censuses that mainly 
consist of commuter and weekday traffic. On weekends an incline of the slope could be found 
at the 30th hourly volume. But nevertheless even for these types of traffic the 30th hourly 
volume should be used as a design measure, because hours with higher traffic volume are 
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affected by incidents like accidents and special weather conditions. After the 20th or 30th 
hourly volume these events could be excluded (Antusch, 1981). In addition to that economic 
issues support this concept, as a design for hours of larger volumes will lead to a low 
utilisation ratio. The 30th hourly volume could be described as the volume which is greater or 
equal to 99.66% of the hourly volumes of a year. But this expression is rarely used in practice. 

1.3 Modifications of the 30th hourly volume 

The actual publication of the Highway Capacity Manual (2000) (Transportation Research 
Board, 2000) suggests the design for the 30th to 100th hourly volume. The practical traffic 
volume for each direction could be calculated using the proportion of the direction of the 
hourly peak volume and the average annual daily traffic. These are multiplied by K-factors 
ranging from 0.091 to 0.1 which describe the grade of urbanisation. This method implies that 
the average hourly volumes given for a specific hour of a day, for a specific day within a 
week and for a certain month are independent. It must be assumed that this assumption cannot 
be held. 

 

Figure 2 300 ranked hours with the highest traffic volume on the four-lane Trans-Canada-
Highway (Highway #1) east of the Rocky Mountains 

 

Hempsey und Teply (1999) 
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Hempsey and Teply (1999) point out that in the hourly volume diagram the definition of the 
location of the knee, which should lead to the 30th to 100th hourly volume, is not 
unproblematic. Dependent on the resolution and frame of the graph, the knee could be seen at 
different positions for the same diagram (see Figure 2 and Figure 3). If the position of the 
kink could not be defined properly then a certain design volume could not be justified, when 
the thesis of the Bureau of Public Roads (1950) is applied. 

 

Figure 3 8000 ranked hours with the highest traffic volume of the same site as in Figure 2 
on the four-lane Trans-Canada-Highway (Highway #1) east of the Rocky 
Mountains 

 

Hempsey und Teply (1999) 

 

The concept of the 30th hourly volume is mainly criticised for the negligence of the different 
states in traffic flow. The rank of a traffic volume gives no information about a possible 
increase in travel time, the probability of a breakdown or more general about the quality of 
service. Hempsey and Teply (1999) suggest therefore measuring the percentage of vehicles 
that could pass a network element at a given level of service. If the simplification is accepted 
that the level of service could be described by the traffic flow itself, then it could be said that 
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in 1996 90% of the vehicles on the Trans-Canada-Highway experience the level of service B 
or better as shown in Figure 4. Hempsey and Teply point out that this method could easily be 
integrated into cost-benefit analysis, as the percentage of vehicles experiencing the desired 
quality of service is known. Their analysis show that the principle of a ranked hourly volume 
may still be feasible and could result in higher ranks of the hourly volumes than given in the 
Highway Capacity Manual 2000 (Transportation Research Board, 2000: 30th to 100th hourly 
volume; Hempsey and Teply, 1999: 200th hourly volume). 

All methods working with ranked hourly volumes or percentages at a certain level of service 
have in common that they are highly dependent on the definition of the volume to capacity 
ratios for each level of service. In addition to that the effects of a lower level of service (e. g. 
C instead of B) or a higher rank of the hourly volume (e. g. 100 instead of 30) could not be 
quantified in increased travel times or higher generalised costs. 

 

Figure 4 Distribution of the hourly volumes on the Trans-Canada-Highway in the year 
1996 

 

Hempsey und Teply (1999) 
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2. New design concepts 

2.1 New understanding of capacity 

Matt and Elefteriadou (2001) have identified the breakdown probability for the 401 highway 
in Toronto. They define that a breakdown is observed if the mean speed of all lanes drops for 
five minutes below a critical speed that separates free flow from congested traffic. In this 
publication it becomes clear that the capacity cannot be seen as a fixed value but as a random 
variable. With higher traffic volume the probability of a breakdown increases. However there 
is no maximum traffic volume that causes a breakdown when the volume is increased by one 
unit. Figure 5 shows the different breakdown probabilities for given flow rates. A higher 
volume leads to a higher probability of breakdown but a break down is never inevitable. 

 

Figure 5 Probability of breakdown at given traffic flows, highway intersect 400 in Toronto

 

Matt and Elefteriadou (2001) 
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2.2 Usability of systems 

If a load (e. g. traffic flow) is near to or higher than the resistance (e. g. capacity) of the 
system its usability may change in various ways. A sudden breakdown of the system could 
follow after which the system is no more usable. Considering a transport-engineering example 
like a road with an increasing traffic flow a continuous degradation might be expected. These 
two different reactions of the system (on an increasing load) are shown in Figure 6 (a and b). 
This transition from a usable to a non-usable system may be permanent or reversible. For 
most systems in transport engineering the transition will be reversible (see Figure 7). 

 

Figure 6 Transition from usable to non-usable systems 
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Gulvanessian et al. (2002) 
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As the dimensioning could not be reduced to a single design load, which the system is capable 
to handle, the reversibility must be regarded in the design concepts. In transport engineering 
these systems produce increasing generalised costs if the load (traffic flow) is increased. In 
addition to that the load could exceed the capacity several times within a time range at 
different extends. 

 

Figure 7 Transition from usable to non-usable systems 
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2.3 Design concept using random variables 

For new design concepts it seems obvious that the capacity cannot be seen as a fixed value 
but as a random variable (see Matt and Elefteriadou, 2001; Brilon and Zurlinden, 2003). As a 
result of this, different design concepts have to be found in transport engineering. In other 
engineering sciences similar scenarios with random variables exist. For example the design 
concept of the Euro-Norm (EN) in construction engineering gives an idea of the techniques 
(see Gulvanessian et al., 2002). 

The general model is shown in Figure 8. The upper graph (Figure 8 a) shows the link between 
the hitherto existing model of a fixed capacity and a mean traffic flow to a model consisting 
of random variables. Both traffic flow and capacity are not described by their mean (estimated 
by measurements) but by a probability density function. 

These probability density functions must be defined for each condition that is to be analysed. 
As known from the norms (e. g. VSS, 1999; HBS 2001; HCM, 2000) the (mean) capacity 
varies inter alia due to the percentage of heavy vehicles, the incline, as well as weather 
conditions. Also density function of the traffic flow (or more precisely the demand) must be 
defined for each traffic condition. Generally speaking the traffic flow could vary between zero 
and the capacity (or even above capacity, depending on the definition). A distribution 
function for this interval describes the average traffic volume, which may not always be 
useful for a detailed design of transport infrastructures. If data or information about the time 
series of hourly volumes is known it is reasonable to use conditional probability density 
functions. 

A qualitative example of a traffic state with the corresponding (conditional) probability 
distributions of capacity and traffic flow can be seen in Figure 8 b. The mean traffic flow is 
denoted with µQ and the mean capacity with µC. As both factors are random variables there is 
some overlap of both of the density functions even if the traffic flow is much lower than the 
capacity. Using common methods this situation would not cause any influence to the flow 
conditions. But it could be seen in the figure that there is a probability that the traffic flow (or 
demand) exceeds the capacity. This probability is the basis of the EN-design concepts and can 
be used for a new design concept in transport engineering. 
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Figure 8 Traffic flow (demand) and capacity as random variables 
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2.4 Derivation of new basic design concept 

In the following the random variable of the capacity of an infrastructure element will be 
denoted as C with the probability density function fC(x) and the traffic flow as random 
variable Q with probability density function fQ(x). The infrastructure element fails to work 
properly (e. g. travel time increases by an unacceptable factor) if an actual traffic flow q 
exceeds its actual capacity c (q and c could be seen as realisations of the random variables Q 
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and C). With the probability density function of the random variable C the probability Pf of C 
being smaller than an actual q could be written as: 

∫
∞−

==≤=
q

CCf dxxfqFqCPP )()()(  . 

If q itself is not known but the distribution of Q, then the probability that Q exceeds C 
becomes: 

∫∫∫ ∫
∞

∞−

∞

∞−

∞

∞−

∞

∞−

===≤−=≤= dxxfdxxfxFdxxfxfQCPQCPP
fPQCQCf )()()()()()0()( 2  . 

The capacity C and the traffic flow Q should be defined in the way that both variables are 
statistically independent. In the structural reliability theory this case is called the fundamental 
case. The integral for two probability density functions fC and fQ of any shape cannot be 
solved in general, but assuming that C and Q are normally distributed an analytical solution 
could be found. If the safety margin is defined as: 

M = C – Q 

and the probability Pf could be written as: 

Pf  = P(C – Q ≤ 0) = P(M ≤ 0) . 

If C and Q are normally distributed then also M is normally distributed with the mean µ and 
standard deviation σ as follows: 

µM = µC – µQ   and   22
QCM σσσ +=  . 

With the cumulative probability distribution function of the normal distributionΦ=N(0, 1): 

( )∫
∞−

−=Φ
x

X dxxx 2
2
1exp

2
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πσ

 . 
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σ
µ

−Φ=⎟⎟
⎠

⎞
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⎝

⎛ −
Φ=

M

M
fP  

with the reliability index β = µM / σM. 



Swiss Transport Research Conference 
________________________________________________________________________________March 9-11, 2005 

13 

2.5 Distribution of traffic flow 

In the following the distribution of the traffic flow should be analysed. It is assumed that 
coherence exists between traffic flow and the variance of the flow. If the traffic flow is 
measured for example over an interval of 60 minutes the flows measured within shorter 
intervals vary from the 60-minute average. The data basis for this analysis consists of 19 
counting stations of 10 motorways (“Autobahn”) during 219 days in Switzerland (ASTRA, 
2003). The counting stations separated by direction are listed in Table 1. 

 

Table 1 Analysed counting stations on Swiss motorways 

Counting station Kanton Direction 1 Direction 2 Days, dir. 1 Days, dir. 2 

Mattstetten BE Zürich Bern  4 

Deitingen SO Zürich Bern 18 7 

Bypass Bern Ost BE Freudenbergerp. Vankdorf 16 14 

Gunzgen SO Zürich Bern 14 12 

Hunzenschwil AG Zürich Bern 12 15 

Muttenz, Hard BL Augst Bern 21 13 

Grandvaux Nord VD Vevey Basel 8 10 

Bern, Felsenviad. BE Wankdorf Lausanne-Vennes 11 10 

Mex VD Yverdon Weyermannshaus 8 4 

Denges VD Lausanne Morges 14 10 

 

The counting data was aggregated to analyse intervals of five minutes of traffic flow q5. 
Based on these flows the corresponding 60-minute means q60 were calculated. The traffic 
flow of one direction of a road A at the time t is given by: 

∑ −= ⋅+=
5

6 min5,,512
1

,,60 i itAtA qq  , if all q5,A,t+i·5min are defined. 

For each hourly traffic flow q60,A,t twelve 5-minute intervals q5,A,t could be identified. To get 
comparable values from different road types (different number of lanes) the flow to capacity 
ratios r are calculated with the capacity CA for each position of the counting stations: 
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A

tA
tA C

q
r ,,60

,,60 =   and  
A

tA
tA C

q
r ,,5

,,5 =  . 

The volume to capacity rations r60 are assigned into approximately n groups G defined by 
ratio intervals: 

{ }n
i

tAn
i

tAtAi rrrG <∧≥= −
,,60

1
,,60,,60  . 

The groups Gi are of following form: 

G1: all r60,A,t in the range of [0; 1/n[ , 
G2: all r60,A,t in the range of [1/n; 2/n[ , 
     … 
Gn: all r60,A,t in the range of [n-1/n; 1[ , 
Gn+1: all r60,A,t in the range of [1; n+1/n[ . 

 

As volume to capacity ratios higher than one could as well have been measured, it is likely 
that more than n groups could be built. In addition a few groups may not be built (especially 
those with very low ratios) due to a lack of measurements. 

Within a group Gi of Ji elements the mean of the ratios r60,Gi are calculated: 

∑ =
= i

ii

J

j tAJG rr
1 ,,60

1
,60   with  itA Gr ∈,,60   and  ii GJ =  . 

Knowing the 5-minute ratios which build the 60-minute mean ratios the standard deviation for 
each group could be estimated as follows: 

( ) ⎥⎦⎤⎢⎣
⎡ −= ∑∑ ==

2

1 ,,5
1

1
2

,,5
1

,5 )( i

i

i

ii

J

j tAJ
J

j tAJG rrrsd   with  itA Gr ∈,,5   and  ii GJ =  ; 

where 
i

i

i

i

ii G
J

j tAJ
J

j tAJG rrrr ,601 ,,60
1

1 ,,5
1

,5 =≈= ∑∑ ==
 is a good approximation, as for large Ji 

r5,Gi = r60,Gi ( iii GGJ rr ,60,5 )(lim =∞→ ). 

In the following the assumption should be proved that the 5-minute ratios are normally 
distributed within their corresponding 60-minute ratios. For a given mean ratio r60 an interval 
r60±∆r is created to gain multiple measurements of r60 within this interval. For three sample 
intervals the assumption of normally distributed r5 within their interval r60±∆r should be 
proved: 
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a) r60±∆r (=q60/C) between 20% and 25%, 

b) r60±∆r between 45% and 50% and 

c) r60±∆r between 95% and 100%. 

These three intervals offer enough measurements of the ratio to avoid random effects and the 
means of the 60-minute ratios differ very little from the means calculated by the 5-minute 
ratios indicating that the measurements are valid. The statistics are shown in Table 2. The 
Shapio-Wilk test demonstrates significant values that indicate a normally distributed variable. 

 

Table 2 Statistics: test of normally distributed 5-minute volume to capacity ratios r5 

Interval of r60 Count of 
means 

Mean r60 Mean r5 Standard 
deviation of r5

Shapiro-Wilk test 
sign. α=(1-p) 

a) 0.20-0.25 827 0.226 0.220 0.033 0.001 

b) 0.45-0.50 3421 0.476 0.473 0.050 0.000 

c) 0.95-1.00 1101 0.974 0.990 0.081 0.000 

 

Figure 9 shows the graphical analysis of 5-minute volume to capacity ratios as bar charts and 
normal plots of the three examples a, b and c. In the Q-Q-Plot (normal plot) the theoretical 
distribution of a normally distributed variable is indicated by the line and the dots represent 
the expected position on an ideal normal distribution versus the observed value. It can be seen 
that the measurements match the theoretical expected values with only little difference. 

It could therefore be said that the hypothesis of the r5-ratios being normally distributed within 
their 60-minute means can be accepted. 
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Figure 9 Normally distributed 5-minute volume to capacity ratios (r5=q5/C): 
Bar chart and normal-plot for three r60 intervals 
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2.6 Application 

A new design concept is to be embedded into a cost benefit analysis to measure the 
effectiveness of the investment costs. It is therefore in many cases not favourable to neglect 
the highest hourly volumes, as it is done with the 30th hourly volume method. In many cases 
especially these high-demand-hours produce the largest percentage of generalised cost over a 
year. This does not necessarily mean that the transport infrastructures must be able to handle 
the largest traffic flows, but they have to be taken into account. 

Brilon et al. (2004) described an analysis of the traffic conditions of one year on motorways 
using a macroscopic Monte-Carlo simulation based on traffic volumes. One simulation run 
for one week can be seen in Figure 10. 

Figure 10 Monte-Carlo simulation run of traffic flow for one week 
Traffic flow, demand (Verkehrsnachfrage) in vehicles per hour: grey 
Capacity (Kapazität) in vehicles per hour: black 
Queue length (Staulänge) in number of vehicles: black, bottom graph 

 

Brilon et al. (2004) 

A simulation of the traffic for one year gives good information about the expected generalised 
cost (in this example queuing cost). However this method puts a lot effort into computational 
power, as many runs are needed to calculate the expected value of queuing length. Having a 
look at Figure 10 it seems obvious that there are only few potential intervals that could cause 
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queuing. Considering only the above mentioned traffic states, the amount of calculations 
needed could be dramatically reduced. An analysis of the frequency of occurrences of traffic 
volumes at certain states (i. e. weekdays, at night, various weather conditions) will give 
factors (ψ), which will weight the calculated cost of these traffic scenarios. 

The generalised cost produced by vehicles that cannot be handled by one network element 
(queuing) could easily be calculated by the new design concept. This can be done by using 
traffic flow and capacity as random variables. The safety margin M was defined as: 

M=C-Q 

and can be compared to a probability density function of the differences ∆ of realisations of C 
and Q: ∆ = c – q. This means that ∆ is negative for realisations of C and Q where the actual 
capacity is smaller than the actual traffic flow. In these cases the network element could not 
handle the current traffic volume. The distribution of the safety margin M can be used as a 
proxy for the level of service for a given traffic scenario (see Figure 11). The probability of a 
traffic volume Q being larger than the capacity C is the probability of M being below or equal 
to zero: P(C – Q ≤ 0) = P(M ≤ 0). This probability could be graphically interpreted as the 
marked black area below zero on the x-axis in Figure 11. 

Figure 11 Probability density functions of capacity, traffic flow and safety margin 
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Moreover with the given safety margin it is possible to compute the number of vehicles that 
are likely not to be handled by the network element within a given time interval. As safety 
margin M denotes the random variable built by calculating the difference of C – Q, the 
difference ∆ = c – q can be interpreted as the number of vehicles that could not be handled in 
the case that ∆ is smaller than zero. Hence the number of vehicles that are likely not to be 
handled is given by the negative expected value of M being smaller than or equal to zero with 
the probability density function of M fM equal to the failure probability function fPf and the 
number of vehicles queuing Nqueue: 

)()( xfxf MPf
=  , 

Nqueue = –E[fM(x ≤ 0)] = ∫ ∫
∞− ∞−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−=−

0 0 2

2
1exp

2
1)( dx

x
xdxxfx

M

M
M σ

µ
πσ

 . 

The expected value E[fM(x ≤ 0)] has to be multiplied by -1 as by definition ∆ = c – q is 
negative if the traffic flow is greater than capacity. 

In the example given in Figure 11 with C~N(2000, 200), Q~N(1500, 160) [vehicles/hour] and 
therefore M~N(500, 256.125) the expected number of vehicles that cannot be handled will be: 
Nqueue = 2.47 vehicles per hour. 

Example: 

Estimated demand of a morning peak: 7:00 –   8:00 h: µQ7 = 1600 veh/h, σQ7 = 160 veh/h, 
 8:00 –   9:00 h: µQ8 = 1900 veh/h, σQ8 = 160 veh/h, 
 9:00 – 10:00 h: µQ9 = 1400 veh/h, σQ9 = 140 veh/h, 
estimated capacity during this scenario: 7:00 – 10:00 h: µC   = 2000 veh/h, σC   = 200 veh/h. 

Before and after the given time window the estimated demand is small enough that queuing 
costs could be neglected. The expected number of vehicles that could not be handled by the 
given road will be calculated in the following steps: 

7:00 –   8:00 h: q = 1600, sd(q) = 160  => µM = 400, σM = 256.12 
  => Nqueue = 6.51 veh/h; 

8:00 –   9:00 h:  q = 1906.51, sd(q) = 160 => µM = 98.82, σM = 256.12 
  => Nqueue = 60.28 veh/h; 

9:00 – 10:00 h:  q = 1460.28, sd(q) = 140 => µM = 539.72, σM = 244.13 
  => Nqueue = 1.16 veh/h. 
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The value Nqueue is of the unit vehicles per hour. As in this example the time intervals are 
equal to one hour, the number of vehicles that could not be handled by the road within the 
morning peak scenario is the sum of the three partial Nqueue values. 

2.7 Structure of new design concept 

The principals of the presented design concept base on a comparison of the generalised costs 
of two or more planning scenarios (usually the status quo and a modification of the existing 
system). The evaluation consists of following steps: 

• Definition of capacity 

• Estimation of demand 

• Identification of possibly “critical” scenarios Si 

• Estimation of frequency fi or probability pi of occurrence of scenarios (e. g. over one 
or 20 years) 

• Cost calculation (calculation of queuing length) for each scenario Ci 

• A proxy for the total cost is calculated by the sum over all pi·Ci. 

In contrast to the concept of the 30th hourly volume concept, which is neglecting the cost of 
the 30 highest traffic volumes, this concept takes all traffic volumes – or more general all 
traffic scenarios – into account. Here the intervals with the highest traffic are regarded as 
these volumes produce a large amount of the total generalised cost over each year. 

2.8 Outlook 

The presented design concept can be applied with little modification to most infrastructure 
elements. Its big advantage over existing concepts is its scalability in accuracy. The more 
detailed the demand and capacity estimations are, the more reliable are the results. On the 
other hand this concept needs quite detailed information about the shape of the demand which 
has to be analysed. In addition, in this paper the capacity is assumed to be normally 
distributed within a time window. It has to be verified whether this assumption is true or the 
error in this assumption is small, as a normally distributed variable simplifies the calculation. 
Brilon and Zurlinden (2003) assume that capacity can be described by the Weibull-
distribution. They evaluate the probability of a breakdown in traffic flow to estimate the 
capacity. But they neglect the different distributions of the traffic flow at different states. As 
the (relative) standard deviation of the traffic flow is not the same for each mean traffic flow, 
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the breakdown probability is also influenced by this variation. This means that the findings of 
the breakdown probability measurements probably may not be assigned to the problem 
discussed here. 

The method introduced here may require a redefinition of the capacity. In the Swiss Norm the 
capacity of an infrastructure element is defined as the largest traffic volume that is expected to 
be passing this section within a given time interval under given road, traffic and operation 
conditions. Therefore this definition is coherent with the definition needed for the presented 
design concept. 

To integrate this method into a cost-benefit analysis the (additional) travel times due to high 
traffic volumes and especially queuing have to be assessed. Therefore it hast to be evaluated 
whether common functions like the BPR-function could be applied or different methods have 
to be found. 

One remaining problem is the integration of the proportion of heavy vehicles into this 
concept. As the percentage of heavy vehicles influences the behaviour of the traffic flow and 
not really the capacity, it is questionable if a reduction factor should really be bound to the 
capacity or if this factor should rather be connected for example to the traffic flow. In the 
concept presented here, it is assumed that the traffic flow and the capacity are independent 
variables and that an influence of the traffic flow on the capacity has to be avoided. A solution 
to this problem is the introduction of safety or reduction factors (γ) that are easy to implement 
into this concept and will be a topic of the current research. 
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