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Abstract

In this paper we propose a general framework for pedestraking behavior, based on dis-
crete choice modeling. Two main behaviors are identifiedconstrainedand constrained
The constrained patterns are further classified atti@ctive interactiongndrepulsive interac-
tions The formers are captured byemder-followemrmodel while the latters throughcallision
avoidancamodel. The spatial correlation between the alternativekesn into account defining
a cross nested logit model. Quantitative analysis is perorby maximum likelihood estima-
tion on a real dataset of pedestrian trajectories, mantralkked from video sequences.
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1 Introduction

Pedestrian behavior modeling is an important topic in cffié contexts. Architects are inter-
ested in understanding how individuals move into builditm&nd out optimality criteria for
space design. Transport engineers face the problem ofratiexy of transportation facilities,
with particular emphasis on safety issues for pedestriResent tragic events have increased
the interest for automatic video surveillance systemsg &blmonitoring pedestrian flows in
public spaces, throwing alarms when abnormal behaviorarocspecial emphasis has been
given to more specific evacuation scenarios, for obviousams In this spirit, it is important to
define mathematical models based on specific (and contperdent) behavioral assumptions,
tested by means of proper statistical methods. Data calletdr pedestrian dynamics is par-
ticularly difficult and few models presented in the literaiave been calibrated and validated
on real datasets.

In this work we refer to the general framework for pedestbahavior described by Hoogen-
doorn (in press) and Daamen (2004). Individuals in a cegainronment make different de-
cisions, following a hierarchical schemstrategical tactical and operational Briefly, desti-
nations and activities are chosen at a strategical levelptder of the activity execution, the
activity area choice and route choice are performed at tie#h level while instantaneous de-
cisions are taken at the operational level. In this paper deeess the problem of pedestrian
walking behavior, naturally identified by the operatioraldl of the hierarchy just described.
We are interested in modeling the short range behavioommal conditions, as a reaction to
the surrounding environment and to the presence of othendudls. With the term “normal”
we refer to non-evacuation and non-panic situations.

The objective in this paper is to provide a disaggregaté; édtimable behavioral model based
on discrete choice analysis, calibrated on real pedestrégectories manually tracked from
video sequences. We keep the same spatial discretizatibohaice set definitions introduced
in Antonini, Bierlaire, and Weber (to appear) and shortljeered later on in this section. Two
types of behavior are modeled hergconstrainecandconstrained The constrained patterns
are further classified intattractive interactionsand repulsive interactions This conceptual
framework is illustrated in Figure 1.

The unconstrained decisions are independent from the mressf other pedestrians and are
generated by subjective and/or unobserved factors. Theofithese factors is represented
by the individual's destination. It is assumed to be exogenim the model and decided at
the strategical level. The second factor is representetidyendency of people to keep their
current direction, minimizing their angular displacemefinally, unconstrained accelerations
(with accelerations we mean both positive and negativedspagations) are dictated by the
individual desired speed. The implementation of thesesdeanade through the three uncon-
strained patterns indicated in Figure 1.

The main contribution of this paper consists in a detailealyais of the constrained behaviors.
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Pedestrian walking behavior

Unconstrained Constrained
Keep Toward Free flow Repulsive Attractive
direction destination acc/dec interactions interactions
Collision Leader
avoidance follower

Figure 1. Conceptual framework for pedestrian walking bedra

We assume that behavioral constraints are induced by teotions with the other individuals
in the scene. Repulsive interactions are modeled througtollision avoidanceattern, which

is designed to capture the effects of possible collisionthercurrent trajectory of the decision
maker. Attractive interactions are modeled through Idaaer-followerbehavior, that is the
tendency of people to follow another individual in a crowd order to benefit from the space
she is creating. Here, the existence of one or more leadassisned. They are represented by
those individuals in a neighbour of the decision maker arttl gimilar moving directions and
speed, affecting her decisions.

Previous methods for pedestrian behavior modeling candssifled in two main categories:
microscopicandmacroscopignodels. In the last years much more attention has been eduss
on microscopic modeling, where each pedestrian is modedemhaagent, individually. Ex-
amples of microscopic models are thecial forcesmodel in Helbing and Molnéar (1995) and
Helbing et al. (2002) where the authors use Newtonian mecharnth a continuous space rep-
resentation to model long-range interactions. Blue an@A@O001) and Schadschneider (2002)
use cellular automata models, characterized by a statcatiization of the space where each
cell in the grid is represented by a state variable. Anothieraacopic approach is based on
space syntax theory where people move through spaces fojaiteria of space visibility
and accessibility (see Penn and Turner, 2002) and minigneangular paths (see Turner, 2001).
Finally, Borgers and Timmermans (1986), Whynes et al. (1886 Dellaert et al. (1998) focus
on destination and route choice problems on network topesodror a general literature review
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on pedestrian behavior modeling we refer the interestederda Bierlaire et al. (2003).

In Antonini et al. (to appear) a discrete choice frameworkpedestrian walking behavior is de-
fined, modeling the choice of “where to put the next step” iniarascopic context. Pedestrian
movements and interactions take place on the horizontdimgaplane. The spatial resolution

depends on the current speed vector of the individuals. €bengtrical elements of the space
model are illustrated in figure 2
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Figure 2: The basic geometrical elements of the space stauct

The current position of the decision makeis p,, her current speed, € IR, her current
direction isd,, € IR? (normalized, so thafd,| = 1) and her visual angle i&,. The region

of interest is situated in front of the pedestrian, idealhgrtapping with her visual field, and is
schematically represented by the shaded area in figure 2d@ptise discretization is obtained
assuming three speed regimes, where the individuals caheaate and decelerate up to a cer-
tain factor or they can keep their current speed constanhofce between 11 radial directions
is allowed, as illustrated in Figure 3.

A choice set of 33 alternatives is generated where eacimattee corresponds to a speed regime
v and a radial directiod. They are numbered using: = 11s + r wherena is the number of
the alternatives andr are, respectively, the speed regime and the direction egjes reported
in Figure 3. Each alternative is identified by the physicaiteeof the corresponding cell in the
spatial discretization,4, that is

Cyd = Pn+ Utd?

wheret is the time step. The choice set varies with direction an@dpleerefore the distance
between an alternative’s center and other pedestriansariyl with the speed of the decision
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Accelerated

Decelerated

Figure 3: The spatial discretization is generated assurhirege speed regimes and 11 radial
directions. The external numbers in the right-hand figupgegent the angular amplitudes of
the radial cones, in degrees. The internal numbersefer to the enumeration of directions
while s in the left-hand figure represents the indexes used for spegties

maker. As a consequence, differences in individual speetigaturally mapped into differ-
ences in their relative interactions.

The concept of leader-follower has been inspired by pres/caw following models in transport
engineering (Ahmed, 1999; Herman and Rothery, 1965; Legg;18ewell, 1961, among oth-
ers). The main idea in these models is that two vehicles sodvied in a car following situation
when a subject vehicle follows a leader, normally represgbly the vehicle in front, reacting
to its actions. In general, a sensitivity-stimulus framewis adopted. According to this frame-
work a driver reacts to stimuli from the environment, whdre stimulus is normally chosen as
the leader relative speed. Different models differ in thecsiication of the sensitivity term. This
modeling idea is extended here and adapted to the more corcgde of pedestrian behavior.
We want to stress the fact that in driver behavior modelingsaindttion between acceleration
behavior and direction change (lane change) behavior issdlmatural (see Toledo, 2003), be-
ing imposed by the transport facility itself. On the othentiathe pedestrian case is more
complex, the movements being purely two-dimensional onathking plane, where acceler-
ation and direction changes are not easily separable. Thsi@o avoidance pattern and the
constrained behaviors in general are also inspired byesudihuman sciences and psychology,
leading to the concept gfersonal spacésee Horowitz et al., 1964; Dosey and Meisels, 1969;
Sommer, 1969). Personal space is a protective mechanigrdddwon the ability of the individ-
ual to perceive signals from one’s physical and social emirent. Its function is to create the
spacing patterns that regulate distances between in@dilg@mnd on which individual behaviors
are based (Webb and Weber, 2003). Helbing and Molnar (1998)eir social forces model
use the term “territorial effect”. Several studies in psylolgy and sociology show how indi-
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vidual characteristics influence the perception of the spaw interpersonal distance. Brady
and Walker (1978) found for example that anxiety states asgtigely correlated with inter-
personal distance. Similarly, Dosey and Meisels (1969 dathat individuals establish greater
distances in high-stress conditions. Hartnett et al. (184hd that male and female individuals
approached short individuals more closely than tall irdinals. Other studies (Phillips, 1979;
Sanders, 1976) indicate that the other person’s body sizeeices space.

2 Behavioral framework and assumptions

Individuals walk on a 2D plane and any kind of behavior inficieg their movement results
in two kind of observations: changes in direction and changespeed, i.e. accelerations.
This specification is important to perform walking behaaaalysis, and hypotheses have to be
made concerning the unobserved factors in the model andtmenatre related to the observed
data. Figure 1 summarizes the set of assumptions we wargttdHige behavioral patterns are
defined. In a discrete choice context, they have to be coresidiess competitive terms entering
the utility functions of each alternative, as reported irusdtpn 1. The utilities describe the
space around the decision maker and under the rational ioelessumption the individual
chooses that location (alternative) with the maximumwytilin the following, we discuss the
different patterns and the associated assumptions in nedad<l

Unconstrained patterns

The unconstrained patterns are identified by those belsthiat are independent from the pres-
ence of other pedestrians. We assume that three factorsngéithe individual behavior.

e Toward destination The first factor is represented by the choice of the final dagbn
which can be a specific area where the individual wants tocoparfan activity in her
schedule. To be coherent with the general framework intedun Section 1, we assume
that the destination choice is performed at the stratetgeal in the hierarchical decision
process. Such a higher level choice is naturally reflecteti®@short term behavior as the
tendency of individuals to choose, for the next step, a aplattation that minimize both
the angular displacement and the distance to the destmnatio

e Keep direction The second factor influencing the unconstrained behaviepisesented
by the tendency of people to avoid frequent changings irctioe. People choose their
next position in order to minimize the angular displacenfiearh their current movement
direction. In addition to the behavioral motivation of thastor, it also plays a smoothing
role in the model, avoiding drastic changes of directiomfiane time period to the next.

e Free flow accelerationIn free flow conditions the behavior of the individual is dnvby
her desired speed. The acceleration is then a function aliffezence between current
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speed and desired speed. However, this factor is an un@usigrdividual characteristic
and it can not be introduced explicitly in the model. As a @ngence, we assume that the
attractiveness of an individual for an acceleration is delpat on her current speed value.
Increasing speed values correspond to decreasing at&aess for further accelerations.
A similar idea is applied to decelerations (see Antoninilgta appear).

Constrained patterns

Constrained behaviors are induced by the presence of attimiduals in the scene and cap-
ture the pedestrian-pedestrian interactions. We ideatifyactive and repulsive interactions,
described by the following patterns.

e Leader-follower We assume that the decision maker is influenced by leadersurin
spatial representation 11 radial cones partition the ehseét (see Figure 3). In each of
these directions a possible leader can be identified amoeg @t potential leaders A
potential leader is an individual which is inside a cert&gion of interestnot so farfrom
the decision maker and having a moving directabose enougho the direction of the
radial cone where she is. Once identified, the leader indaicedtractive interaction on
the decision maker. Similarly to car following models, adeaacceleration corresponds
to a decision maker acceleration.

e Collision avoidance This pattern captures the effects of possible collisiontherdeci-
sion maker trajectory. For each direction in the choiceaegllider is identified among
a set ofpotential colliders Another individual is selected as a potential collideriéss
inside a certain region of interesipt so farfrom the decision maker and walking against
the decision maker herself. This pattern is associated igfhlsive interactions in the
obvious sense that pedestrians change their currentidimg¢otavoid collisions with other
individuals.

3 The model

Following the framework proposed in Figure 1 we report hbesslystematic utility as perceived
by individualn for the alternative identified by the speed regimend directiond:
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Voan = Bairditg,  +} keep direction
i dls n . .
Fuasd ) ban toward destination
Byairddirg, — +

free flow acceleration (1)

Bacel, v,acC(Un / Umax) Aace 4
ﬂdec[v,de((vn /Umax) Adee |

Ty acdl, aLccOégch chc AUZ‘{JCC AQ%{JQC + }

Iv,decljecagechgec szf;“ec A@i{im +

Iag, loace PePe AvZe AGYS ) collision avoidance

leader follower

where all the3 parameters as well @8,.., Agee, L., pE.., L., 0L ok, ok vk, 6%, ac,
pc, Yo, Oc are unknown and have to be estimated. Note that this speinfida the result of an
intensive modeling process, where many different spetifica have been tested. We explain

in the following the different terms of the utilities.

e Keep direction This behavior is captured by the term

ﬁdirdirdn

where the variabldir,, is defined as the angle in degrees between diredtenmd direc-
tion d,,, corresponding to the central cone, as shown in figure 4.

destination ni

-

: (o] [
ddl/” dl] dn

dn

Figure 4: The elements capturing tkeep directiorandtoward destinatiorbbehaviors
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e Toward destination This behavior is captured by the term

Badistddistyan + Bagirddiray,

where the variablddist, s, is defined as the distance in meters between the destination
and the center of the alternati¢&,,,, while ddir,, is defined as the angle in degrees be-
tween the destination and the alternative’s directipas shown in figure 4.

e Free flow accelerationWe define two parameters for the free flow acceleration (éecel
ation) terms G, and Ggec

@acc = [V,aCOBaCC(/Un/ UmaX)AaCCa
Bdec = ]v,deogdec(vn/Umax))‘dec

The attributel, oIS 1 if v = v,¢, that is, if the alternative corresponds to an acceleration
and 0 otherwisel, 4ecis Similarly defined. The two parameters are non-lineartions of

the current speed of the decision-makgr [, is the value of the parameter associated
with v, = wvmax and A\, is the elasticity of the parameter with respect to speggl«
represents the maximum value of the observed speed module.

o Leader-follower The leader-follower model captures the attractive int&sas among
pedestrians and is given by the following terms

L L L L L L
L L Paecc Yace Oce L L Pdec Vdec Odec
TIacol Byl Dfaee AvYaee Aglace 4 [, qod b ok DPdec AgyJdee AgPdec

acc—racc

It is described by &ensitivity/stimulusramework. For a given leader, the sensitivity is
described by

o Lk
sensitivity = f(Dy) = o, D} (2)

where Dy, represents the distance between the decision maker andatier] The pa-
rametersy) andp) have to be estimated and= {acc, dec} indicates when the leader
is accelerating with respect to the decision maker. Thesd®timaker reacts to stim-
uli coming from the chosen leader. We model the stimulus asaetion of the leader’s
relative speed\v;, and the leader’s relative directiakd;, as follows:

. ,YL oL
stimulus = g(Avr, Af) = Av, AG,° (3)

with Av, = |v, — v,|, wherev,, andv,, are the leader’s speed module and the decision
maker’s speed module, respectively. The variable = 6, — 6,;, wheref,, represents
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the leader's movement direction afidis the angle characterizing directidnas shown

in Figure 5(a). The parameterg andd) have to be estimated. A leader acceleration
induces a decision maker’s acceleration. A substantidfigrdnt movement direction in
the leader reduces the influence of the latter on the deaisaker.

() (b)

Figure 5: Figure 5(a) shows the leader’s movement diregiprthe direction of the radial cone
where the leader lieg,, and her distance from the decision makey, used in the definitions
of both the sensitivity and the stimulus terms. Figure S(b¥irates how many potential leaders
are considered for each direction and how only the nearesisashosen as leader for a specific
direction (darker circles)

The leader for each direction is chosen considering sepetahtial leadersas shown
in Figure 5(b). An individuak is defined as a potential leader based on the following
indicator functionl}:

1, ifd, <d, <d,,
Ik _ and0 < Dy, < Dy,
9 and0 < |Afy| < Aby,

0, otherwise

whered; andd,. represent the bounding left and right directions of the ohset (defining
the region of interest) whild,, is the direction identifying the pedestriarposition. D,

is the distance between pedestriaand the decision makef\d, = 6, — 6, is the differ-
ence between the movement direction of pedestrié.) and the angle characterizing
directiond, i.e. the direction identifying the radial cone where indual % lies (¢; ). The
two thresholdsD,, and Ad,;, are fixed at the valueB,, = 5D,,..., WhereD,,,. is the
radius of the choice set, and,, = 10 degrees. We assume an implig@ader choice
process, executed by the decision maker herself and mda#lsing as leader for each
direction the potential leader at the minimum distange= mingex (Dy), illustrated in

11
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Figure 5(b) by the darker circles. Finally, the indicatandtions/, ,.. and/, 4. discrim-
inate between accelerated and decelerated alternatvésr the free flow acceleration
model.

¢ Collision avoidanceThe collision avoidance model captures the repulsive actesns
among pedestrians and is given by the following term

—pcD Yo A pé
[d,dnfcoéce pc CA’UC AHCC.

The scenario is similar to the leader follower. We keep thesgeity/stimulus frame-
work, where the sensitivity function is defined as

sensitivity= f(D¢) = age PePe (4)

where the parameterg: andpc have to be estimated ariel- is the distance between the
collider position and the center of the alternative, as shiowFigure 6(a). We choose the
exponential to keep the same functional form as that usedtorfni et al. (to appear).
The decision maker reacts to stimuli coming from the coflitée model the stimulus as
a function of two variables:

stimulus= f(Ave, Abe) = Avle AGY (5)

with Af- = 0 —0,,, wheref is the collider movement direction adgl is the decision
maker movement direction, ans- = v¢e + v, Whereue is the collider's speed module
andu, is the decision maker's speed module. The parameterand - have to be
estimated. Individuals walking against the decision makdrigher speeds and in more
frontal directions (highe\d-) generate stronger reactions, weighted by the sensitivity
function.

The collider for each direction is chosen considering sdyetential collidersas shown
in Figure 6(b). An individuak is defined as a potential collider based on the following
indicator function

1, ifd <d, <d,,
and0 < Dy < Dy,
andf < |Af| <7

0, otherwise

whered;, d, andd, are the same as those defined for the leader follower mddeis
now the distance between individuabnd the center of the alternativ&f, = 6, — 0,
is the difference between the movement direction of peidestr(d,) and the movement

12
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(a) (b)

Figure 6: Figure 6(a) shows the collider and decision makarement directions]. andf,
respectively.D represents here the distance of the collider with the ceaitdre alternative.
Figure 6(b) shows many potential colliders taken into aotéor each direction

direction of the decision makef; . The value of the distance threshold is now fixed
to Dy, = 10D,,,,. We use a larger value for such a threshold compared to therea
follower model, assuming the collision avoidance behabing a longer range inter-
action, happening also at a lower density level. We assummaplicit collider choice
process, executed by the decision maker herself. Amongethaf &, potential colliders
for directiond, the collider is chosen as that individual having. = maxyek, | Ay
The related indicator function i&-. Finally, the collision avoidance term is included in
the utility functions of all the alternatives, with the ept®n of the central ones. So,
the indicator functior/, 4, is equal to 1 for those alternatives that are not in the ctirren
direction ¢ # d,,), 0 otherwise.

The random term

We keep the cross nested logit (CNL) specification used iroint et al. (to appear). Such
a model allows flexible correlation structures in the chaeg keeping a closed form solu-
tion. The CNL being a Generalized Extreme Value (GEV) modek(McFadden, 1978), the
probability of choosing alternativewithin the choice set’ is:

ini(yb sy yJ)
p— 6
/’LG(ylw“ayJ) ( )

where J is the number of alternatives i@, y; = ¢'7 with V; the systematic part of the utility
described in Section 3 argd is the following generative function:

P(i|C)
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®

Gy ry) =3 (Z(a}éﬁyﬂﬂm) m @)

m=1 \jeC

where M is the number of nestsy;,, > 0,Yj,m, S0 ajm > 0,5, u > 0, p, > 0,¥m
andyu < u,,, Vm. This formulation leads to the following expression for timice probability
formula, usingy; = e":

N

m/ m | Fm
Pac) i (Ssec i) oy (8)
7 e
=M AN S
= Zn:l (Zjecajn yj> jeC “jm j

We assume a correlation structure depending on the speediraation and we identify five
nests:acceleratedconstant speedieceleratedcentralandnot central This correlation struc-
ture is illustrated in figure 7. Given the lack of any a priariarmation, we fix the degrees of
membership to the different nests;{,) to the constant value 0.5.

ACC

(accelerated)

CONST

{(constant speed)

DEC

(decelerated)

NOC

(not central)

NOC

(not central)

Figure 7:left: Nesting based on direction right: Nesting based on speed

4 Data

The dataset used to estimate the model consists of pedestjactories manually tracked
from video sequences. We have pooled together two diffefatatsets, collected separately in
Switzerland and Japan.

The Swiss dataset

This part of the dataset consists of 36 pedestrian trajestomanually tracked from a digital
video sequence. The scene has been recorded out of the Ftom staion in Lausanne, in
2002, for a total of 1675 observed positions. Each posiwbers to a reference system on the

14



Swiss Transport Research Conference March 15-17, 2006

(a) Japanese scenario (b) Swiss scenario

Figure 8: Images from the two scenarios used to collect ttessda

walking plane, after a calibration of the camera. For a tedaiescription of this first dataset
we refer the reader to Antonini et al. (to appear).

The Japanese dataset

This dataset has been collected in Sendai, Japan, on Augd8t(8&ee Teknomo et al., 2000;
Teknomo, 2002). The video sequence has been recorded fefititiloor of the JTB parking
building (around 19 meters height), situated at a large §teide crossing point. Two main
pedestrian flows cross the street, giving rise to a large rurmbinteractions. In this context,
190 pedestrian trajectories have been manually trackeld atime step of 1 second, for a total
number of 10200 position observations. The collected datdiains the pedestrian identifier,
the time step and the image coordinates. The mapping betiheemage plane and the walk-
ing plane is approximated by a 2D-affine transformation, sehparameters are learnt by linear
regression. The reference system on the walking plane kasridin arbitrarily placed on the
bottom left corner of the zebra crossing. Theaxis represents the width of the crossing while
they axis is the crossing length.

Two frames from the two video sequences are reported in &igurin Figure 9 we report
the frequency of the revealed choices as observed in the &asekts. The three peaks in the
distributions arise on the central alternatives (6, 17, 88)expected.

We report in Figure 10 two examples of trajectories and irufgédl1(a) and Figure 11(b) the
related speed-time graphs. In Figure 12 we report the spstjram and in Table 1 the speed
statistics.
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Japanese revealed choice histogram Swiss revealed choice histogram
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Figure 9: Revealed choices histograms.

Table 1: Speed statistics

Mean 0.668247
Standard Error 0.00354(7
Median 0.58023
Mode 0
Standard Deviation 0.35826
Range 3.939786
Minimum 0
Maximum 3.939786
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Trajectories

Y (m)
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-5.00 U.JD-/ 5.00 10.00 15.00 20.00 25.00 30.00 35.00

X (m)

Figure 10: Examples of two manually tracked trajectories

Ped 1 speed Ped 2 speed
1 1.2
09
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1 084
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02 0.24
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o o
1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46 43 52 55 58 61 B4 67 70 73 1 4 710 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 53 61
time step time step
(a) (b)

Figure 11: Speed-time graphs for the same two pedestrians

Data post-processing

The original Swiss dataset has been post-processed in torgenerate the input data for the
estimation process. At each step, the observed choice nyaithe lcurrent decision maker has
been measured 3 steps ahead in time, i.e. 0.9 seconds. Aseqjc@mce, the last four positions
of each trajectory are not used. Moreover, in both the detdisese observations corresponding
to a static pedestrian{ = 0) and those corresponding to an observed choice out of theecho
set have been discarded.

We report in Table 2 and Table 3 the averaged values of thetemt collider availabilities
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Speed histogram
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Figure 12: Speed histogram

(represented by the two indicator functioljsand[c defined above) defined as follows:

- 1
Iy = e > 17
Ic = 1 ZIC (9)

whereNg andN; are the two sample sizes.

5 Results

We report in Table 4 the estimation results. The parametave been estimated using the
Biogeme package (Bierlaire, 2003). It is a freeware paclkagthe estimation of a wide range
of random utility models.

We first shortly comment the results for those parameteata@lto the unconstrained models
(toward destination, keep direction and free flow accel@nqt This part of the model specifica-
tion is similar to that presented in Antonini et al. (to appe@&hetoward destinatiomroefficients
Baair @NAB44:5: have been estimated significantly different from zero. Tdsaienption that desti-
nation distance and direction capture two different efféxsupported by the data, being related
to the 2D nature of the pedestrian movements. Their signseayative, as expected, reflecting
the tendency of individuals to move directly towards theiafidestination, through the shortest
path. The destination being exogenous to the model, wepirgethis behavior as the short
range projection of higher level decisions, made at thedaldevel, such as (intermediate) des-
tination choice and/or activity area choice. THezp directiorparameteryy;., is significant and
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Table 2: Averaged leader and collider availabilities fa Bwiss dataset

direction Iy Io
accelerated| decelerated|
1 0.004 0.004 0.145
2 0.006 0.013 0.117
3 0.004 0.014 0.148
4 0.002 0.017 0.142
5 0.003 0.021 0.150
6 0.001 0.012 0.152
7 0.001 0.015 0.116
8 0.004 0.016 0.111
9 0.002 0.016 0.136
10 0.002 0.006 0.104
11 0.0007 0.002 0.069

Table 3: Averaged leader and collider availabilities far #apanese dataset

direction

leader availability

accelerated| decelerated|

collider availability

B
PFBoo~v~oorwNnr

0.07
0.09
0.07
0.06
0.09
0.10
0.08
0.05
0.05
0.05
0.05

0.11
0.13
0.12
0.10
0.14
0.16
0.13
0.10
0.10
0.12
0.10

0.45
0.47
0.47
0.44
0.45
0.44
0.45
0.44
0.48
0.49
0.47
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has a negative sign, as expected. It captures the tendepepple to minimize the angular dis-
placement along their trajectories. Finally, 3 out of 4 a firee flow acceleratioparameters,
namelyS,.., Bac @and ... have been estimated significantly different from zero. Tégative
signs forg,.. and G, indicate the tendency of pedestrians to perceive as a caatigas in
speed, both positive and negative. A positive value for tteeleration elasticity,,.. indicates
that the actractiveness of an acceleration reduces witbases in speed, as expected.

We now comment on the constrained models’ parameters. Etedder-followerbehavior we
note that in the case of an accelerated leader, 3 out of 4 péeesrhave been estimated signif-
icantly different from zero. The positive value for thé, . multiplicative coefficient indicates
that when a leader is present (or several potential leaderngrasent, so that the closest to the
decision maker is considered), a leader’s acceleratiomcesia corresponding acceleration on
the decision maker. The negative sign for the distance exutaal coefficient,o% , indicates
that the influence of the leader on the decision maker aatelarbehavior reduces when their
relative distance increases, as expected. The positimd@ighe speed exponential coefficient,
vL ., shows that the utility of an acceleration increases withar values of the relative leader
speed, as expected. The same interpretation is given farataneters corresponding to a de-
celerating leader. In this case we keep in the model alsoxperential coefficient related to
the direction,d%, ., with t-test statistics equal to 1.642. Its negative sign is cottesith the
leader-follower behavior. It reflects the fact that in theases where the leader’s relative di-
rection is higher, the influence of the leader on the decisiaker is lower, resulting in a lower
utility value for the decelerated alternatives.

For the estimation of theollision avoidanceparameters, we fix the exponential coefficient re-
lated to the collider relative directiod, equal to 1 for numerical convenience. The other
three free parameters have been estimated significantiyetit from zero. The multiplicative
coefficientac is negative, as expected. It indicates that those dirextioare likely to lead
to a collision have a lower utility with respect to the cehfarrent) direction. The latter is
taken as the reference one for normalization purposes. Apenential coefficient related to
the distance between the collider and the alternatiyehas a negative sign. It shows the fact
that a more distant collider has a less negative impact oralteenative utility. Finally, the
exponential coefficient related to the relative spegd,is positive, as expected. It captures the
fact that faster colliders have a more negative impact ontilides than slower individuals.

The correlation structure is captured by the cross nestedfgmtion. Three nest parameters
have been fixed to 1 while two are left free in the model, capguthe correlation between the
constant speed and the not central alternatives. They lemredstimated significantly different
from 1.

We finally comment on the heterogeneity in the dataset. Wmatd the scale factqr,.,,. for
the Swiss data, which captures the variance of the assd@atar term.

We report in the following some graphics illustrating thergiaal effects of the different vari-

ables for the constrained models. In Figure 13(a) and FigB(e) the effects of a stimulus vari-
ation (due to changes in the relative leader direction aeeédpare shown. Figure 13(a) shows
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an accentuated variation in the leader acceleration terichvdecays quite quickly when vary-
ing its relative direction. Figure 13(b) shows the accdleraterm (for a fixed decision maker
speed equal to 3 m/s) when the leader speed is free to varyxpesied, higher acceleration
values correspond to higher relative speed values, withr@ aeceleration when the leader
speed is equal to the decision maker speed, as expectedgureHi4 the effect of variations
in the sensitivity function (varying the leader distances eeported. As expected, lower accel-
eration terms correspond to higher relative distance galkeally, we report in Figure 15(a),
Figure 15(b) and Figure 16 an example of the probability oém@ti@al deceleration (alternative
28) when varying the relative (decelerating) leader dioectspeed and distance, respectively.
Similarly, in Figure 17(a) and Figure 17(b) we report thesef$ of variations in the stimulus
term for the collision avoidance model. Figure 17(a) shows for colliders coming from more
frontal directions with respect to the decision maker dicgc(increasing relative direction), the
collision term is reduced, reducing the alternative'stytiFigure 17(b) shows how the collision
term reduces for higher relative collider speed values.idnrfe 18 the effects of changes in the
sensitivity term are reported. It shows how farther coligd@duced a lower negative effect on
the utility, i.e. the collision term increases. Finally, veport in Figure 19(a), Figure 19(b) and
Figure 20 an example of the probability of a central accélangalternative 6) when varying
the relative collider direction, speed and distance, retbpy.

We conclude this section underlying the fact that it seentgrabthat individual characteristics
such as age, sex, weight, height among others influencedhtialggerception, interpersonal dis-
tance and human-human interactions. However, given th&ableadata (trajectories) it is not
possible to take into account such characteristics. Tlimgeif controlled experimental condi-
tions (Hoogendoorn (in press) and Daamen (2004)) is negessallow for such unobserved
heterogeneity to be taken into account.

6 Conclusions

In this paper we propose a general framework based on desanetce modeling for pedestrian
walking behavior. The short range walking behavior of imdiials is modeled, identifying two
main patterns: constrained and unconstrained. The maitmilootion of this paper is on the
former. The constraints are generated by the interactiotisather individuals. We identify
attractive and repulsive interactions, captured respagtthrough a leader-follower and a col-
lision avoidance models. Inspiration is taken from driveh@viors in transportation science,
and ideas such as the car following model and lane changirinbave been reviewed and
re-adapted to the more complex pedestrian case. The diffisub collect pedestrian data as
well as the limited information conveyed by pure dynamiadats limit the possibilities in the
model specification step. Important individual effectsroatrbe captured without the support
of socio-economic characteristics. However, the receveldpment of pedestrian laboratories,
where the set up of controlled experimental conditions ssgie, represents an important step
in this direction. In this spirit, important future reselarcan be done, integrating for example
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the spatial layout as an important cause for pedestrian ments as well as latent variable
models capturing the effect of individual characteristics
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Table 4:.CNL estimation results for the pooled dataset

Variable Coefficient ttestO ttestl
name estimate

Badir -0.061 -19.066

Badist -1.614 -1.9749

Bair -0.027 -11.342

Bace -19.822  -5.847

Baee -2.069 -2.651

Aace 0.969 26.880

ak 4.883 3.368

pL . -0.657 -3.034

L. 0.869 9.877

ok, 4.061 6.278

Pk, -0.481 -4.280

vE, 0.524 9.089

ok, -0.892 -1.642

ac -0.0058 -4.639

pc -0.313 6.748

Yo 0.781 3.318

Heonst 1.597 32.413 12.119
[not. central 1.487 15.765 5.160
Mscale 0.591 - -8.565

Sample size = 10783
Number of estimated parameters = 19
Init log-likelihood = -78558.3

Final log-likelihood = -22572.7
Likelihood ratio test = 30260.3

7* = 0.4007
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Figure 13: Effects of variations in the leader stimulus paeters

26



Swiss Transport Research Conference March 15-17, 2006

Leader follower acceleration

0.8 1

Acceleration

0.6 1

04 4

0.2

T T T T T T T ]
0 1 2 3 4 5 6 7 8
Leader distance

Figure 14: Effects of variations in the leader sensitivity

27



Swiss Transport Research Conference

3.00E-02 -

2.50E-02 A

2.00E-02 A

1.50E-02

Probabhility

1.00E-02 1

5.00E-03 A

Probability of central deceleration

0.00E-+0
0

1 2 3 4 o B 7 g 9 10

Leader relative direction

(a) Probability of central deceleration as a function of tektive (decelerating) leader

direction

6.00E-0Z

5.00E-02 4

4.00E-02

3.00&-02

Probability

2.00E-02 4

1.00E-02 4

Probability of central deceleration

0.00E+00

-18 16 -1.4 -1.2 -1 08 a6 -04 -0.2 o

Leader relative speed

(b) Probability of central deceleration as a function of te&ative (decelerating) leader

speed

Figure 15: Variations in probability as a function of thedeaparameters
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Figure 16: Probability of central deceleration as a funcbbthe relative (decelerating) leader
distance
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Figure 17: Effects of variations in the collider stimulusgaeters
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Figure 18: Effects of variations in the collider sensitvit
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Figure 19: Variations in probability as a function of thelwt#r parameters
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Figure 20: Probability of central acceleration as a funcbbthe relative collider distance
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