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Abstract
An external strategy module for an agent-based micro simulation of traffic systems is
presented. This module calledplanomatmodifies activity durations and departure times
of activity plans, which are the agent-based representation of travel demand. The mod-
ule combines broad search for alternative timing decisionswith an optimization proce-
dure for a scoring function that evaluates daily activity plans. The module is integrated
into the existing framework MATSIM, which simulates trafficsystems consisting of
several 100’000 agents entirely on activity level. In this paper, a test version of the Can-
ton Zurich is simulated, the biggest metropolitan area of Switzerland. Main results are
relaxation of the whole simulation system to a better stationary state than in previous
versions of the simulation framework. This is shown by departure/arrival time distri-
butions. The number of required iterations was significantly reduced to 100, which is
one-two orders of magnitude better than before.

Keywords
planomat, scoring function, time allocation, Large-scaleagent-based micro-simulation
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1. Introduction

MATSIM is an iterative, agent-based micro-simulation framwork of traffic systems

(Raney and Nagel, 2005). It mainly consists on one side of a simulation of traffic flow

and on the other side of different modules adapting travel demand to generalized travel

costs. They are called alternately until the system reachesits stationary state, which

corresponds to user equilibrium in the case of traffic systems. In MATSIM, travel de-

mand is represented by individual agents that follow an activity plan (this is why it

is called a micro-simulation framework). Each activity plan is assigned a score. The

higher the score, the better is the plan. Convergence to the stationary state is, among

other measurements, judged by the development of the score aggregated over the whole

agent population.

This paper is aboutplanomat, a flexible module which adapts the activity plans to travel

times the agent experiences during the subsequent simulations of traffic flow. Since

changing generalized costs of travel affect each aspect of travel demand, it would be

desirable that this module was as comprehensive, allowing for choice of activity dura-

tions, departure times, activity locations, modes, and other desired attributes. In a first

implementation described here,planomatadapts activity durations as well as the trip

departure times.

The motivation for this work was to replace an existing "dummy" module calledtime

allocation mutatorwhich produces unsatisfying results (see Raney and Nagel, 2005,

p. 16). The main improvements inplanomatare the exploration of the complete search

space (instead of only a small part) and the use of a scoring function for goal-oriented

search for alternate plans (instead of random strategy generation). In the history of

the MATSIM project, this paper reports on the integration ofCharypar and Nagel’s ap-

proach to strategy optimization into the framework (Charypar and Nagel, 2005).

The paper is structured as follows. Our concept of an agent-based microsimulation of

traffic systems is presented in section 2. Details on the new moduleplanomatare given

in section 3. Section 4 describes input data, assumptions about activity parameters

as well as algorithm details. Results concerning choice of activity timing and system

performance are presented in section 5. Finally, an outlookis given in the last section.
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2. Micro simulation framework

In this section, the concepts required for understanding the planomatfunctionality are

described briefly. For a comprehensive and more detailed framework description, see

Raney and Nagel (2005).

2.1 The activity plan concept

The representation of an agent’s travel demand is an activity plan, an alternating se-

quence ofactivitiesandtrips. As shown in the example in Figure 1, the framework uses

XML to store and exchange plans (W3C, 2006). The most important XML elements

are the following.

person Each person is identified by anid by which its socio-economic attributes can

be found in the synthetic population. A person can hold several plans.

plan Each plan can be assigned ascore according to a scoring function (see sec-

tion 2.2). The attributeselected="yes" states that the plan was chosen for

execution in the previous iteration of the traffic flow simulation.

activities Each activity<act> is characterized by a type, a hectare-based location

coordinate, an associated network link, and its temporal extent defined by two

of three attributesstart_time, end_time, anddur (activity duration). The

start of the plan is defined as the end time of the first activity, in this case07:35:04.

In the example shown, first and last activity are the same activity ("h", which

means home). The location coordinates refer to "Swiss Grid", the Swiss geodetic

reference system (Swisstopo, 2006).

trips The attributes of a trip<leg> include a mode, a departure time and a duration.

A trip can be characterized by a route, which is a sequence of numbers of the

network nodes that are passed.

Read the example plan as follows:

• Agent No. 22018 is at home until 7:35:04. His home location"h" is at the

coordinates (703600;236900).

2
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Figure 1: Example activity plan

<person id="22018">
<plan score="157.72" selected="yes">

<act type="h" x100="703600" y100="236900" link="5757" end_time="07:35:04" />
<leg num="0" mode="car" dep_time="07:35:04" trav_time="00:16:31">
<route>1900 1899 1897</route>

</leg>
<act type="w" x100="702500" y100="236400" link="5749" dur="08:12:05" />
<leg num="1" mode="car" dep_time="16:03:40" trav_time="01:10:22">
<route>1899 1848 1925 1924 1923 1922 1068</route>

</leg>
<act type="l" x100="681450" y100="246550" link="2140" dur="01:20:00" />
<leg num="2" mode="car" dep_time="" trav_time="00:34:35">
<route>1067 1136 1137 1921 1922 1923 1924 1925 1848 1899</route>

</leg>
<act type="h" x100="703600" y100="236900" link="5757" />

</plan>
</person>

• He leaves his home to drive to work ("w"). This trip takes 16 minutes and 31

seconds, using the route along the nodes1900 1899 1897.

• The agent stays at work more than 8 hours, then leaves for a leisure activity ("l" ).

The trip from the work location on route1899 1848 1925 1924 1923

1922 1068 to the leisure location takes about 1 hour and 10 minutes.

• After leisure, the agent returns home after a trip of≈34 minutes.

• Read the plan as a 24-hour wrap-around, so the end of the home activity is also

at 7:35:04 the next day.

• The plan has a score of 157.72e.

An activity plan can be interpreted in different ways: It canbe either astrategyex-

pressing what the agents wants/plans to do, or ademand descriptionwhat an agent

actually did in a certain iteration. The character of a plan is even more general: Since

many attributes are not required, it is essentially aworking filein the demand generation

process1.

1see the DTD athttp://www.vsp.tu-berlin.de/projects/Matsim/data/dtd/
plans_v4.dtd
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2.2 Scoring

The quality of an activity plan is measured by a score. The corresponding scoring func-

tion was introduced first by Charypar and Nagel (2005), and is with slight modifications

also used in our current work on traffic micro simulation. This subsection presents the

basic parts of the utility function, while subsection 2.3 demonstrates its use in the mi-

cro simulation framework. Since here is given a compressed description, the interested

reader is referred to the original paper by Charypar and Nagel.

The score of an activity planUplan is given by the sum of the utilities of all performed

activitiesi, and the travel disutilities for trips necessary to get fromone activity location

to the other:

Uplan =
∑n

i=1
Uact(typei, starti, duri) +

∑n
i=2

Utrav(loci−1, loci)

The utility of an activityi is the sum of four terms, each of which is modeling a certain

aspect of the utility function.

Uact,i = Udur,i + Uwait,i + Ulate.ar,i + Uearly.dp,i + Ushort.dur,i

Udur,i denotes the utility of executing an activity for a certain duration,Uwait,i denotes

the (dis)utility of waiting for an activity to start (for instance waiting for a shop to

open),Ulate.ar,i andUearly.dp,i denote penalties for coming too late or leaving too early

that activity respectively, andUshort.dur,i is a penalty if an activity is performed for too

a short time.

Utrav denotes the (dis)utility of traveling from the location of activity i−1 to the location

of the current activityi.

There is no penalty fornot performing an activity that might have been planned. Only

performed activities contribute to the plan score.

Utility of performing an activity

All terms in the activity utility function exceptUdur are modeled to be linear in time

needed for that activity aspect. The time performing an activity is assumed to have a

logarithmic impact on activity utility to reflect diminishing marginal utility:
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Udur =











βdur · t
∗ · ln( tdur

t0
) (t0 ≤ tdur)

0 (0 ≤ tdur < t0)

βneg.dur · |tdur| (tdur < 0)

, with

t0 = t∗ · exp−10/p·t∗ .

tdur denotes the actual activity duration.t∗ is the so calledoperating pointof the ac-

tivity, the duration at which the marginal utility equalsβdur. So, the value oft∗ can

be interpreted as the typical duration of an activity, whileits effect in the activity plan

context is the following: Thet∗i yield the ratios of the durations of different activities in

equilibrium.

t0 is the activity duration at which the logarithmic curve has its null. It is chosen pro-

portional to the operating point, and is influenced by the priority p of the activity. Usual

values forp are 1,2,3. . . , with 1 being the highest priority. The higher the priority, the

smaller will bet0. In busy plans, high-priority activities tend to stay in theplan while

low-priority activities will be dropped when for instance traffic conditions worsen. In

the current state of our work on activity generation, we use fixed, revealed activity

chains, and activity dropping is not allowed. All activities have the same priorityp = 1.

This is why this issue is not described in more detail here.

The utility of performing an activity with a positive duration cannot be negative. Due to

the interpretation of an activity plan as 24 hour-wrap round, in the first iterations of the

micro simulation framework negative durations can occur. They are penalized linearly

with βneg.dur. This reflects a very undesired plan where it took the agent more than 24

hours to fulfil its plan.

Penalties

The penalty terms of the utility function are penalized linearly according to Vickrey’s

model of departure time choice (e.g. Arnottet al., 1993):

Utrav(ttrav) = βtrav · ttrav,

Uwait(twait) = βwait · twait,

Ulate.ar(tstart, tlatest.ar) =

{

βlate.ar · (tstart − tlatest.ar) (tstart > tlatest.ar)

0 (tstart ≤ tlatest.ar)
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(wheretstart is the starting time of the activity andtlatest.ar the latest possible starting

time of that activity),

Uearly.dp(tend, tearliest.dp) =

{

βearly.dp · (tearliest.dp − tend) (tend < tearliest.dp)

0 (tend ≥ tearliest.dp)

(wheretend is the ending time of the activity andtearly.dp the earliest possible ending

time of that activity), and

Ushort.dur(tstart, tend) =

{

βshort.dur · (tshortest.dur − (tend − tstart)) (tend < tstart)

0 (tend ≥ tstart)

(wheretshortest.dur is the shortest desired duration for that activity).

Summary of parameters

The parameters of the utility function have the following values:

βdur = 6e/h,

βtrav = −6e/h,

βwait = 0e/h,

βlate.ar = −18e/h,

βearly.dp = 0e/h,

βshort.dur = 0e/h,

βneg.dur = −18e/h.

The parameters for the penalty terms are chosen to reflect therelations in Vickrey’s

model of departure time choice:

βwait : βtrav : βlate.ar = 1 : 2 : 3

This relation is not obvious on first sight when looking at theparameter values:

βwait : βtrav : βlate.ar = 0 : −6 : −18

Considering the opportunity costs ofnot performing an activity while waiting or trav-
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eling, one has to subtractβdur from βwait andβtrav. So, the effective parameter values

are the following:

βwait,eff : βtrav,eff : βlate.ar,eff = −6 : −12 : −18,

which means the Vickrey type model is yielded. These values are different from the

ones used in Charypar and Nagel (2005), who already discussedthe issue of opportunity

costs.

Figure 2 demonstrates the utility calculation using the example activity plan shown in

Figure 1.

2.3 Simulation

The task of a simulation is to find the stationary state of the system modeled. In the case

of our transport system model, the stationary state is the state where an agent cannot

improve its score by altering the plan. So the objective function of the simulation system

is to maximize the overall score:

max(
∑n

a=1
Uplan,a), with n being the number of agents simulated.

As pointed out, an iterative approach is used to solve this maximization problem. where

travel times as a representative for generalized travel costs are the central feedback

element. The overall simulation system consists of the following steps:

1. Initial plans have to be generated as a first input to the traffic flow simulation.

It contains all the assumptions about the agents’ personal attributes, as well as

approximations for the plan attributes. For instance, travel times are directly pro-

protional to the physical distance without any network capacity effects. For each

agent, a set of plans is generated and stored in the agent database.

2. Theplan selection mechanismof the agent database chooses one plan per agent

for execution (usually one that was modified before, otherwise random selection).

3. Thesimulation of traffic flowexecutes the plans, that is it "moves" agent objects

through a model of the traffic network when trips are planned.The result of this

are new travel times for each trip (attributetrav_time of element<leg>).

7



planomat:
A comprehensive scheduler for a large-scale multi-agent transportation simulation

March 15 - 17, 2006

Additionally, the plans executed are scored (see section 2.2). If the stop criterion

of the simulation is met, go to step 6.

4. A subset of the agents is chosen for plan modification/new plan generation by so-

calledexternal strategy modules. These modules, of whichplanomatis one, can

capture one or more travel behavior attributes. Currently, 10% of all agents are

considered for replanning and rerouting respectively, further 10% for rerouting

only.

5. One or more external strategy modules are run. For each agent one plan is re-

turned. The new plan, considering the updated travel times,is stored in the agent

database. Return to step 2.

6. End of the simulation.

The stop criterion mentioned is the amount of improvement inoverall score after sub-

sequent iterations. If it falls under a certain valueǫ, the stationary state is probably

found.

3. Methods of planomat

This section starts with a description of the functionalityand the shortcomings of the

module to be replaced. After that, the details of the currentplanomatimplementation

are described.

3.1 Old time allocation mutator

The first two paragraphs of this section are taken from Raney and Nagel (2005, p. 16).

The old replanning moduletime allocation mutatortakes the existing times of the plan

and modifies them randomly. Note that there is no "goal" with this module, that is, the

module does not try to improve any kind of score. Rather, the module makes a random

modification, and the plans selection mechanism in conjunction with the scoring will

make the agents improve toward better scores.

8
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The exact details of the time mutator are as follows. This module reads the plans file,

and for each plan alters the end time of the first activity by a random amountr1 uni-

formly selected in the ranger1 ∈ [−30 min, 30 min]. Values that come before 00:00

(midnight) are reset to that time. It then alters the duration of each activity except the

first and last by separate random values uniformly selected from the same range. The

last activity does not need modification since it runs from whenever the agent arrives

until 24:00 (midnight). The modified plans are written back out to a file.

Simulations with thetime allocation mutatorshow that the system converges despite the

random nature of time information mutation. This is due to the learning framework of

the simulation which keeps good plans in its "brain" while discarding others. However,

two problems arise. First, visual inspection of departure time distribution shows that

the stationary state found cannot be the global optimum if the initial plans are not close

to their optimal states (see Figure 4). This is because of theinsufficient exploration

within ±30 min, although good activity durations and start times may be hours away

from the initial solution. Second, the convergence speed (towards an optimum which is

not the best possible) is unsatisfying. More, visual inspection of the average fitness tells

it is still rising after >1000 iterations. This is far too much for any practical use, since

one iteration takes about 40 minutes on a well equipped Single-CPU system. Simple

extension of the search range, e.g.±6 h for all time information, would probably find

a better optimum. Then, a multiple of the number of iterations was needed since the

search space would be fully enumerated by thetime allocation mutator.

3.2 Implementation details

The idea is now to search new solutions in the entire search space and find an optimum

in it using a scoring function. Here, the same utility function as in the agent database is

used (see section 2.2).

For several reasons, the decision was made to use a Genetic Algorithm (GA) to find

good solutions in the sense of the utility function:

Experience The GA method proved to be successful in various experimentsfor activity

plan generation for individual agents or households (Charypar and Nagel, 2005;

Meisteret al., 2005b; Schneider, 2003). This paper is about the first attempt to
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integrate this approach into a multi-agent simulation system.

Flexibility In the current setup of the module, a better time allocation could be much

easier calculated. GAs are not the best choice to solve continuous problems like

this, they were designed to rather solve combinatorial problems. A gradient-

based optimization procedure would probably be much faster. However, the goal

is to extendplanomatto a comprehensive replanning module incorporating many

aspects of travel demand. Location choice, mode choice and the choice of the

activity pattern are such combinatorial problems, which are meant to be included

later.

The exact details ofplanomatare as follows.

Input data and alternative creation

For each agent, the selected plan and the recently experienced travel time information

are read in. While former comes from the agent database, the latter comes from the

result of the previous run of the traffic flow microsimulation. This information is struc-

tured in so-calledevents, small data packages containing what agent did what at which

time in which place. From departure and arrival events, the travel times can easily be

computed. In previous versions of planomat, different (worse) sources for travel time

information were used (compare Meisteret al., 2005a).

The start time of the plan, that is the end time of the first activity, is uniformly selected

between 00:00 and 24:00. The same is done for each activity duration. All other at-

tributes are kept as they came from input (as described, in the current state of the work

planomat only optimizes time allocation).

Recombination and mutation

The crossover operator recombines two existing plans to a new one by randomly choos-

ing start time and activity durations from one of the parents. The mutation operator

alters each time information in a certain range parameterized with themutation proba-

bility pmut:

10
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• A new start time is chosen by adding an amounts uniformly selected from range

s ∈ [pmut · −12h, pmut · 12h]. Values that come before 00:00 (midnight) are reset

to that time.

• An activity duration is multiplied with a factord = eX with X being uniformly

selected from the rangeX ∈ [−pmut/2, pmut/2].

After both the creation and the recombination/mutation operations, the new plan is

stretched/compressed to a duration of 24 hours to be comparable to its competitors

in the GA population.

Selection and output

Every time a new activity plan was created by the GA, it is evaluated with the scoring

function. Since the number of plans held in the GA populationat one time is constant,

good plans are kept while bad ones are dropped. After a fixed number of recombina-

tion/mutation operations, the optimization is canceled. The best plan currently in the

population is chosen as a new strategy for the given agent, and so given back to the

agent database.

GA parameters

Table 1 gives a brief overview of the various GA parameters that have to be configured.

All these parameters have to be chosen according to the nature of the problem to be

solved. This is often done on a gut level, so is in this case.

4. Canton Zurich Scenario

The scenario setup includes a regional definition of the study area, the demand gener-

ation process, the specification of the traffic network and a list of assumptions about

activity-related behavior as well as temporal constraints.

11
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Table 1: GA parameters

Variable Description Value
popsize Constant population size. 50
ngen Number of generations. Here, ifngen individu-

als were generated by the crossover/mutation oper-
ations, the optimization is canceled.

1’000

pmut Probability that one element of an activity will mu-
tate according to its respective mutation operator.

Initial: 0.30,
exponentially
decreasing to
0.07

τmut Each time a new indivdual was inserted into the pop-
ulation,pmut is adapted. The higherτmut, the quicker
pmut decreases.

mindiff Minimum fitness difference between two individu-
als. If a new plan with almost the same score is gen-
erated, it will be dropped in favor of the one that is
already present.

0.10

4.1 Study area: Canton Zurich

The case study used for testing theplanomatis a simulation of the Canton Zurich, the

biggest metropolitan area in Switzerland. The demand generation process, as well as

the framework used for it, is described in detail in Balmeret al. (2006).

First, a synthetic population of the Canton Zurich is generated, using data from the

Swiss National Population Census. It is a list of≈1’200’000 agents with individual at-

tributes like age or sex, and a hectare-based home location (Frick and Axhausen, 2004).

Each agent is assigned an activity chain based on the Swiss Microcensus on travel

behavior (Rieser, 2004). These activities are distributed in space by several location

choice modules (Marchal and Nagel, 2005). The network modelused for the assign-

ment with a microscopic traffic flow simulation is the Swiss National Traffic Network

model (Vrticet al., 2002).

For test reasons, the traffic of only a 1% sample of the whole agent population is simu-

lated. In order to produce comparable results to full scenario where 46% of alle agents

are simulated, the network capacity was reduced to< approx2%. So, some congestion
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Table 2: Activity parameter values

Activity type abbreviation t∗ [h] tshortest.dur [h] tlatest.ar tearliest.dp

home h 12 8 — —
work w 8 6 9:00 —
work1 w1 4 2 9:00 —
work2 w2 4 2 — —
work3 w3 8 6 — —
education e 6 4 9:00 —
education1 e1 3 1 9:00 —
education2 e2 3 1 — —
education3 e3 6 4 — —
shop s 2 1 — —
leisure l 2 1 — —

All activities have the same priorityp = 1.

The different work and education activity types can be explained as follows. If an activity chain includes

two work or educationactivities, it is assumed that their typical activity duration is half the complete-

activity duration and will be renamedwork1andwork2 resp. education1andeducation2. An example

would beh-w1-l-w2-h. If a work or education activity is not the first an the activity chain, it is

renamedwork3 or education3without the desired start time at 9:00, but all other attributes equal. An

example of that would beh-s-w3-h.

occurs and sensitivity of timing decisions to experienced travel times can be observed.

4.2 Activity parameters and constraints

The scoring function requires several parameters, either activity or location specific.

Each activity is characterized by a typical durationt∗, a mimimum durationtshortest.dur

and desired start/end timestlatest.ar, tearliest.dp. While the typical duration is a manda-

tory parameter to the utility function, the minimum duration and desired time windows

are optional. Table 2 is a list of parameter values used in this scenario.

Furthermore, there exist temporal constraints for the execution of activities, represented

here by opening hours. An agent will fail to perform an activity outside these opening

hours, and will have to wait instead. In this case, it doesn’tgain any score or even loses
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Table 3: Opening hours as temporal constraints

Activity type opening time closing time
home (h) — —
work (w, w1, w2, w3) 7:00 18:00
education (e, e1, e2, e3) 7:00 18:00
shop (s) 8:00 20:00
leisure (l) 6:00 24:00

some in case ofβwait < 0. The temporal constraints are an attribute of a specific facility.

In this setup, they are the same all over the modelled region because more detailed data

about opening hours was not available yet. This is why they appear activity-specific in

Table 3.

For analysis, the activity chain types are summarized into five groups:

education-dominated chain types heeh, heh

leisure-dominated chain types hlh,hllh,hlslh

shop-dominated chain types hsh,hssh

work-dominated chain types hwh,hwlwh,hwswh,hwwh

other chain types helh,hesh,hleh,hlsh,hlwh,hslh,hswh,hweh,hwlh,hwsh

5. Results

The results presented in this section recur on the problems that arose with the usage of

the simple "dumb" replanning module (compare section 3.1). This is why each results

figure is of aplanomatvs. time allocation mutatorkind.

Figure 3 shows the development of the average score across the whole agent population.

Both curves show tendency towards a limiting value. For theplanomatsetup, the slope

is no more visible after 100 iterations, converging at an average score value of≈160e.

The time allocation mutatorconfiguration has a rising curve still visible after >1000
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generations (not shown). It is not clear if it converges to the same value. This improve-

ment is in the range of one-two orders of magnitude regardingthe required number of

iterations.

Figure 4 shows the departure time distributions at the beginning of the simulation and

after 400 generations, for each setup. The main difference is in the distribution of the

leisure-dominated activity chain types. While in thetime allocation mutatorsetup, most

leisure activities take place in the morning, theplanomatdistributes them all over the

day. The latter is the expected result, sinceleisure-type activities are only constrained

within 6:00 and 24:00. One would expect a bigger evening peakfor leisure activi-

ties. It is not that pronounced because opening time constraints are probably too lax,

e.g. cinemas and bars usually don’t open at 6:00 AM but in the afternoon, and also

close later. A similar effect can be observed for the shopping-dominated activity chain

types, where the arrival/departure times at/from the shopsdistribute in the opening hour

window 8:00-20:00. Furthermore, the afternoon commuter peak is more pronounced

(regard work-dominated activity chain types).

The suboptimal time allocation distribution in thetime allocation mutatorsetup doesn’t

change after >1000 iterations (not shown). We think that this is the reason for the

suboptimal average score development. It has its cause in the insufficient exploration

of timing alternatives only within±30 min per iteration. It is probable that the better

solution could have been found with the "dumb" module also if the initial distribution

of departure times and activity durations had been closer tothe stationary state. But as

we lacked data about realistic distributions, we assumed a uniform choice of departure

time between 6:00 and 8:00 in the morning. But as the stationary state found should

be independent of the initial conditions, this demonstrates the necessary step taken with

the introduction ofplanomat.

6. Discussion and outlook

6.1 System requirements

All following figures apply to a Pentium IV Xeon system, 2.4 GHz, 4 GB RAM, SuSE

Linux 9.2, gcc version 3.3.5. The entire simulation system presented here was run using
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only one CPU.

The most critical requirement of the currentplanomatimplementation is computing

time, scaling linearly with the number of agents to be replanned. The replanning per-

formance is at≈100 agents/s. For the 1% Canton Zurich scenario described, this means

a runtime of≈13s. In the full scenario, where a fixed car-mode-share of 46%of all

agents is assumed, replanning takes almost 10 minutes. These stand-alone figures are

difficult to evaluate, since the goal is to minimize overall runtime. It is influenced by the

runtime of the external strategy modules, the simulation oftraffic flow, and the number

of iterations required for a satisfying level of convergence.

The traffic flow simulation used mainly scales with network size, only little with the

number of agents (Cetin, 2005). In our single-CPU setup, it takes 8-15 minutes to

simulate the whole day (including I/O). So, while in the 1% case the computing time

required for planomat can be neglected, it is of considerable size when all car-driving

agents are simulated. The minimization of computing time aswell as the number of

iterations required is a main focus of our further work. Charyparet al. (2006) perform

experiments with Evolutionary Strategies as optimizationmethod to reduce computing

time.

Memory requirements are no limiting factor to performance,since optimization is done

agent by agent. Plans information as well as simulation events information are streamed,

which means I/O data takes virtually no memory at all. Most memory is required by

the GA population of max. 50 activity plans which require<<1MB of RAM.

6.2 Improvement of the location choice concept

One upcoming modeling goal is the improvement of the location choice concept. The

basic difference will be that location choice for secondaryactivities will be part of the

replanning process, instead of its currently limited role as a preprocess to initial demand

generation (Marchal and Nagel, 2005).

At first, we will improve the data basis. Up to now, the number of overall workplaces

in a spatial aggregate was assumed as predictor for the utility gained there, regardless

of the activity type. This is insufficient because the functional organization typical for

urban areas is not considered at all. We create an activity-fine set of facilities based on
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landuse information available on hectare-level for all Switzerland, called the Swiss Na-

tional Enterprise Census provided by the Swiss Federal Statistical Office (BfS, 2001).

Opening time windows will be no more activity-specific, but location-specific. Data

about opening times still have to be imputed/revealed. Furthermore, the synthetic fa-

cilities will have an activity-specific capacity which in the first run will be proportional

to the number of workplaces. An open question is how to include location capacity

constraints into the agents’ decision making.

For each agent, a choice set of locations is generated. Here,an approach based on

revealed activity spaces is chosen. Refer toactivity spaceas a continuous spatial rep-

resentation of the locations visited by a person in a certaintime range. We will use ac-

tivity space generation algorithms developed in Vazeet al. (2005). It is then task of the

planomatto find the best location for each activity in the sense of the scoring function.

The complexity of the search space is thus extended with a non-scalar dimensionactiv-

ity location. Earlier GA experiments show that this task is feasible, although it will take

more time than the comparably simple time allocation problem (Charypar and Nagel,

2005; Meisteret al., 2005b).
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Figure 2: Utility plot of example activity plan

−100

−50

 0

 50

 100

 150

 200

 0  2  4  6  8  10  12  14  16  18  20  22  24

U
pl

an
 [E

ur
o]

time of day [h]

Uplan
Udur
Utrav
Uwait
Ulate.ar
Uearly.dp
Ushort.dur

The graphUplan represents the plan score depending on time of day as this plan was canceled at that
certain time of day. One clearly sees positive utility of activity performance (log-shape graphs), the
various penalties (linear graphs starting on the x-zero axis) as well as the overall plan score yielded at
24:00.
The very low score value between 8:00 and 10:00 can be explained as follows: On one hand, only
the home activity and a small part of the work activity including the (penalized) home-work trip were
performed. On the other hand, the penalties for early departureUearly.dp and short activity performance
Ushort.dur are very high.
The activity parameters used here are listed in Table 2, which is part of the scenario description in
section 4.
For explanatory reasons, in this figureβearly.dp = βshort.dur = −6e/h, instead of0e/h.
Based on (Balmer, 2005, p.15 ff.).
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Figure 3: Comparison of average scores
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Figure 4: Comparison of departure times by activity chain type
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(a) Departure times in initial plans (iteration 0)
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(b) Departure times withtime allocation mutator(iteration 400)
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(c) Departure times withplanomat(iteration 400)
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