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Abstract

Allowing for variations in behaviour across respondentsis of the most fundamental princi-
ples in discrete choice modelling, given that the assumpifaa purely homogeneous popula-
tion cannot in general be seen to be valid. Two approachesdiassically been used to address
this problem; the use of deterministic segmentations optipulation, and the use of a random
continuous representation of variations in tastes acreggondents. In this paper, a revised
version of [10], we discuss an alternative approach, baseith® use of discrete mixtures of
underlying choice models over a finite set of distinct suppoints. The applied part of this
paper shows how the resulting model structure can be usexstahte validity of hypotheses
such as the presence of individuals with zero valuationsawgt-time changes.
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1 Introduction and context

Allowing for variations in behaviour across respondentsrie of the most fundamental prin-
ciples in discrete choice modelling, given that the asswnpif a purely homogeneous pop-
ulation cannot in general be seen to be valid. The most bagimach for representing such
variations is through a segmentation of the populationmtually exclusive subsets, either in
the form of separate models for different population segsjer separate coefficients within
the same model for different population segments. Thesmappes can for example be used
to differentiate between different journey purposes, dietent income classes. In the case
of continuous attributes, such as income, such segmemnsat&n however be seen to be very
arbitrary, and it is in this case preferable (though comjutally more expensive) to use a
continuous variation in tastes as a function of the conackatiibute.

Deterministic variations in tastes, such as those destabeve, can be accommodated within
the standard random utility framework, and are applicatni@ll known model structures. How-
ever, although the use of such deterministic variationgpealing from the point of view of
interpretation (and especially for forecasting), it issofinot possible to represent all variations
in tastes in a deterministic fashion, for reasons of datditguaut also due to inherent ran-
domness in choice behaviour. For this reason, random ceetfimodels, such as the Mixed
Multinomial Logit (MMNL), which allows for random variatios in behaviour across respon-
dents, have an important advantage in terms of flexibility.géneral, such models have the
disadvantage that their choice probabilities take on tien fof integrals that do not possess a
closed-form solution, such that numerical processesc@yi simulation, are required during
estimation and application of the models. This greatly teadithe use of these structures for
many years after their initial developments. Over recemtryegains in computer speed and
the efficiency of simulation-based estimation processésl2] have however led to increased
interest in the MMNL model in particular, by researchers,dnd lesser degree also practition-
ers.

Despite the improvements in estimation capability, the obasing the MMNL model remains
high. While this might be acceptable in many cases, anothpoitant issue remains, namely
the choice of distribution to be used for representing theloan variations in tastes across
respondents. This issue can be divided into several sulkgss

Firstly, it is important to reconcile the choice of distritmn with theoretical or intuitive pre-
conceptions regarding what constitute reasonable oriplaysatterns of variation in parameter
values across a population. As such, a strictly positiveitdigion would not be used for a
coefficient where positive as well as negative values areaep in the population. On the
other hand, in the case of a coefficient with a strong signmpsion (such as a negative cost
coefficient), the use of strictly bounded distributions ¢@ed to an inability to uncover prob-
lems with the data or utility specification that would mastfthemselves as counter-intuitively
signed coefficients for part of the population [c.f. 11].

Secondly, even with the use of the most flexible distribigiamailable, it seems almost in-
evitable that there will be some discrepancy between tleeana postulated distribution; cases
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will arise in which real-world behaviour cannot be charased adequately by one of a set of
standard statistical distributions. One case in pointaris the modelling of tastes which may
theoretically have a significant mass at zero but be exa@lspositively or negatively signed
elsewhere [c.f. 4]. The situation becomes even more coatplicin the case of an attribute
which some individuals value positively and some individualue negatively, with a remain-
ing part of the population being indifferent to the attréutThis applies for example in the
case of attributes describing discrete qualitative festwof an alternative, such as a distinc-
tion between forward and backward facing seats for raileiraRepresenting this situation is
not possible with the use of standard continuous distioimsti where the notion of a mass at
a specific point (especially if not at the extremes of the daindoes not apply, such that the
results obtained with such distributions may lead to unareed conclusions. Another example
of such a parameter that can take on positive, negative advatiations is an Arrow-Pratt
absolute risk aversion parameter.

Given these problems, it is of interest to explore alteugatrays of representing random varia-
tions in tastes across respondents, avoiding some of thessiscussed above.

One possible solution is to use Kernel densities of indiglespecific coefficient values in
the search for an appropriate distribution. The most bagpraach consists of estimating
individual-specific MNL models, which is only possible iretipresence of multiple observa-
tions per individual, and to infer information about theetdistribution from plotting the Kernel
density of the hence obtained coefficient values. This csgmificant problems in practice,
given the potential lack of information in the resulting shaatasets. In this context, Hensher
and Greene [9] advocate the use of a jackknife-style praesithat starts with the full sample,
and proceeds by eliminating individuals one-by-one, eaunk £stimating a new model. The
resulting set of estimates can then be used to produce alKeEmnsty function. In practice, the
applicability of such methods is often limited by high cortgdional cost and data requirements.
A second approach is to use empirical distributions, basezgstimating a set of support points
with corresponding masses, with linear segments betweagposupoints. The success of this
approach however not only depends crucially on the numbsumbort-points used, but impor-
tant issues of implementation need to be faced in the esamat the support points, where
problems arise because of the non-differentiability oflitkelihood function.

A final approach comes in the use of non-parametric appreactieich are free of a priori
assumptions about the shape of the true distribution. Tipécapion of such approaches to
the estimation of the value of travel-time savings (VTTSYéscribed by Fosgerau [6]. The
results show that the non-parametric approaches outperdioset of parametric approaches,
but the fact that such approaches are very data-hungry tega®blems in recuperating the
distribution in the tails of the population, a situationttff@sgerau addresses through the use
of a semi-parametric approach, where part of the distdlouis accounted for through a set
of covariates. While very promising, non-parametric armdglesser extent) semi-parametric
regression approaches can be difficult to apply in practind, more work is required to allow
widespread application.

The three approaches described above are in principle@attat with the main issue described
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by Hess, Bierlaire and Polak [11], namely the behaviour ettils of the distribution. Sim-
ilarly, they do, unlike most standard continuous distiikmg, have the ability to allow for a
multi-modal distribution of a specific taste coefficient. whyer, it seems that neither of the
three approaches can deal adequately with the presenceegjl#dned mass at a given point,
such as a zero VTTS. While the use of Kernel densities caraktga presence of such mass-
points, the issue of how to incorporate them in the final moel@ains.

In this paper, a revised version of [10], we explore an a#Bwve approach, based on the idea
of replacing the continuous distribution functions by dete distributions, spreading the mass
among several discrete values. Theoretically, such desenextures allow modellers to deal
with each of three issues described above (tail-behavioultiple modes, inflated mass), al-
though certain issues, notably in estimation, need to beeaddd, as described in Section 2.
Mathematically, the model structure of a discrete mixtudel is a special case of a latent-
class model [c.f. 13, 3], assigning different coefficientes to different parts of the population
of respondents, a concept discussed in the field of transpalies for example by Greene and
Hensher [8] and Lee et al. [15]. The work of Gopinath [7] esplécis of interest in the context
of the case-study described in this paper, as it makes usktdrd-class model in the analysis
of variations in the VTTS across respondents, showing teggerce of multiple subgroups in the
population. Latent-class approaches make use of two suleisimne for class-allocation, and
one for within-class choice. The former models the prolgmif an individual being assigned
to a specific class as a function of attributes of the respura®d possibly of the alternatives
in the choice-set. The within-class model is then used topzaenthe class-specific choice-
probabilities for the different alternatives, conditiboa the tastes within that class. The actual
choice probability for individuak and alternative is given by a sum of the class-specific choice
probabilities, weighted by the class-allocation choicgbabilities for that specific individual.
The latent-class approach is appealing from the point ofv\tieat it allows for differences
in sensitivities across population groups, where the gialqeation can be related to socio-
demographic characteristics. However, in practice, it mayalways be possible to explain
group-allocation with the help of a probabilistic modelatgdg the outcome to observed vari-
ables. This situation is similar to the case where tasterdgémeity cannot be explained de-
terministically, leading to a requirement for using randomefficients models. As such, in this
paper, we explore the use of models in which the class-ditwt@robabilities are indepen-
dent of explanatory variables, and are simply given by @mtstthat are to be estimated during
model calibration. As such, the resulting model exploits ¢tass-membership concept in the
context of random coefficients models, with a limited setaggible values for the coefficients.
In theory, existing discrete distributions (e.g. Poissom)ld be used; however, this comes at
the cost of flexibility and again leads to the problem of rexlomg the theoretical and empiri-
cal/practical characteristics of the mixing distributidrhis problem does not exist in the case
where a fixed set of coefficient values are used that each messciated probability, but
where the values and associated probabilities are freedrgnma priori constraints.

Thus far, there have seemingly been only two applicationiBisfapproach in the area of trans-
port research, by Gopinath [7], in the context of mode-aldac freight shippers, and by Dong
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and Koppelman [5], who made use of discrete mixtures of MNIdei®in the analysis of mode-
choice for work trips in New-York, referring to the resulfimodel as the “Mass Point Mixed
Logit model”. Although the properties of discrete mixtureaels have been discussed by sev-
eral other authors [e.g. 16], the model structure does reshde have received widespread
exposure or application, despite its many appealing chexiatics.

Given the above discussion, part of the aim of this paperrs-txplore the potential advantages
of discrete mixture models, with the hope of encouraging there widespread use. However,
the main aim, and contribution of this paper, is to demotetnaw the model structure can be
exploited to allow for a part of the population in which pesplre indifferent to changes in a
specific attribute, a treatment that is not generally pdssilith the use of continuous mixture
structures. Although the discussion in this paper looksi§ipally at the case of zero valuations
of changes in travel-time (leading to zero VTTS), the sammecjple obviously applies in the
case of other attributes. Finally, the analysis also ainisvistigate the potential bias in coeffi-
cient estimates that can result from not allowing for thespreee of individuals with such zero
valuations.

The remainder of this paper is organised as follows. The sextion sets out the theory behind
discrete mixture models. Section 3 describes a set of tétte walidity of the model structure
conducted with the help of simulated data, while Sectione$@nts the main case-study testing
for the presence of respondents with zero VTTS. FinallytiSe& summarises the contents of
the paper and presents the conclusions of the study.

2 Methodology

We will begin by introducing some general notation, whiclused throughout the remainder
of this paper. Specifically, let;,, be a vector defining the attributes of alternativas faced
by respondent (potentially including interactions with socio-demoghnapvariables), and let
[ be a vector defining the tastes of the decision-maker, wirepyrely deterministic models,
[ is constant across respondents. kgtbe a vector grouping together the individual vectors
x;, across the alternatives contained in the choice-set obrelgmtn, and lety represent
an additional set of parameters, which can for example @oftie structural parameters (and
possibly allocation parameters) used to represent ittemative correlation in a Generalised
Extreme Value (GEV) context. In a very general form, we canttefineP, (i | x,, C,,, 3)

to give the choice probability of alternativéor individual», with a choice-sef’,,, conditional
on the observed vectar,, and for given values for the vectors of paramete@nd~ (to be
estimated). Due to the potential inclusion of socio-derapgic attributes inx,,, this notation
allows for deterministic variations in tastes across respots.

This notation can now be used as the building block for modktsving for a distribution of
tastes across respondents. In a continuous mixture mdeekhoice probabilities are then
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given by:
Py (i | s oy 7, ) = /ﬁ [Py (i | 2y oy 1, B) £ (3] )] B, 1)

where the vectop is distributed according tg (3 | ), with vector of parameter®. With
P, (i | z,, Cy,~, ) giving MNL choice probabilities, equation (1) represetits thoice prob-
abilities in a MMNL model; however, any other GEV-type cheigrobability can be used for
P, (i | z,, Cy,~, ), with an explicit role for the vectoy, leading to a more general GEV mix-
ture model.

From a statistical point of view (in the context of mixturengdéies), the MMNL model is
a continuous mixture of MNL models over the distribution®f In this context, it is clear
that discrete mixtures are also possible, a notion that wéo#xn this paper by limiting the
number of possible values fgt. As such, we now divide the set of parametgrato two
sets;3 represents a part of containing deterministic parameters, Wm%les a set ofA” random
parameters that have a discrete distribution. Within tkis the paramete@k hasm; mass
pomtsﬁk, j=1,...,my, each of them associated with a probabl’rrﬁy where we impose the
conditions that

0<m <1, k=1,...,K;j=1,...,m, (2)
and
mpg )
om=1 k=1.._K (3)
j=1
For each realisatio’!, . . ., 3 of 3, the choice probability is given by
Po (i @0, Cos s B = (BB B (4)

where the deterministic part of stays constant across realisations of the ve@tor

The unconditional (on a specific realisation®iot on the distribution of) choice probability
for alternative; and decision-maker can now be written straightforwardly as a mixture over
the discrete distributions of the various elements coethin g as:

P, (z | 2, Cny v, B, B, 7T>
:i-~-mZKPn<i|a:n,Cn,'y,ﬁ (3,57, .. >)7r1....-7r;'§, (5)
=1 =1

where /3, B andr (r = (r{,..., 7", ..., 7K, ..., TR™)) are vectors of parameters to be es-
timated in a regular maximum likelihood estimation proaeduAn obvious advantage of this

approach is that, if the model (4) used inside the mixtureghal®sed form, then so does the
discrete mixture itself.
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In this paper, we mainly focus on the simple case where thenyidg choice model is of
MNL form; however, the form given in equation (5) is apprepe for any underlying model,
where, with an underlying GEV structure, the resulting mathkains a closed-form expression,
avoiding the need for simulation in estimation and appiat The approach can easily be
extended to the case of combined discrete and continuodsmataste variation, by partitioning
(3 into three parts; the above defined pattand ﬁ and an additional paﬁ whose elements
follow continuous distributions. This however leads to guieement to use simulation, as
with all continuous mixture models. Allowing for continuBuandom terms in addition to
discrete random terms not only increases flexibility frora goint of view of random taste
heterogeneity, but also allows for the use of error-compts® represent heteroscedasticity
and inter-alternative correlation, where the latter is &eer also possible with the use of an
underlying GEV structure.

Finally, independently of the additional treatment of ramdvariations in tastes, a treatment
of repeated choice observations analogous to the standatohgous mixture treatment, with
tastes varying across individuals, but not across obgensfor the same individual, is made
possible by replacing the conditional choice probabsit@ individual observations in equation
(5) by probabilities for sequences of choices, and by usiegesulting discrete mixture term
inside the log-likelihood function.

The approach we use in this paper clearly offers greater hnogléexibility than an approach
based on fixed-point estimates, by allowing for random a$ agebteterministic variations in
tastes. It may also seem tempting to see the approach asaméite to models using contin-
uous distributions. However, this is many cases impragtitatably because of the resulting
over-specification in terms of the number of parameters¢lvban lead to problems in estima-
tion. In the remainder of the paper, we therefore rely maariythe notion that the approach
is an extension of a fixed point model, while a detailed comsparbetween continuous and
discrete mixture models, across a number of different é&das an important topic for further
research.

Several issues arise in the estimation of discrete mixturdets. Firstly, the non-concavity
of the log-likelihood function does not allow the identifican of a global maximum, even for
discrete mixtures of MNL. Given the potential presence abh mumber of local maxima, per-
forming several estimations from various starting poistadvisable. Also, it is good practice
to use starting values other than 0 or 1 for ttjgparameters. Secondly, constrained maximum
likelihood must be used to account for constraints (2) and k&re, it should be noted that
eliminating (3) by replacing} with

my
m=1- Z Wi (6)
j=2

does not help, as the constraint 7, < 1 now leads to the new conditiah< "™, m < 1.
Thirdly, clustering of mass points (for example around thedmof the true distribution) is a
frequent phenomenon with discrete mixture models, and sieeofi additional bounds on the
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mass points can be useful, based on the definition of (patBnthutually exclusive) a priori
intervals for the individual mass points. In this contexhearistic is needed to determine the
optimal number of support points in actual applications.

For the purpose of this analysis, the model was coded intdcGEHME [2], where various con-
straints on the parameters can be imposed to address tles idssacribed above. This also
allows modellers to test the validity of specific assumiosuch as a mass at zero for the
VTTS.

3 Testing thevalidity of the discrete mixture structure

Before proceeding to the use of discrete mixture models actpre, it is important to inves-
tigate the validity of the approach as well as its implemgotein BIOGEME, by testing its
performance on synthetic data where thee values of the parameters are known. For this,
a quasi-simulated dataset was produced on the basis of desafrip 242 observations taken
from a binomial mode-choice survey (ozrail) conducted in the context of the analysis of the
VTTS in Switzerland [1, 14]. For the present analysis, the@a size was augmented from
1,242 to 5,000 through minor random variations on the observed attributes

The utility specification in this model uses travel-cosay#l-time, frequency, and the number
of interchanges as explanatory variables, where lineanifsgegions are used for all attributes,
and where the ASC for rail is normalised to zero. In order toegate the synthetic choices, we
assume that, except for the travel time coefficient for theattarnative, the true parameters are
fixed as shown in Table 1, giving a true VTTS for rail-travelldfCHF/hout.

In the first experiment, we assume that the population igldivinto two segments. The VTTS
for car-travel in the first segment, composed of 50% of the@ders assumed to B&CHF/hour
(car travel-time coefficient at0.08), while it is 6CHF/hour for the second segment (car travel-
time coefficient at-0.03).

The resulting dataset was then used in the estimation ofcaetieismixture model with an un-
derlying MNL structure and two support points for the cavédatime coefficient, where the
results are shown in Table 2. The results show a near-pedeatery of theé0% — 50% market
share, where the upper VTTS is slightly underestimated4at2CHF/hour, while the lower
one is overestimated, at 7.13CHF/hour. The VTTS for raills® a&lightly overestimated, at
14.84CHF/hour. These slight biases are however well wabkoeptable bounds.

In the second experiment, we assume that the segment wilbwlee VTTS represents only
30% of the population. The estimation results for this dattase summarised in Table 3, show-
ing that the30% — 70% splitis reproduced almost perfectly. Both VTTS measuresstghtly
underestimated, at 4.70CHF/hour and 13.75CHF/hour,adsté 6CHF/hour and 16 CHF/hour
respectively. The rail VTTS is estimated at 13.73CHF/hmstead of 14CHF/hour. Again,
these biases are acceptable.

1CHF1 ~€0.65



Swiss Transport Research Conference March 15-17, 2006

Although more testing is required, the two experiments diesd here have shown that the
discrete mixture models are indeed able to recover the salod market-shares of discretely
distributed coefficients. The extension to cases with mbas two mass-points is possible,
although the estimation becomes significantly more coratgt, with the presence of several
local maxima, and possible degeneracy, that is convergeihtveo points toward a common
value.

4 VTTScase-study

We now turn our attention to the analysis exploiting the iite mixture structure to allow for
the presence of individuals with zero VTTS. For these expenits, SP data from the Swiss
VTTS study were used, in the form of a binomial route-choigevsy for rail travellers. The
sample used in the present analysis inclugligsobservations from business travellersg81
observations from leisure travellers, &&8 observations from travellers on shopping trips. The
relatively small sample sizes for the business and shogpimgps could decrease reliability of
the results in these two groups, although problems withifstgimce were only observed in one
case, as detailed later on.

Again, the final utility specification uses travel-costy&htime, frequency, and the number of
interchanges as explanatory variables, where linear fsg@ans are used for all attributes. No
significant ASCs could be identified in the present model. dinalysis first looks at a simple
MNL model, estimated separately for each of the three sulpgowith results summarised in
Table 4. The results show that all estimates are of the dosign, and significant, with the
exception of the travel-time coefficient for respondentsbapping trips, which is significant
only at the74% level. In terms of substantive results, the estimation dassexpected, show
higher VTTS for business travellers, with very low VTTS fdropping trips, where the value
does however need to be put into context by noting the higidsta error for the travel-time
coefficient.

We next estimate discrete mixtures of the three MNL modeil$ kesults summarised in Table
5. With the aim of investigating the presence of individuaith zero valuations of travel-time
changes, the models are specified with two travel-time aoeffis, of which one is fixed at
zero, while the other is initialised to zero, but estimategly. Here, it should be noted that the
implementation of the models used in the present analyss dot allow for a treatment of the
repeated choice nature of the dataset, such that intra-agdrinter-agent variations in tastes
are treated in the same way. As in the continuous mixture, ¢asecan be expected to yield
consistent estimates, while the use of plamelapproach produces efficient estimates.

The results show that, at the cost of one additie@simatedparameter, the discrete mixture
models offer improvements in log-likelihood ly30, 17.23 and1.32 units for respondents on
business, leisure and shopping trips respectively. As,snc¢he present case, the discrete mix-
ture approach leads to significant improvements only in #se ©f leisure travellers. However,
important insights are also gained in the remaining two faimn segments.
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The results show significant differences across the thrpalpbon groups in terms of the pres-
ence of respondents with a zero VTTS. Indeed, in the modddismess travellers, the share
is very low, at9.63%, while for leisure travellers, and respondents on shoppipg, the shares
are a very hight5.63% and84.59% respectively. In the case of business-travellers, theeskar
different from0% at the75% level, while, for shopping trips, it is different fronr00% at the
89% level.

Any non-traderge.g. respondents always choosing the cheapest or falsézatsive) had been
removed from the data prior to estimation, such that thesdtseshould not be seen as a simple
effect of estimation bias due to captivity. The fact that amlower share of travellers with zero
VTTS is observed in the business models is consistent withtion. Although it is realistic
to assume that, in the absence of a binding time constrambnatrivial part of respondents
travelling for leisure or shopping purposes are indeedfeidint to travel-time changes (either
positive or negative), the high shares observed in thesg@opalation groups are still striking,
and call for a closer investigation, in terms of a comparis@h an unconstrained model.
Before proceeding to these additional tests, it is wortlkilog at the findings in terms of VTTS
in the share of the population associated with(A). In the model for business travellers, the
results are roughly similar to those observed in the modeQus fixed travel-time coefficient
(increase by16.09%), which was to be expected, given the low probability asstec with
Brr(B). On the other hand, in the models for leisure and shoppipg,tthe VTTS in the
share of the population associated with-(A) increases dramatically in comparison with the
fixed coefficients model, and in fact yield VTTS higher thaogt observed in the model for
business travellers. This however needs to be put into xbbyenoting that the present model
specification in effect groups the population into two veryde groups, one for respondents
with a zero VTTS, and one for all remaining respondents. Haurinsights could be expected
with the use of a higher number of support points, but thisiireg additional work to deal with
identification issues.

Two interesting further observations can be made from thnesdels. The first observation
relates to the model for respondents on shopping trips. ,Hleeefixed travel-time coefficient
in the simple MNL model was significant only at tti@% level (c.f. Table 4). However,
when allowing for the presence of respondents with a zeroat@n of travel-time changes,
the coefficient in the remainder of the population is sigaificat thed5% level, although it
should be noted that the associated mass is significanfrelitt from zero only at th&9%
level. Again, the findings need to be put into context by thalssample size, but the results
do suggest that the estimation of a significant common ca&ftidor the entire population is
hampered by the presence of respondents with a zero VT T &eéldoad observation deals with
arelated point. In the presence of significant variatiorasgiven coefficient across respondents,
the use of a common fixed coefficient can be seen to yield arozippate average value of this
coefficient across respondents. In the present case, tipbesMiNL model is clearly unable to
explicitly represent the presence of a part of the poputatitth a zero VTTS, and as such, can
be expected to produce a biased fixed-point estimate. Thismig supported by a calculation
of the weighted average on the basis of the results from th&ete mixture model. Indeed,
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usingw(TAT) - Brr(A) + W(TBT) - Brr(B), we obtain values at5.95, 14.27 and6.73 CHF/hour in
the models for business, leisure and shopping trips reispctwhere these values are indeed
very close to the fixed-point VTTS obtained with the simple Midodel. Here, it is important
to note that, because of the non-linearity of the model, toimparison is meaningful at a
qualitative level only.

We now turn our attention to the comparison between the cainsd and unconstrained model.
The aim of this process was to test the hypothesis that tBesiesignificant mass at zero, by
comparing the model estimated with--(B) fixed at zero to its unconstrained counter-part.
For this, the three models shown in Table 5 were re-estimagesthown in Table 6, where both
Brr(A) andfrr(B) were estimated freely from the data.

The results are highly interesting. They show that, in thelehdor business travellers, the
unconstrained model leads to a statistically significamgrowement in log-likelihood by.12
units, at the cost of one additional parameter, hence megethe constrained model. Fur-
thermore, both estimated support-points are significafiffgrent from zero, at high levels of
confidence. The distribution of the mass between the twoatypints is very even, and not
significantly different from &0% — 50% split. Furthermore, the VTTS in group!) is higher
than that produced by the constrained model (c.f. Table B)lewthe weighted average, at
25.68 CHF/hour is almost identical to that from the constrainediglpand again close to the
MNL value. Overall, these results reject the hypothesis sigaificant mass at zero for the
travel-time coefficient in this population segment, sucit the mass 0$.63% obtained with
the constrained model can be explained on the grounds tbagpttires mass from values close
to zero. However, the results also provide proof of hetemedsg, with two different support
points for G-, and better model fit than the MNL model.

While the above process thus rejects the hypothesis of dfisagt share of travellers with
a zero VTTS in the business segment, the situation is veryhrdifterent in the leisure and
shopping segments. Here, the unconstrained model achyewes in log-likelihood by0.72
and0.64 units in log-likelihood respectively, neither of which igsificant, coming at the cost
of one additional estimated parameter. Additionally, teéneated values fof(B) are not
significantly different from zero, with confidence levelsiaf, and62% respectively. As such,
the positive estimate for the two coefficients is of littlepartance, and should in no case be
seen as a proof of the presence of respondents with a neydiiv® (see also Hess, Bierlaire
and Polak 11). The VTTS for respondents in grquy is quite close to that observed in the
constrained models. Overall, the results show that, inethe® groups, the unconstrained
model does not reject the constrained model, such that shedes not offer convincing proof
to suggest that the findings with regards to the high shares fero VTTS in the constrained
models were incorrect.
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5 Summary and Conclusions

In this paper, we have discussed an alternative approackgoesenting inter-agent variations
in tastes, and by extension, choice behaviour. The appiliedased on the use of discrete mix-
tures of choice models, replacing the fixed-parameter ehpiobabilities by a weighted sum
of choice-probabilities calculated on the basis of differealues for the specific coefficients
for which taste heterogeneity is to be introduced. The wisigissociated with the different
support-pointgeflect the market shares of the respective coefficientegailn the sample pop-
ulation. This approach has certain conceptual advantaggscontinuous mixtures, by being
free from any a priori assumption with regards to the shaplesotfrue distribution. Additionally,
discrete mixtures can clearly serve as a starting pointséarch for an appropriate continuous
specification.

The main aim and contribution of this paper is to demonstrate discrete mixture models can
be used to test for the presence of respondents with zerati@is of changes in a specific
travel-attribute, where, in the present case, we look §ipalty at the case of zero VTTS in a
route-choice experiment. The results, and subsequadiatation thereof, show that, while no
evidence of a significant share of such individuals existisércase of business travellers, a share
of 66% was found for leisure travellers, with a corresponding sldB5% for respondents on
shopping trips.

These results are striking, and are possibly in part speoifice data at hand, such that more
testing is required. Additionally, it should be noted thiathe case of SP data, another potential
reason for results showing zero valuations for changes imem@ttribute for some individuals
is the design of the surveys, for example in the case of a lasckamation for the concerned
attribute for these individuals (i.e. insufficient stimulA similar issue arises in the presence of
non-traders. As such, further tests should also be condect&P data. However, it should be
noted that, while, with SP data, multiple possible explemetfor zero valuations arise, discrete
mixture models maintain their advantage, in terms of bebig # highlight the impact of such
problems.

Even though the results of this research cannot be geredtalighout further investigation, cer-
tain observations can be made. Indeed, the comparisons&etive MNL and discrete mixture
models have shown that a failure to account for the presenndigiduals with a zero valuation
of changes in a travel-attribute can lead to significant indke estimated coefficients, and by
extension the willingness-to-pay indicators, possibiuleng in misguided policy-measures.
This problem has seemingly not been addressed in the exlggrature, at least not in the con-
text of discrete mixture models. Clearly, the ramificatiohhis issue are very serious indeed,
and the results presented in this paper call for a thorougdstigation into the prevalence of
zero valuations, across a host of variables, datasets daesdarces (i.e. RWsSP). Indeed,
although the discussion in this paper was limited to the cdsshanges in travel-time, zero
valuations potentially play a role for a whole range of atites, such as for example frequency,
and qualitative attributes. Additionally, problems witlrgey design can potentially also lead
to apparent “zero-valuations" in the case of attributes sisccost, where a consistent negative
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effect would be expected.

In closing, it should be noted that the same issues in ternisased results can be seen to
apply in the case of continuous mixture models when relyinghe use of distributions that
are not able to represent a heightened share at zero. Hegredence of individuals with zero
valuations for changes in a specific attribute can potdypaddo lead to biased results in terms of
the existence of a share of respondents with counter-ivetytsigned coefficients, a point that
is related to the issue of an asymmetricaé distribution with a mean close to zero, as discussed
by Hess, Bierlaire and Polak [11]. In this context, impott&ark remains to be done in terms of
exploring the use of model structures allowing for a vaoiatn tastes in the non-zero domain, in
addition to the presence of a significant mass at zero, ingini af the theoretical distribution
discussed by Cirillo and Axhausen [4], who propose the use Mbrmal distribution with a
heightened mass at zero. Such an approach can in fact berusedhbination with any type
of continuous distribution, where discrete mixturas used across two values, one of them
equal to zero, while the second value in addition follows aticwmous distribution. While
straightforward from a conceptual point of view, the apploeauses considerable problems in
estimation, such that the search for efficient ways of imggletimg such combined distributions
in estimation packages is an important topic for furtheeagsh.
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Parametel

Value

ASC for car
Interchanges
Travel-cost (CHF)
Frequency (per hour
Rail travel-time (min.)

4
-1.15
-0.3
0.9
-0.07

Table 1. Parameter values used in generation of simulated da

Sample size: 5,000
Final log-likelihood: -868.45
Adjustedp?: 0.7471

Parameter est. t-stat.

ASC for car| 4.0265 15.76
Interchanges -1.2306 -12.70
Travel-cost (CHF)| -0.3138 -19.62
Frequency (per hour) 0.9282 14.15
TT,q; (Min.) | -0.0776 -13.58
TT..,(A) (min.) | -0.0770 -5.73
TT..(B) (min.)) | -0.0373 -3.54
Mass atl'T..,.(A) | 0.5149  2.55
Mass atl'T,,,.(B) | 0.4851  2.40

Table 2: Results for first synthetic data experiment
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Sample size: 5,000
Final log-likelihood: -906.99
Adjustedp?: 0.7360

Parameter est. t-stat.

ASC forcar| 4.1307 16.38
Interchanges -1.2055 -12.90
Travel-cost (CHF)| -0.3203 -20.17
Frequency (per hour) 0.9600 14.91
TT,q; (Min.) | -0.0733 -14.04
TT...(A) (min.) | -0.0251 -2.35
TT..(B) (min.) | -0.0734 -7.25
Mass atl'T..,.(A) | 0.2704  2.19
Mass atl'T.,,.(B) | 0.7296 5.91

Table 3: Results for second synthetic data experiment

Business Leisure Shopping
Sample size 315 1,881 288
Final log-likelihood -124.69 -925.36 -139.30
Adjustedp? 0.4106 0.2872 0.2822
Parameter,  est. t-stat.| est. t-stat.| est. t-stat.

Interchangeg -1.1285 -6.60| -1.1737 -18.95 -0.9394 -6.30
Travel-cost (CHF)| -0.3051 -5.08| -0.1335 -5.36| -0.5658 -3.75
Frequency (per hour) 0.5970 6.11| 0.4188 12.19| 0.6603 7.22
Travel-time (min.)| -0.1258 -7.71| -0.0300 -7.48| -0.0465 -1.13

VTTS (CHF/houn)[ 2473 | 1350 | 493 |

Table 4: VTTS case-study: MNL estimation results
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Business Leisure Shopping
Sample size 315 1,881 288
Final log-likelihood -123.39 -908.13 -137.98
Adjustedp? 0.412 0.2996 0.2838
Parameterl  est. t-stat.| est. t-stat.| est. t-stat.
Interchanges -1.3298 -5.33| -1.5022 -15.21] -1.1109 -5.58
Travel-cost (CHF)| -0.3416 -4.39| -0.2268 -5.86| -0.7190 -3.32
Frequency (per hour) 0.6862 5.00| 0.5237 11.14| 0.7603 6.00
Brr(A) (min.) | -0.1635 -4.07| -0.1570 -4.52| -0.5236 -1.99
ﬂTT(B) (min.) 0 - 0 - 0 -
Mass forgrr(A) | 0.9037 10.81 0.3437 7.70 | 0.1541 1.62
Mass forGrr(B) | 0.0963 1.15| 0.6563 14.71| 0.8459 8.87
VTTS (A) (CHF/hour) 28.71 41.54 43.69
VTTS (B) (CHF/hour) 0 0 0

Table 5: VTTS case-study: Discrete mixture MNL estimatiesults, with one support point

fixed at zero

Business Leisure Shopping
Sample size 315 1,881 288
Final log-likelihood: -120.27 -907.41 -137.34
Adjustedp?: 0.4217 0.2994 0.2820
Parameten  est. t-stat.| est. t-stat.| est. t-stat.
Interchangeg -1.5835 -5.21| -1.5256 -14.66| -1.2352 -4.89
Travel-cost| -0.5208 -3.54| -0.2130 -5.71| -0.7048 -3.00
Frequency| 0.9033 4.18| 0.5292 11.12| 0.8573 4.98
Mass forgrr(A) | 0.4718 3.49| 0.4121 5.02 | 0.2852 1.39
Mass forGpp(B) | 0.5282 3.91| 0.5879 7.16 | 0.7148 3.48
Brr(A) | -0.3408 -3.38| -0.1377 -3.89| -0.4905 -1.92
Brr(B) | -0.1176 -4.09| 0.0119 1.15| 0.1157 0.87
VTTS (A) (CHF/hour) 39.26 38.79 41.76
VTTS (B) (CHF/hour) 13.55 - -

Table 6: VTTS case-study: Discrete mixture MNL estimatiesults, with both support points

estimated from the data
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