

Automatic Matching of large detailed street networks – An algorithm with curve and attribute affinity and its evaluation

Urs Waldner, Institut for Spatial and Landscape Planning

Conference paper STRC 2005

STRC

5th Swiss Transport Research Conference Monte Verità / Ascona, March 9-11, 2005 Automatic Matching of large detailed street networks – An algorithm with curve and attribute affinity and its evaluation

Urs Waldner Institut for Spatial and Landscape Planning Zürich

Phone: 01 633 30 04 Fax: email: waldner@nsl.ethz.ch

March 2005

Abstract

To produce and to maintain an area-wide streetnetwork with complete attributes it is useful to integrate information from different networks. The described GIS-methods calculate a matching table of identical routes, so that the attribute values can be compared and switched from one to another network. The algorithm calculates different matching criteria that describe the geometry and attribute affinity of routes from different networks and subsume these criteria to a matching table. To optimize and check the algorithm we digitized manually over 21'000 matching records.

Keywords

street network - GIS - network matching

1.	Introd	uction	3
2.	Materi	al	4
2.	.1 Stee	et Network Datasets	4
	2.1.1	Microdrive 99	4
	2.1.2	Gis-streetnetwork for canton Zurich	5
	2.1.3	Navtec	5
3.	Metho	d	6
3.	.1 Soft	ware Framework	6
3.	.2 Alg	orithmus	6
	3.2.1	First Selection with groups of street classes	6
	3.2.2	Second Reselection with Buffer	6
	3.2.3	Geometry gap indicators	6
	3.2.4	Third Reselection with value ranges for affinity indexes	8
	3.2.5	Transformation of affinity indexes	8
3.	.3 Last	t Reselection	9
3.	.4 Mar	nually generated reference matching table	9
4.	Result	s	. 10
4.	.1 Mat	ching of "Gis-streetnetwork for canton Zurich" with "Navtec"	. 10
4.	.2 Mat	ching of "Microdrive" with "Gis-streetnetwork for canton Zurich"	. 12
5.	Conclu	ision	. 14
6.	Outloo	ok: Further Extension	. 15

1. Introduction

The Problem ist well known: In one network dataset the attribute information is good, but the small streets are only available in an other network dataset. A matching table would allow to use informations from two different networks by attribute value transfer.

In this paper a method to quantify the matching probability from link to link based on geometry and attribute affinity is described. The total link-link affinity index can also be used by a method using the link-node-link information.

To produce and maintain an area-wide streetnetwork with complete attributes it is useful to integrate information from different networks. The described GIS-methods calculate a matching table of identical routes, so that the attribute values can be compared and switched from one to another network. The algorithm calculates different matching criteria that describe the geometry and attribute affinity of routes from different networks and subsume these criteria to a matching table. To optimize and check the algorithm we digitized manually over 21'000 matching records. This practical GIS-approach is very robust and handles also complex city street network structures with different generalisation levels, but it can not compensate a big loss of position accuracy by generalizing the geometry.

2. Material

2.1 Steet Network Datasets

The following networks have been used:

2.1.1 Microdrive 99

Area:	Switzerland and
	Europe
Street classes:	Freeways and some
	major streets
Node pos. accuracy:	50 - 200 m
Line position accuracy	:10- 500 m
Attribut quality:	High
Source:	Microdrive
Remarks:	Original dataset for
	IVT-Street-Network
	with same node
	coordinates

Fig. 1: Green links (Microdrive 99), Red links (IVT/ARE)

2.1.2 Gis-streetnetwork for canton Zurich

Area:	Kanton Zürich					
Street classes:	Freeways, major					
	streets and important					
	medium streets					
Node position accuracy: 1 - 3 m						
Line position accura	acy:1 - 5 m					
Attribut quality:	Very High					
Source:	Kanton Zürich					
Remarks:	Some error by					
	network consistancy					

Fig. 2: Green-Blue links

2.1.3 Navtec

Area:	Test dataset available
	for greater zurich area
Street classes:	All streets, also
	without driving rights
Node position accuracy	/: 5 - 20 m
Line position accuracy	:Medium
Attribut quality:	Very High
Source:	Kanton Zürich
Remarks:	Some errors by
	network consitancy

Fig. 3: Navtec network.

3. Method

The algorithum to generate the matching table uses information form geometry and some basic attribute information like street classes if available.

3.1 Software Framework

The program was realised as a prototype to develop the method in two programs:

1. In ArcGIS a Visual Basic for Application (VBA) Sript using ArcObjects writes from all possible matching candidates a new Feature Class. All informations about the geometry proximity are attributes of this Feature Classes in a Personal Geodatabase (Database Format: Access). A configuration database is used to make the program easy adaptable to different networks.

2. In Access a Visual Basic for Application (VBA) script creates and executes the SQL-Queries to rank matching candidates and write out the resulting matching table. For performance reason it was necessary to use SQL instead of pointers like recordsets to make the ranking.

This set up allows an easy development and control of the algorithmus with GIS. The integration of both programs in a installable ArcGIS-Extension is easy to make when a ODBC Connection to the Personal Geodatabase (Access) is used to execute the ranking and selecting SQL-Statements.

3.2 Algorithmus

3.2.1 First Selection with groups of street classes

If street class informations are available in both networks, this informations should be used to avoid coarse errors. Usually the different classification praxis in both networks does not allow to make a simple conversion table, but allows to exclude some streets from the choice set when the discrepancy in street class is to high. The street classification can also be made from indirect informations like the flag "velocity and capacity greater than zero", which allows to exclude streets with ban on driving.

In the program there non-overlapping groups of streets can be defined in the network 1 with a choice set of possible street classes in network 2 (overlapping by network 2 allowed). The group definitions for Network 1 and 2 constitute SQL-WHERE-Statments, which can be developed and checked with ArcGIS and are part of the configuration database (table "tblLineType" (Example table see apendix).

3.2.2 Second Reselection with Buffer

The minimal distance between two lines of a maching candidate pairs must be abouve a fix size.

3.2.3 Geometry gap indicators

For each link a in network 1 the described preselection process with groups of street classes and buffers gives a set of possible matching candidates in network 1, called link b (See Fig 1).

Fig. 4: Two matching candidates link *a* (network 1), Link *b* (network 2). Link *a* is split up in Points $P_0 \dots P_5$. Q_n is the nearest Point on link *a* from P_n .

- *a*: Line of network 1, can be used on zero, one or both direction
- b: Line of network 2, can be used on zero, one or both direction
- *P_i* Points on b at regular distance between Start and End including EndsPoint
- Q_i Nearest Point on b to P_i on a
- α_i Direction of tangent to a by Point P_i
- β_i Direction of tangent to b by Point Q_i

Using these Definitions the following geometry affinity indexes have been calculated:

Indicator	Definition	Significant point on	Aggregation formula
		Network	
StartGap	Distance from start	<i>P</i> ₀ : Start Point of Polyline	StartGap = $\overline{P_0 O_0}$
	point of b to nearest		
	point of <i>a</i>		
EndGap	Distance from End	<i>P_n</i> : End Point of Polyline	EndGap = $\overline{P O}$
_	point of b to nearest		
	point of <i>a</i>		
BetweenGap	Distance from between	P_i : Points at regular	\mathbf{n}
(BETWGA)	point on b to nearest	distance between Start and	BetweenGap = $\sum_{i=1}^{n} P_i Q_i$
	point on <i>a</i>	End including Ends	1=0
BetweenAngle	Angle Difference of	P_i : Points at regular	BetweenAngle =
(BANGLE)	the tangent on b in the	distance between Start and	$\sum_{n=1}^{n} (1 - (1 - 2))^2$
	betweenpoint and the	End including Ends	$\sum_{i=0}^{\infty} (1 - \cos(\alpha - \beta))$
	tangent by Q_i , the		1=0
	nearest point to P _i on a		
FractionInside	Part of <i>b</i> inside a	Whole Line <i>b</i>	len(binside)
(LENI)	buffer arround <i>a</i>		len(btot)
Courviness	Summarized angle of	All Vertex of the Line b	
(COUR)	courves at each vertex		$\sum eta_v - eta_{v-1}$
	of the Polyline of link		v
	b		

Table 1: List of geometry affinity index

Where *StartGap* and *EndGap* are simple distances. The two index *BetweenGap* and *BetweenAngle* summarize the distance and direction affinity at many points of the lines. The geometry index *FractionIndex* is the result of cliping the link b with a Buffer-Polygon arround link *a. FractionIndex* it is easy programmable with standart GIS-Commands.

3.2.4 Third Reselection with value ranges for affinity indexes

For each geometry affinity index, a range of allowed values has been defined. These limits are defined by an interactive manual process considering the percentil and controlling it on the screen. It will not be necessary anymore in the next version.

3.2.5 Transformation of affinity indexes

The different affinity indexes are transformed and aggregated to one single affinity index (*TotalW*). First is to aggregate the some similar indexes *EndsLenW* : Combination of StartGap and EndGap *EndsLenW* = (Max(StartGap,EndGap))² *DistanceW* = *BetweenGap* * (Max_{DistanceW}- Min_{DistanceW})

DirectionW = DirectionM * (Max_{DirectionW}- Min_{DirectionW})

DistWindW: BetweenGap weighted with couviness

DistWindW = Log(DistanceW * (1 - Winding1 * (Max_{Winding1}- Min_{Winding1})) *(Max_{DistWindW}-Min_{DistWindW}) TotalW: Summarize over all index TotalW = LengthW + EndsLenW + DistanceW + DirectionW + DistWindW + DirWindW

3.2.6 Last Reselection

For each link a all matching candidates b are ranked with the Index *TotalW*. The line length of all selected links b should not be longer than the line length of all links a plus a fix and length-dependent tolerance.

3.3 Manually generated reference matching table

To check the algorithm a independent manually edited reference matching table was created with a special ArcGIS VBA macro Toolbox. The Toolbox had 3 Buttons with the following functionality:

Write: Rewrite the matching tables records for selected Link *a* and all selected Links *b*.Zoom to all selected links in both networks to make a visual check.

- Clear: Clears the Current Selection in both networks for all records with the selected link *a*.
- Link: Automatic selection of all corresponding links *b* in network 2 based to the current selection in network 1.

4. Results

4.1 Matching of "Gis-streetnetwork for canton Zurich" with "Navtec"

The matching of the "GIS-Strassennetz des Kantons Zürich" with the detailed Navtec Networks applyed to a complex crossover Bucheggplatz in the city of Zürich with a aterial in a tunnel see Fig5:

Figure 5 a) Original Networks from Buecheggplatz, City of Zurich. b) Matched Links on Navtec-Network 2.

By difference in the generalization level it creates some missings. The crosstab from all matching candidates of the algorithm against the manually digitized datasets shows that 84 % of the matches are correct (Table 1).

Algorith Match							
	No Match Match Total % Correct						
	No Match	22449	3413	25862	0.868		
Manual Match	Match	2933	12015	14948	0.803		
	Total	25382	15428	40810	0.844		

Table 2Crosstab between with current used algorithm (see Chapter 3) and manuallymatched reference dataset.

The Person Correlation (Table 3) between these simple factors shows that the simple FractionInside index has the best correlation to the manual edited reference datas. Startgap and Endgap are quite the same, because the Navtec-Network has two oposite unidirectional links-objects.

	Manual	StartGap	EndGap	Between Gap	Between Angle	Fraction Inside	Courvi ness
Manual	1	-0.231	-0.231	-0.334	-0.417	-0.726	0.086
StartGap	-0.231	1	-0.074	0.675	0.091	0.249	-0.019
EndGap	-0.231	-0.074	1	0.675	0.092	0.249	-0.019
BetweenGap	-0.334	0.675	0.675	1	0.140	0.369	-0.034
BetAngle	-0.417	0.091	0.092	0.140	1	0.491	-0.066
FractInside	-0.726	0.249	0.249	0.369	0.491	1	-0.183
Courviness	0.086	-0.019	-0.019	-0.034	-0.066	-0.183	1

Table 3Pearson Correlation between manual matched and geometry affinity index.

A binary choice model shows a little bit better results than the used algorithm (87 % instead of 84 %) see table 3):

		Algorith Match					
	No Match Match Total % Correct						
Manual Match	No Match	22426	3436	25862	0.867		
	Match	1595	13353	14948	0.893		
	Total	24021	16789	40810	0.876		

Table 4Crosstab between with current used algorithm (see Chapter 3) and manuallymatched reference dataset.

Table 5: Binary choice model based on affinity index.

	В	S.E.	Wald	Sig.
StartGap	003	.001	4.786	.029
EndGap	003	.001	4.824	.028
BetweenGap	003	.003	1.044	.307
BetweenAngle	060	.004	183.867	.000
FrectionInside	-4.813	.069	4839.999	.000
Courviness	112	.014	61.363	.000
Constant	1.884	.023	6530.778	.000

4.2 Matching of "Microdrive" with "Gis-streetnetwork for Canton Zurich"

Table 2Crosstab between with current used algorithm (see Chapter 3) and manuallymatched reference dataset.

		Algorith Match					
	No Match Match Total % Correct						
	No Match	22426	3436	25862	0.867		
Manual Match	Match	1595	13353	14948	0.893		
	Total	24021	16789	40810	0.876		

Table 3: Binary choice model based on affinity index.

	В	S.E.	Wald	Sig.
StartGap	003	.001	4.786	.029
EndGap	003	.001	4.824	.028
BetweenGap	003	.003	1.044	.307
BetweenAngle	060	.004	183.867	.000
FractionInside	-4.813	.069	4839.999	.000
Courviness	112	.014	61.363	.000
Constant	1.884	.023	6530.778	.000

5. Conclusion

This practical GIS-approach is very robust and handles also complex city street network structures with different generalisation levels. The match rates are enough for use cases like to generate localized emmission datas. To have match rates over 90 % the planned extension with a short path algorithm based on a affinity cost index must been implemented (see Chapter 6).

6. Outlook: Further Extension

The described reselection process can be extended to a more robust algorithm which uses also the node-link information.

For each link *a* a subset of the network 2 can be build using the first and second reselection steps (Chapter 3.2.1 and 3.2.2). For both ends (E_s , E_e) of the link *a* (network 1) three nearest points N_i and N_j on different links *b* of the network 2 were searched. The shortest path on a subset of the network 2 will be searched between all Points N_i and N_j using the affinity index *TotalW* between link *a* and *b* as cost-function. These nine solutions from N_i to N_j can be ranked based on the distance E_sN_i and E_eN_j and the summarized affinity index over all used pairs of link *a* and *b*. It is also possible to add a from/to field to the matching table which describes the part of the link *b* that matches to link *a*.

Apendix: Groups of street classes

Table 2: Definition Querys for Matching Example KanNav: "Gis-streetnetwork for canton Zurich" and "Navtec". Field "*RICHTPLANTYP*" and "*NT_KAT*" are street classification fields. Field "*KAP*" is the capacity of this link.

SQL Where Clause for network 1 (Gis- streetnetwork for canton Zurich)	SQL Where Clause for network 2 (Navtec)
RICHTPLANTYP = 10	NT_KAT < 4 AND KAP <> 0
RICHTPLANTYP = 11	NT_KAT < 5 AND KAP <> 0
RICHTPLANTYP = 12	NT_KAT < 5 AND KAP <> 0
RICHTPLANTYP = 20	(NT_KAT < 5 OR NT_TYP = 9) AND KAP <> 0
RICHTPLANTYP = 21	(NT_KAT < 5 OR NT_TYP = 9) AND KAP <> 0
RICHTPLANTYP = 22	(NT_KAT < 5 OR (NT_TYP = 6 AND NT_KAT = 5) OR (NT_TYP = 6 AND NT_KAT = 7)) AND KAP <> 0
RICHTPLANTYP = 30	((NT_KAT = 4) OR (NT_TYP = 9 AND NT_KAT = 5) OR (NT_TYP = 11 AND NT_KAT = 5)) AND KAP <> 0
RICHTPLANTYP = 31	((NT_TYP = 6 AND NT_KAT = 5) OR (NT_TYP = 9 AND NT_KAT = 5)) AND KAP <> 0
RICHTPLANTYP = 40	((NT_TYP = 9 AND NT_KAT = 5) OR (NT_TYP = 10 AND NT_KAT = 4) OR (NT_TYP = 11 AND NT_KAT = 5) OR (NT_TYP = 12 AND NT_KAT = 7) OR (NT_TYP = 15 AND NT_KAT = 7)) AND KAP <> 0