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Abstract

Allowing for variations in behaviour across respondents is one of the most fundamental
principles in discrete choice modelling, given that the assumption of a purely homogeneous
population cannot in general (or ever) be seen to be valid. Two approaches have classically
been used to address this problem; the use of deterministic segmentations of the population,
and the use of a random continuous representation of variations in tastes across respondents.
In this paper, we discuss an alternative approach, based on the use of discrete mixtures of
underlying GEV models over a finite set of distinct support points. The paper presents two
applications; one illustrating the performance of the model with the help of simulated data,
and one showing, on real data, how the model can be used to test the validity of hypotheses
such as the presence of individuals with zero valuations of travel-time changes.
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1 Introduction

Allowing for variations in behaviour across respondents is one of the most fundamental princi-
ples in discrete choice modelling, given that the assumption of a purely homogeneous popula-
tion cannot in general (or ever) be seen to be valid. The most basic approach for representing
such variations is through a segmentation of the population into mutually exclusive subsets,
either in the form of separate models for different population segments, or separate coefficients
within the same model for different population segments. These approaches can for example
be used to differentiate between different journey purposes, or different income classes. In the
case of continuous attributes, such as income, such segmentations can however be seen to be
very arbitrary, and it is in this case preferable (though computationally more expensive) to use
a continuous variation in tastes as a function of the continuous attribute.

Deterministic variations in tastes, such as those described above, can be implemented within the
standard random utility framework, and are applicable for all known model structures. How-
ever, although the use of such deterministic variation is appealing from the point of view of
interpretation (and especially for forecasting), it is often not preferable to represent all varia-
tions in tastes in a deterministic fashion, for reasons of data quality, but also due to inherent
randomness in choice behaviour. For this reason, models allowing for random variations in be-
haviour across respondents have an important advantage in terms of flexibility. Two such model
structures have been discussed in detail in the existing literature; the Multinomial Probit model
(c.f. Daganzo 1979), and the Mixed Multinomial Logit (c.f. McFadden & Train 2000), where
the latter has the advantage of allowing the use of statistical distributions other than the Normal
for representing the variations in tastes. Both models additionally allow for the representation
of correlation across alternatives in the unobserved utility terms.

The Multinomial Probit (MNP) model and the Mixed Multinomial Logit (MMNL) model have
the disadvantage that their choice probabilities take on the form of integrals that do not possess
a closed-form solution, such that numerical processes, typically simulation, are required during
estimation and application of the models. This greatly limited the use of these structures for
many years after their initial developments. Over recent years, gains in computer speed and the
efficiency of simulation-based estimation processes have however led to increased interest in
the MMNL model in particular, by researchers and, to a lesser degree also practitioners.

Despite the improvements in estimation capability, the cost of using the MMNL model remains
high. While this might be acceptable in many cases, two other issues arise with the use of the
MMNL model.

The first issue is that of the choice of distribution to be used for representing the random varia-
tions in tastes across respondents. This issue can be divided into several sub-issues. Firstly, it
is important to reconcile the choice of distribution with the intuitive understanding of the true
distribution. As such, a strictly positive distribution would not be used for a coefficient where
positive as well as negative values are expected in the population. On the other hand, in the case
of a coefficient with a strong sign assumption (such as a negative cost coefficient), the use of
strictly bounded distributions can be unable to signal problems with the data or utility specifi-
cation that would manifest themselves as counter-intuitively signed coefficients for part of the
population (c.f. Hess, Bierlaire & Polak 2005b). Secondly, even in the case where a choice of
distribution can be made that avoids all the issues discussed above, it is highly probable that
some bias between the true and postulated distributions will remain; cases will arise in which
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real-world behaviour cannot be characterised adequately by one of a set of standard statistical
distributions. One case in point arises in the modelling of tastes which may theoretically have a
significant mass at zero but be exclusively positively or negatively signed elsewhere. The situ-
ation becomes even more complicated in the case of an attribute which some individuals value
positively and some individuals value negatively, with a remaining part of the population being
indifferent to the attribute. Representing this situation is not generally possible with the use of
standard continuous distributions.

The other remaining issue with the MMNL model formulation is that of interpretation. A great
deal has been said about this in the existing literature, notably by Hensher & Greene (2003).
While the advantages of the MMNL model over more basic model structures are very signifi-
cant, the pitfalls are similarly important. The main issue in interpretation is heavily correlated
with the choice of distribution, as highlighted in the previous paragraph, and discussed in de-
tail by Hess, Bierlaire & Polak (2005b). If an inappropriate choice of distribution is made, the
results may be accurate in terms of the mean value, and possibly also in terms of the measure
of dispersion, but it is highly likely that conclusions inferred on the basis of the implied tail
behaviour of the distribution are misleading. A case in point is that where an unbounded distri-
bution indicates the presence of a significant share of the population with a counter-intuitively
signed value of time; such results can equally well be seen as a result of the shape of the distri-
bution, and need thus not signal the actual existence of such values in the population.

Even though the MMNL model does, despite these problems, remain an appealing model struc-
ture, it is of interest to explore alternative ways of representing random variations in tastes across
respondents, avoiding the issues of specification, estimation, and interpretation discussed above.
This forms the motivation for the present paper, in which we replace the continuous distribution
functions by discrete distributions, spreading the mass among several discrete values. This is
similar to the case of a latent-class model (c.f. Kamakura & Russell 1989, Chintagunta et al.
1991), assigning different coefficient values to different parts of the population of respondents.
In theory, existing discrete distributions (e.g. Poisson) could be used; however, this comes at
the cost of flexibility and again leads to the problem of reconciling the assumptions about the
shape of the theoretical distribution with the actual shape of the true distribution. This prob-
lem does not exist in the case where a fixed set of coefficient values are used that each have
an associated probability, but where the values and associated probabilities are free from any a
priori constraints. The authors of this paper are aware of only one previous application of this
approach, namely by Dong & Koppelman (2003), who use it in the context of mode choice for
work trip in New-York, referring to the model as the “Mass Point Mixed Logit model”. They
propose a Bayesian estimation procedure, based on Gibbs sampling and data augmentation to
accommodate the discrete nature of the dependent variable.

The remainder of this paper is organised as follows. The next section discusses the theory
behind discrete mixture models. Section 3 presents two brief applications, and section 4 sum-
marises the contents of the paper and presents the conclusions of the study.

2 Methodology

The choice probability of an alternative in a discrete choice models is given as a function of
the utility of all alternatives. The utility is divided into an observed and an unobserved part,
where the role of the unobserved part differs between model structures. The observed utility of
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an alternativei is a function of the attributes of the alternative as faced by respondentn, given
by xni, and the tastes of the decision-maker, given by the vectorβ. The vectorxni can addition-
ally include socio-demographic characteristics of decision-makern that allow for deterministic
variations in the utility of alternativei across respondents.

In the purely deterministic model, the vectorβ is constant across respondents, and the observed
utility for alternativei and individualn is given byV (xni, β). Let xn be a vector grouping to-
gether the individual vectorsxnj across the alternatives contained in the choice-set of respondent
n. Let λ represent an additional set of parameters, which can for example contain the structural
parameters used in a Nested Logit (NL) model to represent inter-alternative correlation. In a
very general form, we can then defineP (i | xn, Cn, λ, β) to give the choice probability of al-
ternativei for individual n, with a choice-setCn, conditional on the observed vectorxn, and
for given values for the vectors of parametersβ andλ (to be estimated). Due to the potential
inclusion of socio-demographic attributes inxn, this notation allows for deterministic variations
in tastes across respondents.

As an example, in the Multinomial Logit (MNL) model, we have:

P (i | xn, Cn, λ, β) =
eV (xni,β)∑

j∈Cn
eV (xnj ,β)

, (1)

whereCn gives the choice set of individualn, and where the well-knownIIA assumption of the
MNL model means that the vector of parametersλ is not required.

As described above, the notationP (i | xn, Cn, λ, β) allows for the possibility of deterministic
variations in tastes across respondents. With the help of the vectorλ, it can be used to represent
the choice probabilities in any closed-form discrete choice model, such as Nested Logit (NL)
or Cross-Nested Logit (CNL).

This notation can now be used as the building block for models allowing for a distribution of
tastes across respondents. The best known model of this type is the so-calledMixed Multinomial
model. In fact, a more appropriate notation would be to describe the MMNL model as amixture
of Multinomial Logit models.

In statistics, a mixture density is a probability density function (pdf) which is a convex linear
combination of otherpdf’s. If f(ε, θ) is apdf, and ifw(θ) is a nonnegative function such that∫

a

w(a)da = 1 (2)

then

g(ε) =

∫
a

w(a)f(ε, θ)da (3)

is also apdf. We say thatg is a mixture off . Discrete mixtures are also possible. Iff(ε, θ) is a
pdf, and ifwi, i = 1, . . . , n are nonnegative weights such that

n∑
i=1

wi = 1 (4)
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then

g(ε) =
n∑

i=1

wif(ε, θi) (5)

is also apdf. We say thatg is a discrete mixture off .

With this in mind, the MMNL model is indeed a mixture of MNL models over the continuous
distribution of the vector of tastesβ. The choice probabilities for this model are given by:

Pn (i | xn, Cn, λ, Ω) =

∫
β

[P (i | xn, Cn, λ, β) f (β, Ω)] dβ, (6)

where the vectorβ is distributed according tof (β, Ω), with vector of parametersβ. With
P (i | xn, Cn, λ, β) given by equation (1), equation (6) represents the choice probabilities in an
MMNL model; however, any other GEV-type choice probability can be used forP (i | xn, Cn, λ, β),
with an explicit role for the vectorλ, leading to a mixture of a more general GEV model, as
described by Hess, Bierlaire & Polak (2005a).

As mentioned in the introduction, the MMNL model is well documented in the existing litera-
ture, notably by Train (2003). The estimation of the model is discussed amongst others by Bhat
(1999) and Hess, Train & Polak (2005), while the issues of specification and interpretation are
highlighted by Hensher & Greene (2003) and Hess, Bierlaire & Polak (2005b). Recent appli-
cations of MMNL model (for random taste heterogeneity) are given by Revelt & Train (1998),
Bhat (2000), Hess & Polak (2004, 2005) and Hess, Train & Polak (2005).

We will now turn our attention to the development of structures using discrete mixtures of
Logit models, and GEV models by extension. We continue to use the same general notation
for the choice probabilities as before. However, we now divide the set of parametersβ into
two sets;β̄ represents a part ofβ containing deterministic parameters, whileβ̂ is a set ofK
random parameters that have a discrete distribution. Within this set, the parameterβ̂k hasmk

mass pointŝβj
k, j = 1, . . . ,mk, each of them associated with a probabilityπj

k, where for each
k = 1, . . . , K, we impose the conditions that

0 ≤ πj
k ≤ 1, k = 1, . . . , K, j = 1, . . . ,mk, (7)

and

mk∑
j=1

πj
k = 1. (8)

For each realisation ofβj1
1 , . . . , βjK

K of β̂, the choice probability is given by

P
(
i | xn, Cn, λ, β = 〈β̄, β̂j1

1 , . . . , β̂jK

K 〉
)

, (9)
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where the deterministic part ofβ, β̄ stays constant across realisations of the vectorβ̂.

The unconditional choice probability for alternativei and decision-makern can now be written
straightforwardly as a mixture over the discrete distributions of the various elements contained
in β̂ as:

Pn

(
i | xn, Cn, λ, β̄, β̂, π

)
=

m1∑
j1=1

· · ·
mK∑

jK=1

P
(
i | xn, Cn, λ, β = 〈β̄, β̂j1

1 , . . . , β̂jK

K 〉
)
· πj1

1 · . . . · πjK

K , (10)

whereβ̄, β̂ andπ are vector of parameters to estimate in a regular maximum likelihood esti-
mation procedure. The obvious advantage of this approach is that, if the probability model (9)
used inside the mixture has a closed form, then so does the discrete mixture itself.

In this paper, we mainly focus on the simple case where the underlying choice model is of
MNL form; however, the form given in equation (10) is appropriate for any underlying GEV
model. The approach can easily be extended to the case of combined discrete and continuous
random taste variation, by partitioningβ into three parts; the above defined partsβ̄ andβ̂, and
an additional part̃β, whose elements follow continuous distributions. This however leads to
a requirement to use simulation, as with every continuous mixture models. The choice prob-
abilities for such a model are then given either by replacing the conditional probability inside
equation (10) by an integral over the distribution of the terms inβ̂, or by integration of the
whole of the unconditional probability in equation (10) over the distribution of these terms. The
position of the integral is in fact of no importance, but, for consistency with equation (10), it
can be seen as preferable to have the integration inside.

Allowing for random as well as discrete random terms not only increases flexibility from the
point of view of random taste heterogeneity, but allows for the use of error-components to
represent heteroscedasticity and inter-alternative correlation (c.f. Walker 2001), where the latter
is however also possible with the use of an underlying GEV structure.

The approach we use in this paper can be seen either as a generalisation of a model using fixed-
point estimates, or as a simplified version of a model allowing for a continuous distribution of
tastes across respondents. As a generalisation of the fixed-point estimates model, our approach
offers more modelling flexibility, by allowing for random as well as deterministic variations in
tastes.

Compared to a model with a continuous distribution, the use of a fixed number of support-
points clearly leads to a reduction in flexibility. On the other side, the model is free from any
assumptions resulting from the choice of a specific statistical distribution in the continuous case.
Furthermore, the disadvantages caused by relying on a fixed number of support-points should
be expected to decrease rapidly with increases in the number of points used.

Another major advantage of our approach is the lack of need for simulation processes. In this
spirit, it is tempting to consider discrete distributions models with many support points as a way
to approximate a continuous distribution, and prefer this technique over simulated maximum
likelihood. Indeed, simulated maximum likelihood is actually also based on a discrete sum
based on values drawn from the distribution. However, we must keep in mind an important
difference. In order to improve the accuracy of the approximation of the continuous distribution,
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it is sufficient in the simulated maximum likelihood estimation to increase the number of draws.
This does not affect the number of parameters to be estimated. It just takes more time to evaluate
the log-likelihood function. In the discrete distribution context, adding one more point increases
the number of parameters to estimate by two. When the number of points is high, the estimation
can become very difficult, not only because of the size of the optimisation problem, but also
because of numerical problems related to the nature of the log-likelihood function discussed
below.

A good example showing the advantages of the discrete approach is that of the analysis of value
of travel-time savings (VTTS). Random variations across respondents have repeatedly been
found for this much-used willingness-to-pay indicator, for example by Algers et al. (1998),
such that the use of a fixed-point model is not appropriate. However, with the coefficients
used in this trade-off, notably the marginal travel-time coefficient, important issues arise in the
case of a continuous mixture model, as discussed by Hess, Bierlaire & Polak (2005b). Firstly,
there is a possibility of a highly assymetrical distribution, with a mean close to zero, which
some bounded distributions might not be able to replicate, but where unbounded distributions
can falsely indicate the presence of respondents with a positive marginal utility of travel-time,
and hence a negative value of time. Secondly, there is a distinct possibility of a multi-modal
distribution, in the case where an appropriate segmentation of the population has not been pos-
sible. Finally, there is a possibility that the time constraint of some individuals is not binding,
such that their VTTS is zero, while the remaining individuals have a positive VTTS (negative
marginal utility of travel-time). While the first two issues can be addressed through appropriate
specification, standard continuous distributions are clearly not adequate in the case of a part of
the population with a zero VTTS. Discrete mixtures on the other hand can deal with all three
issues.

There are several estimation issues related to discrete mixtures of choice models. Firstly, the non
concavity of the log-likelihood functions does not allow the identification of a global maximum,
even for discrete mixtures of MNL. The experiments conducted as part of this analysis revealed
the presence of multiple local maxima. Therefore, performing several estimations from various
starting points is advisable. Also, it is good practice to use starting values other than 0 or 1 for
theπj

k parameters.

Secondly, constrained maximum likelihood must be considered to account for constraints (7)
and (8). It should be noted that eliminating (8) by replacingπ1

k with

π1
k = 1 −

mk∑
j=2

πj
k (11)

does not help, as the constraint0 ≤ π1
k ≤ 1 now leads to the new condition0 ≤

∑mk

j=2 πj
k ≤ 1.

Thirdly, clustering of mass points (for example around the mode of the true distribution) is a
frequent phenomenon which must be handled specifically. Indeed, if may be a sign that the
number of mass points is too large, and that some of them should be grouped together. This
should be explicitly tested. But it may also be a feature of the optimisation algorithm, which
may not be desirable in practice. In this case, the use of additional bounds on the mass points
is useful, based on the definition of (potentially mutually exclusive) a priori intervals for the
individual mass points.
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The model is available in the BIOGEME software package (c.f. Bierlaire 2003), where various
constraints on the parameters can be imposed to address the issues described above. This also
allows researchers to test the validity of specific assumptions, such as a mass at zero for the
VTTS.

3 Experiments

In this paper, we report results from two sets of preliminary experiments. The first experiment
makes use of real data, where we compare an MNL model with a normal mixture of MNL and
a simple discrete mixture of MNL. We then make use of synthetic data in order to get more
insights into the model’s performance.

3.1 Real data

We use stated preferences data collected in the context of the analysis of the Swiss Value of
Travel Time Savings (VTTS) (Koenig et al. 2004, Axhausen et al. 2004). For the present anal-
ysis, we use data from a binomial route-choice survey, for rail travellers on leisure trips. This
leads to a total of 1,881 observations, collected from 209 respondents.

The final utility specification uses travel-cost, travel-time, frequency, and the number of inter-
changes as explanatory variables. Linear specifications are used for all attributes, except for
cost, where the distance-elasticity was taken into account. For this, the following approach was
used:

. . . + βc ·
(

δn

43

)λ

· ci, (12)

whereci is the cost of alternativei, with associated taste-coefficientβc. The variableδn gives
the distance observed for the associatedRP trip for respondentn, with mean value43, andλ
gives the distance-elasticity. Attempts to model the income-elasticity were unsuccessful, with
the associated elasticity parameter taking on values indistinguishable from zero.

We first estimate a simple Multinomial Logit model. The estimated parameters are

Parameter Estimate std. err. t-test
changes -1.1699 0.0623 -18.76

cost -0.2689 0.0361 -7.46
λ -0.6783 0.1117 -6.07

freq 0.4249 0.0346 12.27
ttrail -0.0296 0.0040 -7.40

Sample size: 1,881
Null log-likelihood: -1303.81

Final log-likelihood: -917.499
Likelihood ratio test: 772.62

Rho-square: 0.2963
Adjusted rho-square: 0.2925
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The mean VTTS from this model (for individuals with an observed distance of43km) is 6.60
CHF/hour. The results also show decreasing cost-sensitivity with increasing distance.

In order to test for the prevalence of random variations across respondents in the VTTS, we next
estimated an MMNL model using a normally distributed travel-time coefficient. The model fit-
ting exercise takes into account the repeated choice nature of the dataset. In the next table,
ttrail is the mean of the distribution, andttrails its standard deviation. The standard
deviation for the travel time coefficient is highly significant. With one additional parameter, the
model offers a very significant improvement inLL by 34.30 units. The mean VTTS for train is
very close to the MNL results, at7.58CHF/hour. However, the model indicates significant vari-
ation around this mean, and indeed suggests a probability of16.95% of a negative VTTS, with
lower and upper95% confidence intervals of−7.97CHF/hour and23.15CHF/hour respectively.
This does however not imply the presence of individuals with positive valuations of increases
in travel-time, but should rather be seen as an artefact of the use of the Normal distribution
(c.f. Hess, Bierlaire & Polak 2005b). Indeed, the conditions imposed by microeconomic time-
allocation theory stating that the valuation of travel-time savings should be non-negative apply
also in the case of leisure travellers. Nevertheless, the results show the existence of significant
levels of taste heterogeneity.

Parameter Estimate std. err. t-test
changes -1.3312 0.0985 -13.52

cost -0.3560 0.0583 -6.11
λ -0.6107 0.1214 -5.03

freq 0.4952 0.0481 10.28
ttrail -0.0450 0.0074 -6.08

ttrails 0.0471 0.0087 5.41
Sample size: 1,881

Null log-likelihood: -1303.81
Final log-likelihood: -883.201
Likelihood ratio test: 841.218

Rho-square: 0.3226
Adjusted rho-square: 0.3180

We next estimate a discrete mixture model, with two support points. In this model, the first
support point is fixed at zero, in order to model the share of the population with a zero VTTS,
that is people for whom the time constraint is not binding. The second support point is estimated
from the data.

We observe a finalLL of −897.31, with one additional estimated parameter when compared
to the MNL model (only one mass-point needs to be estimated), and the same number of pa-
rameters as the MMNL model. The model offers statistically significant improvements over the
MNL model, but offers lower performance than the MMNL model. This is a sign that the model
is not able to fully account for all variations in tastes; this is however not the aim in the present
analysis, which simply looks for the prevalence of zero valuations of travel-time savings.

The results indicate a very high share of67.10% of respondents with a zero VTTS. Tests showed
that the data did not include anynon-traders, such that the results should not be seen as a simple
effect of estimation bias due to captivity. In any case, in a binomial route-choice survey which
does not include theRP alternative as an option, captivity should not play a significant role.
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Although this share is very high, it is realistic to assume that a non-trivial part of respondents
travelling for leisure purposes are indeed indifferent to travel-time changes (either positive or
negative), in the absence of a binding time constraint. It must be stressed that this does not
imply that travellers seek increases in travel-time, but are equally indifferent to increases as to
decreases.

Parameter Estimate std. err. t-test
changes -1.5579 0.1043 -14.93

cost -0.4316 0.0638 -6.76
λ -0.5690 0.0920 -6.18

freq 0.5540 0.0504 11.00
ttrail -0.1884 0.0397 -4.74

massZero 0.6710 0.0393 17.07
Sample size: 1881

Null log-likelihood: -1303.81
Final log-likelihood: -897.313
Likelihood ratio test: 812.994

Rho-square: 0.3118
Adjusted rho-square: 0.3064

In the segment of the population with strictly positive values of travel-time savings, the average
VTTS is now a high26.19CHF/hour for rail. This could be seen as an indication of problems
with this model (given the much lower values in the MNL model). However, there is an alter-
native explanation. The MNL model is unable to explicitly represent the presence of a part of
the population with a zero VTTS. As such, it can be expected that the fixed-point estimate it
produces is biased, and indeed, gives the weighted average of the two values found in the pop-
ulation (assuming for now only two separate values). This notion is supported by a calculation
of the weighted average on the basis of the results from the discrete mixture model. Indeed, we
have0.6710 · 0 + 0.3290 · 26.19 = 8.62CHF/hour, which is acceptably close to the fixed-point
VTTS obtained with the simple MNL model.

These results are very promising. Indeed, the model with the discrete mixture offers clear im-
provements in performance over the MNL model. Although it leads to poorer model fit than the
MMNL model, it offers insights into taste variations that are more easily reconcilable with in-
tuition (zero instead of negative VTTS). Nevertheless, the model using the Normal distribution
clearly shows the presence of large levels of taste heterogeneity.

It is thus of interest to attempt to retrieve further levels of heterogeneity, at the same time as
accounting for the prevalence of zero valuations of travel-time savings.

One possible approach is to use discrete mixtures with more than two values. However, the
estimation becomes significantly more complicated, with the presence of several local maxima,
and possible degeneracy, that is convergence of two points toward a common value. In this
context, more investigation is necessary. Also, the estimation algorithm should be tailored to
the structure of this problem, and a heuristic is needed to determine the optimal number of
support points.

An alternative approach is based on combining a continuous distribution with an approach that
allocates a specific share to a zero valuation of travel-time savings, as discussed by Cirillo &
Axhausen (2004).

11



Swiss Transport Research Conference March 9-11, 2005

In the case where the main distribution is to be continuous, with an inflated mass at one point,
only zero should really be seen as a candidate for such a point, given its specific role. As such,
the location of the mass need not be estimated. Fixing the location of the support point also
greatly facilitates the estimation of the model. In this case, the following approach can be used.

Let us assume we want to use a Normal distribution, with a mass at zero. In this case, we
estimate three parameters; the mean of the Normal distribution,µ, its standard deviation,σ,
and the mass at zero,γ. In the estimation code, simulation over the distribution is used at each
iteration of the optimisation algorithm. In each iteration of the simulation process, a random
draw (or quasi-random draw), sayr, is used, wherer is contained between 0 and 1. With this
drawr, a draw from theN(µ, σ) distribution with a mass ofγ at zero is produced as follows. If
the drawr is smaller thanγ, the value of the draw from the distribution at this iteration of the
simulation algorithm is set to 0. Otherwise, it is set to:

µ + σ · Φ−1

(
r − γ

1 − γ

)
, (13)

whereΦ−1 is the Inverse Cumulative Normal distribution. As an example, withµ = 20, σ = 5,
andγ = 0.1, the distribution obtained with this approach has the shape shown below (using
10,000 draws). A similar approach can be used with any other underlying continuous distribu-
tion, by replacingΦ−1 by the appropriate inverse transform.
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3.2 Simulated data

In order to investigate the validity of the discrete mixture model, we generate synthetic data
such that we know the “true” value of the parameters. We use a mode-choice survey of1, 242
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observations from the Swiss VOT database as the underlying data, but we use simulated choices
instead of actual choices as dependent variables. We also augment the sample size from1, 242
to 5, 000 through minor random variations on the observed attributes.

In order to generate the synthetic choices, we assume that, except for the travel time coefficient
for the car alternative, the true parameters are fixed as follows;

Parameter Value
car 4

changes -1.15
cost -0.3
freq 0.9

ttrail -0.07,

giving a true VTTS for rail-travel of 14CHF/hour.

In the first experiment, we assume that the population is divided into two segments. The VTTS
of the first segment, composed of 50% of the sample, is assumed to be 16CHF/hour (the travel
time coefficient being−0.08), while it is 6CHF/hour for the second segment (the travel time
coefficient being−0.03).

As a first test, we estimate a discrete mixture model where the support points are fixed to the
true values, and the probability mass distribution is estimated from the data. The 50%-50%
share is reproduced quite closely, and the VTTS measures are also closely reproduced.

Parameter Estimate std. err. t-test
car 4.0776 0.2489 16.38

changes -1.2531 0.0942 -13.30
cost -0.3198 0.0156 -20.52
freq 0.9436 0.0639 14.76

massCar1 0.4274 0.1413 3.02
massCar2 0.5726 0.1413 4.05

ttrail -0.0792 0.0042 -18.94
Sample size: 5000

Null log-likelihood: -3465.74
Final log-likelihood: -868.984
Likelihood ratio test: 5193.5

Rho-square: 0.7493
Adjusted rho-square: 0.7472

In the second step, we estimate the actual support points from the data, in addition to the as-
signed mass.
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Parameter Estimate std. err. t-test
car 4.0265 0.2554 15.76

changes -1.2306 0.0969 -12.70
cost -0.3138 0.0160 -19.62
freq 0.9282 0.0656 14.15

massCar1 0.5149 0.2019 2.55
massCar2 0.4851 0.2019 2.40

ttcar1 -0.0770 0.0134 -5.73
ttcar2 -0.0373 0.0105 -3.54
ttrail -0.0776 0.0057 -13.58

Sample size: 5000
Null log-likelihood: -3465.74

Final log-likelihood: -868.446
Likelihood ratio test: 5194.58

Rho-square: 0.7494
Adjusted rho-square: 0.7468

In this model, the recovery of the50 − 50 market share is better than in the model using fixed
support points. The upper VTTS is slightly underestimated, at 14.72CHF/hour, while the lower
one is overestimated, at 7.13CHF/hour. The VTTS for rail is also slightly overestimated, at
14.84CHF/hour. These slight biases are however well within the acceptable bounds. sampling.

In the second experiment, we assume that the segment with the lower VTTS represents only
30% of the population. This time, we immediately estimate both the support points and their
masses from the data.

When we estimate the support points, we recover the 70/30 share almost perfectly. Both
VTTS measures are slightly underestimated, at 4.70CHF/hour and 13.75CHF/hour, instead of
6CHF/hour and 16CHF/hour respectively. The rail VTTS is estimated at 13.73CHF/hour, in-
stead of 14CHF/hour. Again, these biases are acceptable.

Parameter Estimate std. err. t-test
car 4.1307 0.2522 16.38

changes -1.2055 0.0934 -12.90
cost -0.3203 0.0159 -20.17
freq 0.9600 0.0644 14.91

massCar1 0.2704 0.1234 2.19
massCar2 0.7296 0.1234 5.91

ttcar1 -0.0251 0.0107 -2.35
ttcar2 -0.0734 0.0101 -7.25
ttrail -0.0733 0.0052 -14.04

Sample size: 5000
Null log-likelihood: -3465.74

Final log-likelihood: -906.999
Likelihood ratio test: 5117.47

Rho-square: 0.7383
Adjusted rho-square: 0.7357
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3.3 Discussion

The two experiments conducted in this analysis have shown that the discrete mixture models
are able to recover the values and market-shares of discretely distributed coefficients. They
have also shown that the approach can be a useful tool in the testing of specific hypotheses,
such as the presence of travellers with zero-valuations of travel-time changes. The extension
to cases with more than two mass-points is straightforward, although it involves more issues
with identification of an acceptable maximum, and potentially requires the use of constrained
estimation.

4 Summary & Conclusions

In this paper, we have discussed an alternative approach for representing inter-agent variations
in tastes, and by extension, choice behaviour. The approach is based on the use of discrete mix-
tures of GEV models, replacing the fixed-parameter choice probabilities by a weighted sum of
GEV choice-probabilities calculated on the basis of different values for the specific coefficients
for which taste heterogeneity is to be introduced. The weights or mass-points associated with
the different values reflect the market share of this coefficient-value in the sample population.

Our theoretical discussions have highlighted that the model can be seen either as an extension of
fixed coefficients models, or as a simplification of continuous mixtures of discrete choice mod-
els. Compared to the latter, the model has certain advantages and certain disadvantages, which
have been described in detail in the paper. One of the major advantages of discrete mixtures is
the ability to test the validity of hypotheses about the presence of a specific coefficient-value in
the sample population, such as a zero VTTS.

The paper has presented two brief applications. The first application, which uses real data, has
shown how discrete mixtures can be used to reveal the presence of respondents with zero val-
uations of travel-time changes, something that is not easily possible with continuous mixtures
(advanced distributions are required). A second application made use of simulated data to show
that the model is able to correctly reveal the presence of separate coefficient values in a sample
population, and to reveal the exact market shares with a high level of precision.

Further work is required, notably in estimation with multiple support-points, but the prelimi-
nary tests have revealed that the use of discrete mixtures presents an interesting and promising
alternative to continuous mixtures.
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