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Abstract

Discrete choice models have received a great amount of attention in the last

years. Recent advances have proposed new models in the Generalized Extreme

Value (GEV) family, mixed Logit models and even mixed GEV models. Esti-

mating those models becomes more and more problematic. The objective func-

tion becomes highly nonlinear and non concave and the complexity of the model

forces to impose constraints (maybe nonlinear) on the parameters in order to ob-

tain meaningful values or to overcome model overspecification which can lead

to singularity in the objective function. State-of-the-art algorithms can no longer

be applied and specific optimization algorithms must be developed for the esti-

mation of advanced discrete choice models. In particular, we need optimization

algorithms able to deal with singularity (possibly nonlinear). Our first step to-

ward this goal is to investigate the case of unconstrained optimization when an

affine singularity arises in the objective function. First, in order to get a robust

method in the presence of a singularity, we propose to perform an eigen-structure

analysis on the second derivatives matrix of the objective function which allows

us to characterize the subspace in which the singularity lies. Second, once the

singularity has been properly identified, we fix this singularity by adding con-

straints describing it in order to better guide the algorithm toward a local solution

of the optimization problem. The difficulty here is that the identification of the

singularity is an iterative process taking place within the optimization algorithm.

Therefore, those constraints must be included “on-the-fly” in the optimization

problem. This second part is achieved using a multidimensional filter which is

an algorithmic tool coming from multi-criteria optimization. In our context, we

want to maximize the log-likelihood function but also to satisfy the constraints

associated with the singularity. In this paper, we present preliminary numerical



results with the current version of our algorithm designed to solve singular uncon-

strained optimization problems. We show that our methods should significantly

decrease the model estimation time. We also discuss the future modifications to

generalize our algorithm to deal with singular constrained optimization.

Keywords: Nonlinear optimization, Maximum Likelihood Estimation, Discrete

Choice Models, Singularity, Model Overspecification
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1 Introduction

The theoretical foundations of discrete choice models (and more specifically, random

utility models) had already been defined in the seventies (Ben-Akiva, 1973, Williams,

1977, McFadden, 1978) with the Multinomial Logit model, the Multinomial Probit

model, the Nested Logit model, and the Generalized Extreme Value model. However,

only the Multinomial logit model and the Nested Logit model have been intensively

used by practitioners during almost three decades. These models are relatively easy

to estimate, as their associated log-likelihood function has nice properties (globally

concave for the Multinomial Logit model, concave in a subspace of parameters for the

Nested logit model). Therefore, the use of the classical Newton-Raphson optimiza-

tion algorithm is most of the time appropriate. However, in the presence of poorly

significant parameters, the speed of convergence can be very slow.

Recent advances in discrete choice models are following two complementary tracks.

Firstly, more “logit-like” models within the Generalized Extreme Value family have

been proposed and used (see, for instance, Bierlaire, 2002 and Daly and Bierlaire,

2003). Secondly, the increasing power of computers has motivated the use of Mixed

Logit models, where the normal distribution of some parameters requires simulation

methods to compute the probability model (McFadden and Train, 1997, Bhat, 2001).

Actually, GEV models with mixed distribution start to be proposed as well in the liter-

ature (see Hess et al., 2004a and Hess et al., 2004b).

Estimating those models, that is computing the maximum log-likelihood, becomes

more and more problematic. Firstly, the objective function becomes highly nonlinear

and non concave. Secondly, the computational cost of evaluating the objective function

and its derivatives becomes significantly high. Thirdly, the complexity of the model
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often requires constraints on the parameters, in order to obtain meaningful values, or to

overcome model overspecification. This last issue in the maximum likelihood estima-

tion problem corresponds to a singularity in the likelihood function to be maximized.

Classical unconstrained optimization algorithms can no longer be applied and we thus

need optimization algorithms able to deal with singularity and capable of handling non

trivial (possibly highly nonlinear) constraints on the variables.

In this paper, we are interested in dealing with the singularity which can arise in

the maximum likelihood estimation. The cause of the singularity can be multiple, for

instance:

• The theoretical model contains too many parameters and not all of them are

identifiable (in this case we speak about model overspecification).

• The utility functions contain irrelevant attributes.

• The specification of the utility functions contains more parameters than the data

allows to estimate, due to a lack of variability.

In the first case, the singularity is structural in the sense that it is due to the theoret-

ical model used. In the last two cases, the source of the singularity comes from a

poor model specification by the modeler, which frequently happens during the model

development phase.

We now illustrate a very simple example of singularity in the maximum likelihood

estimation by considering an obviously overspecified model in a mode choice context.

Suppose that the choice set is C = {train, car} and that we have a sample composed of

N observed choices. We define the utility functions of each alternative as follows

Ut = β1costt + β2timet + β3income + εt,

Uc = β1costc + β2timec + β3income + εc.

We do not impose constraints on the βi’s parameters. Defining the log-likelihood of

the sample by

L̄(β) =

N∑

n=1

(ytrain,n log Pn(train|β) + ycar,n log Pn(car|β)),

with

ytrain,n =

{
1 if the n-th observed choice is train,

0 otherwise,
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and

ycar,n =

{
1 if the n-th observed choice is car,

0 otherwise,

where the probabilities of observed choices depend on the discrete choice model we

consider (for instance a Multinomial Logit model) and noting β = (β1, β2, β3)
T , the

estimation process corresponds to solving the following unconstrained nonlinear opti-

mization problem

max
β∈R3

L̄(β).

Given the above model specification, we easily see that

Pn(train|β) = Pn(train|β + αe3) ∀α ∈ R,

and, equivalently, that

Pn(car|β) = Pn(car|β + αe3) ∀α ∈ R,

where e3 is the third canonical vector in R
3.

In this case, for each observed choice n in the sample, we have that

∂Pn(train)

∂β3

=
∂Pn(car)

∂β3

= 0,

and, as a consequence, we obtain that

∂L̄

∂β3

= 0.

It immediately follows that

∂2L̄

∂β3∂βi

=
∂2L̄

∂βi∂β3

= 0 ∀i = 1, . . . , 3.

We conclude that, in this example, the second derivatives matrix of the log-likelihood

function, ∇2L̄(β), is singular of dimension 1 for all β ∈ R
3. In particular, ∇2L̄(β∗),

where β∗ is a local solution, is singular.

The most simple examples of structurally unidentifiable models are the variance

parameter, and the Alternative Specific Constants (ASCs) in the Multinomial Logit

model (MNL) model. The variance cannot be identified, and only J-1 ASCs can be

identified, in a model with J alternatives. In this context, a detailed analysis of the

overspecification due to ASCs is provided by Bierlaire et al. (1997). In this case, the

singularity can be easily fixed directly in the model specification, and no specialized
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optimization algorithm is required to solve the maximum log-likelihood estimation

problem.

A singularity in the log-likelihood function has two main drawbacks. Firstly, the

convergence of the estimation process will be slower. In the case of an unconstrained

optimization problem (namely maximizing the log-likelihood function without con-

straints on the parameters), a singularity means that the second derivatives matrix of

the objective function is not invertible, violating one of the main assumptions under-

lying the convergence theory of Newton-like methods. In this context, if the second

derivatives matrix ∇2L̄(β∗) is non-singular at a local minimizer β∗, Newton’s method

is known to exhibit a quadratic rate of local convergence to β∗. But one shortcoming

of Newton-like methods for unconstrained optimization is that they do not converge

quickly if the Hessian at the minimizer, ∇2L̄(β∗), is singular. Griewank and Osborne

(1983) have shown that in this case, the iterates produced are at best linearly conver-

gent (even if the second derivatives matrix is non-singular at all iterates). Furthermore,

when solving singular problems, standard methods can encounter numerical problems.

Secondly, the variance-covariance matrix of the estimates cannot be obtained from the

inversion of ∇2L̄(β∗). As a consequence, statistical tests of these estimates are no

more available, meaning that it is not possible to assess the quality of the calibrated

model.

It is interesting to note that the possible singularity of the maximum log-likelihood

problem has almost not been addressed in the literature. However, Walker (2001)

has shown that identification issues appear with simple models, and cannot always

be easily addressed. Namely, not all standard errors can be estimated in an Error

Component model. But the choice of the standard error to fix to 0 is not known a

priori, and an overspecified model must be estimated first. Fixing the singularity in a

more complex model can also be problematic.

In non trivial cases, we need a specialized optimization algorithm which is able to

detect a singularity during the course of the algorithm (that is during the estimation

process) and subsequently fix it. This is the scope of this paper. Our first step toward

a specialized optimisation algorithm designed to estimate advanced discrete choice

models is the development of two algorithms able to solve unconstrained maximum

likelihood estimation problems which contain singularities.

The specifications of a singular unconstrained problem as well as a technique to

handle the singularity is presented in Section 2. Two algorithms containing modi-

fications designed to solve singular problems efficiently are described in Section 3.

Preliminary results of these methods applied to singular problems are then presented
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in Section 4. Before concluding in Section 6, we give some tracks we will follow in

our future research in Section 5.

2 Ideas

We present the main features of an algorithm which is designed to solve unconstrained

singular problems. In this paper, we focus on the case of a linear singularity.

To be consistent with the nonlinear optimization literature, we define x = β and

f(x) = −L̄(β). Therefore the maximum log-likelihood estimation problem is written
{

min f(x)

x ∈ R
n

⇐⇒

{
max L̄(β)

β ∈ R
n

where f : R
n → R is assumed to be twice continuously differentiable. We assume

that the problem is singular, that is, ∃ A and d such that

f(x∗) = f(x∗ + Ad),

where :

• x∗ is a local minimum of the problem,

• d ∈ R
m,

• A ∈ R
n×m is full column-rank with m < n.

A represents the eigen-subspace associated with the null eigenvalues of the second

derivatives matrix at x∗, ∇2f(x∗). The range of A, Im(A), characterizes the subspace

of R
n in which the singularity lies at the local solution. Invoking the fundamental

theorem of linear algebra, we know that the subspace orthogonal to Im(A), Im(A)⊥,

is equivalent to ker(AT ).

In this case, the problem minx∈Rn f(x) is equivalent to
{

min f(x)

s.c. AT x = 0.

The difficulty is that A is unknown before the optimization process starts. We

would like to detect the degradation of the algorithm’s convergence when applied to

this kind of problem. In general, this will occur when the iterates reach a vicinity of

the set of solutions.
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Given that, the main idea is to perform an eigen-structure analysis of the second

derivatives matrix ∇2f(xk) at the current iterate. The eigen-subspace associated with

eigenvalues close to zero would be a good approximation for the range of A, provided

that xk is close enough to the set of solutions. In practice, performing a QR factoriza-

tion at each iteration is cumbersome.

In order to identify the singular subspace during the course of the algorithm, we

have developed a generalization of the inverse iteration method (see, for instance,

Golub and Loan, 1996). This iterative process, designed to be applied on a symmet-

ric matrix, allows the identification of the closest eigenvalue (in modulus) to a given

shift as well as the associated eigenvector. We generalize this method in order to com-

pute higher-dimensional invariant subspaces. Indeed, we are able to approximate the

subspace associated with the r closest eigenvalues (in modulus) to a given shift, with

1 ≤ r ≤ n where n is the dimension of the square matrix we are investigating.

The main steps of the identification process are:

• A matrix H ∈ R
n×n and r, a chosen integer satisfying 1 ≤ r ≤ n, are given.

• We construct the new matrix H̄ = (H − λIn×n)−1 where λ is called the shift.

• Using our generalization of the inverse iteration, we then compute the matrix

Q ∈ R
n×r such that Im(Q) approximates the dominant invariant subspace of

dimension r of H̄ , denoted Dr(H̄).

It allows us to get an approximation of Dr(H̄), namely the subspace associated

with the r largest eigenvalues in modulus of H̄ . With regard to H , Dr(H̄) represents

the subspace associated with the r closest eigenvalues (in modulus) to the given shift

λ.

For our purpose, we obviously fix the shift to a small value, say 10−10. Note

that we do not choose 0 for numerical reasons. Recall that we want to identify the

subspace associated with eigenvalues close to 0, or at least less in modulus than a

given threshold.

At each iteration of our optimization algorithm, we perform the above eigen-

structure analysis on H = ∇2f(xk). If we identify that the smallest eigenvalues in

modulus are too close to 0, it means that the iterates are reaching the vicinity of the set

of solutions. From that moment, we need to fix the singularity, keeping the iterates in

the orthogonal subspace to the one in which the singularity lies. More precisely, we

add constraints describing the singularity. If Qk is the current approximation of the
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eigen-subspace associated with the singularity, we define the constraint QT
k x = 0 in

order to better guide the algorithm toward a local solution of the optimization prob-

lem, keeping the iterates in the subspace in which the information about curvature is

relevant.

The way we include this type of constraint during the course of the algorithm will

be described in details in the next section where we present two algorithms to solve

unconstrained singular problems. In the first algorithm we use a penalty approach

by adding a penalty to the violation of the constraint in the minimization subproblem

we solve at each iteration of the algorithm. We consider a penalty term of the form
1

2
c‖QT

k x‖2 where c is the penalty parameter which determines the weight of this term

in the minimization. In the second algorithm, we keep this penalty term in the min-

imization subproblem but we also make use of the constraint violation ‖QT
k x‖ as a

measure of progress toward the solution using a multidimensional filter. In our con-

text, we want to minimize the objective function f(x) but also satisfy the constraints

associated with the singularity.

3 Algorithms

3.1 Trust-region based algorithm

The first algorithm we present is inspired by the Basic Trust-Region framework pre-

sented in Conn et al. (2000) to solve unconstrained optimization problems of the type

min
x∈Rn

f(x),

where f(x), the objective function, is a real-valued twice-continuously differentiable

function, which we assume is bounded below. We present an iterative numerical pro-

cedure in which the objective function is approximated in a suitable neighborhood of

the current iterate (we call it the trust-region) by a model which is easier to handle than

f(x).

A trust-region algorithm works as follows. At each iterate xk, we first define a

model mk(x) whose purpose is to approximate the objective function in a suitable

neighborhood of xk, called the trust-region. The trust-region is defined as the following

set of points

Bk = {x ∈ R
n | ‖x− xk‖ ≤ ∆k},

where ∆k is called the trust-region radius, and where ‖ . ‖ denotes the classical Eu-

clidean norm. Given this model, we look for a trial step sk such that the trial point
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defined as xk + sk reduces the model while satisfying the constraint ‖sk‖ ≤ ∆k. Hav-

ing computed this trial step, we now compute the objective function at xk + sk and

we compare this value with the value predicted by the model, that is mk(xk + sk). If

the reduction predicted by the model is realized also in the objective function, the trial

point is accepted to be the next iterate and the trust-region is kept the same or even

expanded, depending on the quality of the reduction in the objective function. If it

appears that the reduction in the model is a poor predictor of the actual reduction in

the objective function, the trial point is rejected and the trust-region is reduced, hoping

that we will get a better model of the objective function in a smaller neighborhood of

the current iterate.

More formally, a trust-region based algorithm can be described as follows.

Step 0: Initialization. An initial point x0, an initial trust-region radius ∆0 and a tol-

erance ε are given. The constants η1, η2, α1, α2 and α3 are also given and they

satisfy

0 < η1 ≤ η2 < 1 and 0 < α3 ≤ α2 ≤ 1 ≤ α1.

Compute f(x0) and set k = 0.

Step 1: Model definition. Define a model mk in Bk.

Step 2: Step computation. Compute a step sk that sufficiently reduces the model mk

and such that xk + sk ∈ Bk. This step is also called the trust-region subproblem

because we solve approximately the following problem
{

min mk(xk + s)

s.c. ‖s‖ ≤ ∆k.

Step 3: Acceptation of the trial point. Compute f(xk + sk) and define

ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
.

If ρk ≥ η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.

Step 4: Trust-region radius update. Set

∆k+1 =





max(α1‖sk‖, ∆k) if ρk ≥ η2,

α2∆k if ρk ∈ [η1, η2),

α3‖sk‖ if ρk < η1.

Increment k by 1. If ‖∇f(xk)‖ ≥ ε go to Step 1; otherwise stop.
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In the literature of nonlinear optimization, we often use a quadratic model of the

form

mk(xk + s) = f(xk) + gT
k s +

1

2
sT Hks,

where

mk(xk) = f(xk) and gk = ∇f(xk),

and where Hk is a symmetric aproximation of ∇2f(xk) using finite differences. A

secant approximation of the Hessian matrix based on previous iterates could also be

used as Hk.

In our context, remember that once we have identified an approximation of the

subspace in which a singularity lies, we want to fix it, constraining the subsequent

iterates to be in the orthogonal subspace.

At iteration k +1, given xk and Hk, we perform on Hk the eigen-structure analysis

described in the previous section, and if we detect a subspace Qk associated with

eigenvalues close to 0, we consider in the trust-region subproblem the following model

m̂k(xk + s) = f(xk) + gT
k s +

1

2
sT Hks +

1

2
c‖QT

k s‖,

where c > 0 is the penalty parameter which gives the weight associated with the

constraint violation. The second derivatives matrix of this model is given by

∇xxm̂k(xk) = Hk + c QkQ
T
k .

It means that we add a multiple of a positive definite matrix to the second derivatives

matrix of f when it is becoming close to a singular matrix. The idea of this bending

strategy is thus to add some curvature in order to overcome the flatness of the objective

function.

Actually, this model can be viewed as a perturbation of the classical second-order

model defined above. It also satisfies the underlying assumptions on the model in a

trust-region framework in order to guarantee the convergence to a local minimum of

the optimization problem.

Note that the trust-region subproblem (independently from the fact that we have or

not the additional term in it) is solved using a Truncated Conjugate Gradient method

(see, for instance, Toint, 1981 or Steihaug, 1983). In this case, it can be shown under

mild assumptions that the overall trust-region algorithm will converge superlinearly to

a solution of the optimization problem.
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3.2 Filter trust-region based algorithm

With this algorithm, we add to the trust-region framework an additional concept called

the filter. The filter technique has been introduced by Fletcher and Leyffer (2002) in

the context of constrained optimization. The filter concept comes from multi-criteria

optimization and allows to deal with different objectives to measure progress toward

the solution of a problem. Fletcher and Leyffer (2002) defined a 2-dimensional fil-

ter associated with the two objectives of constrained optimization, namely minimizing

the objective function while satisfying the constraints. Later Gould et al. (2005) gen-

eralized the concept by using a multidimensional filter to solve systems of nonlinear

equations as well as nonlinear least-squares. A multidimensional filter is also used in

Gould et al. (2004) in the context of unconstrained optimization. The advantage of the

filter is the increased flexibility in the optimization algorithm to accept new iterates,

and consequently, the potentially fast convergence.

We now present our second algorithm to solve unconstrained optimization prob-

lems based on the algorithm described in Gould et al. (2004) and then we present the

modifications necessary to deal with singularity issues.

We extend trust-region methods by introducing a multidimensional filter technique,

whose aim is to encourage the convergence of iterates to a first-order critical point, by

driving each component of the gradient of the objective function ∇f(x) = g(x) =

(g1(x), . . . , gn(x))T to zero.

In comparison with the trust-region algorithm presented in the previous section,

we now consider a filter mecanism in order to potentially accept the trial point xk + sk

more often. The notion of filter is based on the concept of dominance. In our case, we

will say that an iterate x1 is dominated by an iterate x2 when

|gi(x2)| ≤ |gi(x1)| ∀i = 1, . . . , n.

So, if we want to focus our attention on convergence to first-order critical points, the

iterate x1 is of no real interest because the iterate x2 is better than x1 with regard to

each component of the gradient. Using this concept, all we have to do is to remember

all non-dominated iterates. We do it by using the so-called filter structure. We define a

multidimensional filter F as a list of n-tuples (gk,1, . . . , gk,n) with gk,i = gi(xk) such

that, if gk ∈ F , then we have that

|gk,j| < |gl,j| for at least one j ∈ {1, . . . , n}

∀ gl ∈ F . It means that each point in the filter is not dominated by any other point in

the filter.
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In a filter method, we accept a new trial point xk + sk if it is not dominated by any

other point in the filter. However, from an algorithmic point of view, we do not want

to accept a trial point which is arbitrarily close to a point in the filter. This is why we

slightly strengthen the acceptability test and we thus say that a trial point x+

k = xk +sk

is acceptable for the filter F if

∀ gl ∈ F ∃ j ∈ {1, . . . , n} such that |gj(x
+

k )| ≤ (1− γθ)|gl,j|,

where γθ is a small positive constant. If an iterate xk is acceptable for the filter and

if we decide to add it to the filter, we remove all dominated entries gl ∈ F such that

|gl,j| > |gk,j| ∀ j ∈ {1, . . . , n}.

Remember that the second algorithm we present is designed to solve unconstrained

optimization problems. However, the filter mechanism only guide the iterates toward

a zero gradient. It is adequate for convex problems where a zero gradient is both nec-

essary and sufficient condition for second-order optimality but it may be inappropriate

for nonconvex ones. For example, it might prevent progress away from a saddle point

where, in this case, an increase in the components of the gradient is acceptable. We

therefore adapt the filter mechanism presented above by a reset to zero of the filter

after an iteration for which a sufficient decrease in the objective function is achieved

using a model mk being nonconvex. In this case, we also define an upper bound on the

acceptable objective function values in order to keep a monotone algorithm in term of

objective function value.

We now present an algorithm which combines these ideas with the trust-region

algorithm presented in the previous section. Basically, the filter plays the major role in

ensuring the convergence when convexity is present in the model, while falling back

on the classical trust-region algorithm if negative curvature is detected (during the

resolution of the trust-region subproblem).

More formally, a filter-trust-region based algorithm can be described as follows.

Step 0: Initialization. An initial point x0, an initial trust-region radius ∆0 and a tol-

erance ε are given. The constants γθ, η1, η2, α1, α2 and α3 are also given and

they satisfy

0 < η1 ≤ η2 < 1 and 0 < α3 ≤ α2 ≤ 1 ≤ α1.

Compute f(x0) and g(x0) and set k = 0. Initialize the filter F to the empty set.

Define an initial upper bound fsup ≥ f(x0). Define the flag nonconvex unset.
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Step 1: Model definition. Define a model mk in Bk.

Step 2: Step computation. Compute a step sk that sufficiently reduces the model mk

and such that xk +sk ∈ Bk. If mk is detected to be nonconvex, set nonconvex;

otherwise unset it. Compute x+

k = xk + sk.

Step 3. Compute f(x+

k ) and define

ρk =
f(xk)− f(x+

k )

mk(xk)−mk(x
+

k )
.

If f(x+

k ) > fsup, then define xk+1 = xk and go to Step 5.

Step 4: Acceptation of the trial point. Compute g+

k = g(x+

k ).

• If x+

k is acceptable for the filter F and nonconvex is unset

Set xk+1 = x+

k and add g+

k to the filter F if ρk < η1.

• If x+

k is not acceptable for the filter F or nonconvex is set

If ρk ≥ η1 then

Set xk+1 = x+

k and, if nonconvex is set, set fsup = f(xk+1) and renitial-

ize the filter F to the empty set;

else Set xk+1 = xk.

Step 5: Trust-region radius update. Set

∆k+1 =





max(α1‖sk‖, ∆k) if ρk ≥ η2,

α2∆k if ρk ∈ [η1, η2),

α3‖sk‖ if ρk < η1.

Increment k by 1. If ‖∇f(xk)‖ ≥ ε go to Step 1; otherwise stop.

This algorithm can be shown to be globally convergent to at least one second-order

critical point.

Looking at the phase of the algorithm in which we decide whether a trial point is

acceptable to be the next iterate or not, we see that this second algorithm potentially

accept the trial point more often than the previous one. Indeed, if the trial point is

acceptable for the filter, we move toward this point and if it is not, we look at the

quality of the reduction factor ρk as in the first algorithm.

We now turn to the modifications we make to handle singularity in the objective

function. We actually make two adaptations in this algorithm. The first one is similar

12



to what we did in the trust-region algorithm. As soon as we detect a singularity in the

objective function thanks to the identification process, we do not use the most common

quadratic model anymore but we prefer rather using m̂k, that is

m̂k(xk + s) = f(xk) + gT
k s +

1

2
sT Hks +

1

2
c‖QT

k s‖,

where c > 0 is the penalty parameter which gives the weight associated with the

violation of the constraint describing the singularity.

This first adaptation is actually a modification of the trust-region subproblem we

solve in order to keep the iterates in the subspace in which we have relevant informa-

tion about the curvature of the objective function.

When a singularity has been identified, the second modification uses the singularity

constraint violation to decide whether a trial point is acceptable or not. Indeed, when

singularity is detected in the objective function, we not only use our auxiliar model

m̂k but we also use an auxiliary filter F̂ in which we add a dimension compared to

the filter F composed of the gradient components. Indeed, for each entry x ∈ F , we

compute ‖QT
k x‖. So we will say that a point if acceptable for the new filter F̂ if it

significantly reduces at least one of the gradient components or the violation of the

singularity constraint compared to the previous iterates in the filter.

4 Preliminary numerical results

We present in this section an analysis of the performance of our adaptations to deal

with singularity in the context of unconstrained nonlinear optimization. All algorithms

and test functions have been implemented with the package Octave (see

http://www.octave.org or Eaton, 1997) and computations have been done on

a desktop equipped with 3GHz CPU in double precision.

The set of test functions has been proposed by More et al. (1981) It is composed,

among other things, of 34 unconstrained optimization problems. Most of these prob-

lems have a non-singular second derivatives matrix at the local minimum. As we want

to perform tests on singular problems, we use the technique proposed by Schnabel

and Frank (1984) to modify the problems of More et al. (1981) and create singular

optimization problems such that the second derivatives matrix has a rank n − k at the

local solution where n is the dimension of the problem and 1 ≤ k ≤ n is the dimen-

sion of the singularity. In this paper we will concentrate ourselves on problems having

a second-order derivatives matrix of rank n − 1 or n − 2 as in Schnabel and Chow
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(1991). Tests have been actually performed on 31 problems containing a singularity of

dimension 1:

• 22 problems with fixed dimension between 2 and 11,

• 3 problems with variable dimension n = 10, 20, 40.

We also carried out test on a set of 30 test functions whose second derivatives matrix

has rank n− 2 at x∗, namely:

• 21 problems with fixed dimension between 3 and 11,

• 3 problems with variable dimension n = 10, 20, 40.

For each problem, we have used the starting point given in the original paper of More

et al. (1981).

We will consider a total of 4 algorithms, namely the trust-region algorithm, the

filter-trust-region algorithm and their corresponding version designed to handle singu-

larity. In the quadratic models we form at each iteration, the approximation Hk of the

Hessian at the current iterate is obtained using finite differences. The stopping crite-

rion for all algorithms is a composition of two conditions:gradient close to zero, that

is ‖gk‖ ≤ 10−6, and maximum number of iterations fixed to 1000.

The measure of performance is the number of iterations or the CPU time necessary

to reach convergence (as defined above). We are presenting the results following the

performance profiles analysis method proposed by Dolan and More (2002).

If fp,a is the performance of algorithm a on problem p, then the performance ratio

is defined by

rp,a =
fp,a

mina fp,a
,

if algorithm a has converged for problem p, and rp,a = rfail otherwise, where rfail

must be strictly larger than any performance ratio. For any given threshold π, the

overall performance of algorithm a is given by

ρa(π) =
1

np
Φa(π),

where np is the number of problems considered, and Φa(π) is the number of problems

for which rp,a ≤ π.

So, in particular, the value ρa(1) gives the probability that algorithm awins over all

its competitors. It is a measure of performance. The value limπ→rfail ρa(π) gives the

14



probability that algorithm a solves a problem and, consequently, provides a measure

of robustness of each method.

We first present on Figure 1 the performance in term of number of iterations of the

four algorithms on all problems listed above. The results are satisfactory as we see

that the two variants designed to handle singularity in the objective function are better

in terms of efficiency and robustness. In particular, the modified filter-trust-region

algorithm is the best algorithm one more than 70% of the problems and is also the

most robust.
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Figure 1: Performance profile for number of iterations - All algorithms

In Figure 2 we show the performance of the two filter-trust-region algorithms with

regard to the number of iterations to reach convergence. We see that the algorithm

which integrates our adaptations is the best one in around 85% of the time. The two

methods are comparable in term of robustness. The Figure 3 presents the performance

of these two algorithms in term of CPU time. Despite the computational overhead

due to the singularity identification process, we see that the new algorithm takes, on

more than 60% of the problems, less time to reach convergence thanks to the smaller

number of iterations necessary to conerge to a local solution. On some problems, the

new algorithm is 3.5 times faster than the standard one in term of computational time.

This is very encouraging for our application purposes. This point is discussed at the

end of this section.

Figure 4 and Figure 5 show the performance profiles for the two trust-region al-

gorithms. Same comments can be done on the modified version of the trust-region

algorithm as this latter is the fastest and the cheapest one compared to the classical
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Figure 2: Performance profile for number of iterations - two filter variants

trust-region algorithm. Note that the trust-region variants are not as robust as the filter

variants, even if the difference is moderate.

Looking at the performance profiles measuring the CPU time, we see that the over-

head in computational costs caused by the identification process is higlhy compensed,

in most cases, with the gain in the number of iterations and function evaluations. Nev-

ertheless, most of the problems in our test set are small sized and fuctions are not really

expensive to evaluate. This is why we are confident that these algorithmic adaptations

should allow a significant gain in the time necessary to estimate advanced discrete

choice models. Indeed, in this context, the log-likelihood function can be very expen-

sive to compute, as it can be obtained from simulation tools.

5 Future work and perspectives

Firstly, we will test the algorithmic adaptations presented in this paper on the estima-

tion of real discrete choice models. As discussed in the previous section, we strongly

believe that our algorithms will allow an important decrease in the model estimation

time when singularity is present in the log-likelihood function.

Secondly, we will investigate in details the singularity identification process. Es-

pecially, we will study the convergence rate of the approximations generated by our

technique to the real singular subspace. Moreover, we will study the convergence rate

of the two algorithms presented here compared to the convergence rate of classical

methods to solve unconstrained problems in the presence of singularity.
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Figure 3: Performance profile for CPU time - two filter variants

Thirdly, this paper deals with singular unconstrained optimization. We definitely

want to generalize both theoretical and algorithmic ideas presented in this paper to the

case of constrained nonlinear optimization. Our motivation comes from both theoreti-

cal and application sides.

From the point of view of applications, we are interested in solving constrained

maximum likelihood problems arising when estimating advanced discrete choice mod-

els requiring non trivial constraints in order to get meaningful values of parameters as

well as to get an identifiable model. In this context, model overspecification is a tricky

point and it is necessary to develop specific algorithms to identify the singularity is-

sues and to perform correctly the estimation when non trivial constraints are imposed

on the parameters.

From the theoretical point of view, singular constrained optimization is also very

interesting. We have seen that a singularity in a unconstrained nonlinear optimiza-

tion comes from a flat curvature in the vicinity of a local solution, violating one of

the major assumptions on the objective function in order to guarantee the fast local

convergence of methods. In the constrained case, there may be another source of sin-

gularity, namely when a constraint qualification condition is not satisfied (for instance,

the assumption of linear independence of the constraints gradients). It is interesting

to develop algorithms able to solve efficiently problems for which classical assump-

tions for convergence of standard methods are violated. Actually, the case of possible

violation of standard constraint qualifications is starting to be investigated in the lit-

erature of constrained optimization (see, for instance, Wright, 2002, Wright, 2003).
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Figure 4: Performance profile for number of iterations - two trust-region variants

Very recently, Izmailov and Solodov (2004) proposed a singular-value decomposition

approach in this context. The motivation for considering such irregular cases comes

from various problems, where either standard constraints qualifications are inherently

violated or constraints tend to be degenerate or nearly (that is numerically) degenerate.

Of interest are both theoretical properties of irregular problems as well as convergence

of optimization algorithms applied to such problems and, most importantly, possible

modifications of the algorithms to improve robustness and efficiency.

6 Conclusion

We propose algorithmic developments in the context of unconstrained nonlinear opti-

mization in order to solve efficiently singular problems. The main contribution is the

ability to detect singularity in the objective function during the course of the optimiza-

tion algorithm as well as the capability to handle adaptative constraints, which allow

to fix the singularity, using a penalty approach and/or the filter technique. Preliminary

numerical results are encouraging.

It is interesting to consider those pathological problems for which classical as-

sumptions in the theory of nonlinear optimization are violated. Standard methods

often exhibit a poor behavior in term of convergence rate on this type of problems.

It is also of special interest to propose a method which is more robust faced with the

numerical difficulties coming from the singularity present in the problems.

The algorithmic ideas presented in this paper can be used to develop specific opti-
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Figure 5: Performance profile for CPU time - two trust-region variants

mization methods designed to estimate advanced discrete choice models. Indeed, the

computation of the maximum log-likelihood in the context of dicrete choice models is

becoming more and more complicated and requires specific optimization algorithms.

In particular, singularity issues arise in the maximum log-likelihood estimation prob-

lem. On the one hand, models recently proposed in the literature can be tricky to

estimate due to identification issues. Those models contains a lot of theoretical pa-

rameters and not all of them can be estimated. On the other hand, it is also of major

importance to assist the modeler in the calibration phase by pointing out singularities

due to misspecifications.
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