The Economics of Urban Road Pricing

Capita Selecta

Erik T Verhoef

Free University Amsterdam

۲

Outline

- Basic economic motivation
- Statics versus dynamics
- Second-best aspects
- Conclusions

Basic motivation road pricing

• Pigou (1920): external costs

- At the margin, mb = mpc instead of mb = msc
- Social welfare rises when discouraging traffic with *mb* < *msc*

Subtlety

• Pricing outperforms non-price regulation in terms of efficiency

- Level and composition of road use matters

- Example: 'Athens-type' number plate policy
 - Does not discriminate according to WTP
 - Even if a clever design succeeds in achieving N*, not (nearly) as efficient as pricing

Number plates vs pricing

S Expected welfare 'gain' may be negative

Modelling of traffic congestion

- Advantages of the basic static model
 - transparent
 - basic economic principles
- Disadvantages: simplicity
 - dynamics
 - networks
 - technical, non-behavioural nature of congestion function
 - … basic model of little use in practice?

Dynamic modelling

- Supply side: non-stationarity of traffic flows
- Demand side: dynamic equilibrium in terms of endogenized departure times
 - Generalized cost: schedule delay cost plus travel delay cost
 - Dynamic equilibrium: generalized cost constant over peak
- Important conclusions
 - No demand reduction needed to reduce congestion
 - Generalized price needs hardly rise with optimal tolling

Vickrey (1969)

- Pure bottleneck congestion, for a single facility
 - no queue, inflow \leq capacity:
 - outflow = inflow
 - else:
 - outflow = cap; growth of queue = inflow outflow
- Dynamic equilibrium for homogeneous users with inelastic demand:
 - Early arrivals: inflow > capacity, queue grows over time
 - Late arrivals: inflow < capacity, queue shrinks over time

1 downstream segment 3 'sub-queues'; weighted averaged travel times Empirical rele Outflow point 2 km downstream Α7 of Coenplein Inflow points 11 km (5.5 min.) upstream A 8 Inflows corrected for different destinations at Coenplein Upstream Upstream loop 4 lanes 600 m from CP Observations averaged over 'normal' working days in 2000 Upstream Coenplein 2 lanes I₃ Downstream loop 1000 m from CP A 10 Downstream 2 lanes A 10 AMSTERDAM

۲

۲

Dep. & Arr. rates and travel times

Optimality for a bottleneck

- Time spent queuing is a pure waste, but needed to achieve a dynamic equilibrium
 - Avoidance of queues, while keeping throughput at capacity, would eliminate travel delay cost without raising schedule delay cost
- Dynamic tolls
 - Purpose: inflow = capacity = outflow throughout peak as a 'decentralized optimum'
 - Avoid wasteful queuing
 - Needed: time-varying tolls that replicate the dynamic equilibrium pattern of travel delay cost

With linear SD-costs

• • • • • • •

Prescription for 'Coenplein'

Vickrey vs 'standard': surprises

- Congestion eliminated without demand reduction
 No need to change mode, give up job, carpool, *etc*.
- Same arrival flow over the same time span
 - No need to arrive earlier or later at work
 - Only departure times are adjusted: everybody departs
 <u>later</u> than without tolling
- Acceptability of road pricing should be no problem with optimal time differentiation
 - Generalized equilibrium costs remain unchanged

Dynamic congestion technologies

- Alternative flow-based representations
 - 'Instantaneous propagation' (Agnew, 1977)
 - Speeds along the road equal at every instant
 - 'No propagation' (Chu, 1995)
 - Drivers have constant speed over their entire trip, depending on arrival rate at instance of departure or arrival
 - 'Hybrid' (Mun, 1999)
 - Chu + basic bottleneck
 - 'Finite propagation': car-following modelling (Verhoef, 2001, 2003, 2004)

Which insights survive?

- Importance of rescheduling of departures for optimality
 - Need for continuous toll differentiation over time
- Modest increase in generalized price with optimal tolling; more optimisitic view on acceptability
 - Especially if the congestion technology allows for / incorporates some form of 'hypercongested' queuing
 - In practice: difference between 'flowing traffic' and 'jammed' traffic
 - Therefore: relevant for the most visible type of traffic congestion

Example from Verhoef (2003)

- Single origin and destination, one road
- Car-following congestion technology
- Numerical solutions only
- Bottleneck due to lane-merging
- 'Loops' to 'monitor' traffic dynamics

Assumed car-following equation

• • • • • • • •

Clock-time speed functions: no tolls

Clock-time speed functions: optimum

Comparison with basic bottleneck model

Optimum <i>vs</i> equilibrium:	Bottleneck	Car-following $(N = 2500)$
Duration peak	+ 0%	+ 12%
Total variable cost	- 50%	- 40%
Total variable travel time cost	- 100%	- 85%
Total schedule delay cost	+ 0%	+ 10%
Generalized price (net of free-flow travel time)	+ 0%	+ 12%

Therefore:

- Dynamic models
 - Endogenize scheduling decisions
 - Importance of toll differentiation over time
 - Departure time adjustments may yield considerable gains even with perfectly inelastic demand
 - Generalized price needs not rise by much due to optimal tolling, especially with initial hypercongested queuing

Second-best pricing

- Taxes as discussed up to here assume
 - No distortions in the economy but the externality under consideration
 - But: environmental pollution, market power, distortive labour taxes, etc.
 - Taxes can be differentiated perfectly over users

- Time of day
- Route followed
- Vehicle used & maintenance
- Driving style
- When violated: 'Second-best pricing'

Therefore...

- Second-best pricing will be the rule rather than the exception
- Substantial literature on second-best pricing has recently emerged
- General issues best illustrated using an example

'Two-route problem'

- Marchand and Levy-Lambert (1968)
- Typical of pay-lanes
- What is the optimal toll, which are the impacts?

The second-best optimal toll

- Trade off:
 - Good news: reduction of congestion on pay-lane
 - Bad news: increase in congestion on free-lane
- Constrained optimization:

$$\tau = mec_T - mec_U \cdot \frac{-D'}{c'_U - D'}$$

- Two special cases:
 - Perfectly inelastic demand: s.b. toll equal to mec-difference
 - Perfectly elastic demand: s.b. toll ignores route U

Illustration: extended version

- Account for heterogeneity of users (value of time)
- 4-lane highway
- A third, serial link where users from both routes interact
- Numerical model: calibrated so as to replicate
 Dutch peak conditions
- Results from Verhoef and Small (2004)

Relative efficiency

'Quasi first-best': $\tau = mec_T$

Private pay-lane

Generalization to larger networks?

• Pay-lane toll can be shown to be a special case of

•

 $\sum_{m=1}^{J} \delta_{mp} \cdot \left(\sum_{q=1}^{P} \delta_{mq} \cdot N_{q} \cdot c'_{m}\right) - \sum_{q=1}^{P} \lambda_{q} \cdot \left(\sum_{m=1}^{J} \delta_{mp} \cdot \delta_{mq} \cdot c'_{m}\right)$ $f_{j} = \frac{\sum_{p=1}^{P} \delta_{jp} \cdot \dots \cdot \sum_{i=1}^{I} \sum_{q=1, q \neq p}^{P} \delta_{ip} \cdot \delta_{iq} \cdot \lambda_{q} \cdot D'_{i} - \sum_{m=1, m \neq j}^{J} \delta_{mp} \cdot \delta_{m} \cdot f_{m}}{\sum_{m=1}^{I} \delta_{mp} \cdot c'_{m} - \sum_{i=1}^{I} \delta_{ip} \cdot D'_{i}}$ $f_{j} = \frac{\sum_{p=1}^{P} \frac{\delta_{jp}}{\sum_{m=1}^{J} \delta_{mp} \cdot c'_{m} - \sum_{i=1}^{I} \delta_{ip} \cdot D'_{i}}}{\sum_{m=1}^{P} \delta_{mp} \cdot c'_{m} - \sum_{i=1}^{I} \delta_{ip} \cdot D'_{i}}$ $\forall j \text{ with } \delta_i = 1 \text{ and } \forall p \text{ with } \delta_{ip} = 1 \text{ and } \forall q \text{ with } \delta_{iq} = 1$ So: theoretically possible, but notationally cumbersome

One other example

- Distortions on labour market
 - Mayeres & Proost (2001), Parry & Bento (2001)
 - General equilibrium, endogenous labour supply
 - Distortive labour taxes
 - Conclusions:
 - Congestion charges may aggrevate distortions on labour market
 - Eventual welfare effects may depend strongly on use of revenues
 - Hence: not just a 'tool to buy acceptance'

Main lessons from s.b. literature (1)

- Tax 'rules' become much more complicated than the simple "tax = m.e.c." rule, to reflect indirect effects
- Regulator, in addition, needs more information to set prices optimally
- The risk of 'government failures' thus increases
- Potential efficiency gains of second-best pricing may be well below, or close to, those from first-best pricing, depending on the circumstances

Main lessons from s.b. literature (2)

- Naïve use of taxes ignoring the second-best nature of the tax - will lead to even smaller efficiency gains; or even losses
- Second-best pricing lacks the property of giving optimal incentives for all behavioural dimensions
- In a second-best world, the use of tax revenues is <u>not</u> just an issue affecting the distributive effects of pricing, but also directly affects its efficiency

Alarming message?

- MC-based pricing in realistic second-best situations
 - risk of doing it 'wrong' is not insignificant
 - careful study of actual application and an identification of the relevant second-best aspects is necessary before implementing

To conclude

- MC pricing appears straightforward as a concept
- Intruiging / important aspects arise when looking at actual implementation
 - Acceptability
 - Dynamics
 - Second-best issues
 - ... and more...
- Challenges for the design of pricing policies, as well as for further research

'Acknowledegement'

• This presentation uses material from

- Verhoef, E.T. (2001) "An integrated dynamic model of road traffic congestion based on simple carfollowing theory: exploring hypercongestion" *Journal of Urban Economics* **49** 505-542.
- Verhoef, E.T. (2002) "Second-best congestion pricing in general static transportation networks with elastic demands" *Regional Science and Urban Economics* **32** 281-310.
- Verhoef, E.T. (2002) "Second-best congestion pricing in general networks: heuristic algorithms for finding second-best optimal toll levels and toll points" *Transportation Research* **36B** 707-729.
- Verhoef, E.T. (2003) "Inside the queue: hypercongestion and road pricing in a continuous time continuous place model of traffic congestion" *Journal of Urban Economics* **54** 531-565.
- Verhoef, E.T. (2003) "Speed-flow relations and cost functions for congested traffic: theory and empirical analyses" Discussion paper TI 2003-064/3, Tinbergen Institute, Amsterdam-Rotterdam.
- Verhoef, E.T. and K.A. Small (2004) "Product differentiation on roads: second-best congestion pricing with heterogeneity under public and private ownership" *Journal of Transport Economics and Policy* **38** (1) 127-156.