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Abstract
In most applications related to transportation, it is of major importance to be able to identify
the global optimum of the associated optimization problem. The work we present in this pa-
per is motivated by the optimization problems arising in the maximum likelihood estimation
of discrete choice models. Estimating those models becomes more and more problematic as
several issues may occur in the estimation. We focus our interest on the non-concavity of the
log-likelihood function which can present several (and often many) local optima in the case of
advanced models.
In this context, we propose a new heuristic for nonlinear global optimization combining a vari-
able neighborhood search framework with a modified trust-region algorithm as local search.
The proposed method presents the capability to prematurely interrupt the local search if the it-
erates are converging to a local minimum which has already been visited or if they are reaching
an area where no significant improvement can be expected. The neighborhoods as well as the
neighbors selection procedure are exploiting the curvature of the objective function. Numerical
tests are performed on a set of unconstrained nonlinear problems from the literature. Results
illustrate that the new method significantly outperforms existing heuristics from the literature
in terms of success rate, CPU time, and number of function evaluations.

Keywords
Nonlinear programming – trust-region method – variable neighborhood search -
global optimum - discrete choice models
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1 Motivation and literature review
We are interested in the identification of a global minimum of the nonlinear optimization prob-
lem defined by

min
x∈Rn

f(x), (1)

where f : R
n → R is twice differentiable. No special structure is assumed on f . The vast

literature on nonlinear optimization (Bertsekas, 1999, Nocedal and Wright, 1999, Conn et al.,
2000, Bierlaire, 2006a to cite a few) focusses on the global convergence of algorithms toward
a local optimum, with a fast local convergence. Note that “local” and “global” are used in two
different ways in this literature. A point x∗ is a global minimum of f if f(x∗) ≤ f(x), for all
x ∈ R

n. It is a local minimum of f if there exists ε > 0 such that f(x∗) ≤ f(x) for each x such
that ‖x − x∗‖ ≤ ε. An algorithm is said to be globally convergent if it converges to a (local)
minimum from any starting point. It is locally convergent when it is converging to a (local)
minimum when the starting point x1 is in a neighborhood of x∗. We refer the reader to the
nonlinear optimization literature for more details. In this paper, we are interested in a heuristic
which is (hopefully, not provably) globally convergent toward a global minimum.
Nowadays, there exist efficient and robust methods and softwares to solve unconstrained non-
linear optimization problems (in the sense of identifying a local minimum). In the case that
the problem presents several local minima, the convergence to a global minimum cannot be en-
sured. There are several practical applications where a global optimum of a nonlinear function
is required. Among them, we are particularly interested in the maximum likelihood estimation
of econometric models.
In econometrics, more and more nonlinear models are being developed to address the complex-
ity of real phenomena under analysis. For instance, discrete choice models are mathematical
models used to analyze and predict the behavior of individuals when faced to choice situa-
tions (such as decisions about transportation mode, route choice, etc). The theoretical foun-
dations of discrete choice models (and more specifically, random utility models) have already
been defined in the seventies (Ben-Akiva, 1973, Williams, 1977, McFadden, 1978) with the
multinomial logit model, the multinomial probit model, the nested logit model, and the gener-
alized extreme value model. However, only the multinomial logit model and the nested logit
model have been intensively used by practitioners during almost three decades. These models
are relatively easy to estimate, as their associated log-likelihood function has nice properties
(globally concave for the multinomial logit model, concave in a subspace of parameters for
the nested logit model). Recent advances in discrete choice models are following two com-
plementary tracks. Firstly, more models within the generalized extreme value family have been
proposed and used (see, for instance, Vovsha, 1997, Wen and Koppelman, 2001, Bierlaire, 2002,
Papola, 2004, Bierlaire, 2006b, and Daly and Bierlaire, 2006). Secondly, the increasing power
of computers has motivated the use of mixtures of logit models, where the normal distribution
of some parameters requires simulation methods to compute the probability model (McFadden
and Train, 2000, Bhat, 2001, Train, 2003). Mixtures of GEV models are also proposed in the
literature (see Bhat and Guo, 2004, Hess et al., 2004, Hess et al., 2005a, Hess et al., 2005b).
Finally, discrete mixtures of GEV models are also investigated (see Hess et al., to appear).
The maximum likelihood estimation of those models becomes more and more problematic as
it involves the maximization of (possibly highly) nonlinear non-concave functions, exhibiting
several local maxima and being expensive to evaluate due to the use of simulation tools.
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The issue of finding a global optimum in the context of econometric models estimation, and
in particular discrete choice models, has interestingly almost not been addressed in the litera-
ture. The standard simulated annealing heuristic is a widely used algorithm in this context (see
Goffe et al., 1992, Goffe et al., 1994 ). Dorsey and Mayer (1995) have also proposed genetic
algorithms.
Note that finding the global optimum of a nonlinear optimization problem is of major impor-
tance in many other transportation applications such as traffic equilibrium problems. These
problems aim to assign flows on a transportation network such that a given objective is opti-
mized (for instance, the total travel time on the network in the context of a system optimum
equilibrium). In such contexts, only the global optimum of the problem will provide meaning-
ful optimal values for the flows on the network. Indeed, a local optimum will in general not be
interesting from the application viewpoint.
In this paper, we propose a new algorithm for nonlinear global optimization, dedicated to ef-
ficiently solve real problems whose objective function presents several local optima and may
be expensive to evaluate. For instance, it is designed to be suitable for future application on
discrete choice models estimation.
The literature on nonlinear global optimization can be divided in two parts: deterministic and
exact approaches on the one hand, and heuristics and meta-heuristics on the other hand.
The most important deterministic approaches are (i) methods based on real algebraic geometry
(see Lasserre, 2001, Henrion and Lasserre, 2003 and Lasserre, 2004), (ii) exact algorithms as the
adaptation of Brand and Bound proposed by Androulakis et al. (1995), and (iii) interval analysis
(see Hansen and Walster, 2003 for a review of these methods). Some other approaches exploit
the structure of f and the fact that a nonconvex function can be described by the difference
of convex functions. The DC (difference of convex functions) programming and related DCA
algorithms have been applied successfully to global optimization of nonconvex functions (Horst
and Thoai, 1999, and Le and Pham, 2005).
The use of heuristics to address in practice the difficult problem of global nonlinear optimiza-
tion has been intensive for several decades and is still relevant (see, for instance, Hedar and
Fukushima, 2004, Hedar and Fukushima, 2006, and Mladenovic et al., 2006). Many approaches
consist in hybridizing derivative-free methods with heuristics originally designed for discrete
optimization problems. For example, Hedar and Fukushima (2002) have developed an hybrid
simulated annealing method by combining a Nelder-Mead algorithm with simulated annealing.
The same authors have proposed another simulated annealing algorithm using other derivative-
free methods like the approximate descent direction (ADD) and pattern search (see Hedar and
Fukushima, 2004) as well as a new tabu search method which is “directed” by direct search
methods in Hedar and Fukushima (2006). Franzè and Speciale (2001) have adapted a tabu
search method using a pattern search algorithm. Tabu search has also been combined with both
scatter search and direct search (see Glover, 1994). Recently, Mladenovic et al. (2006) have
proposed an adaptation of the variable neighborhood search (VNS) heuristic for unconstrained
nonlinear optimization problems using random distributions to compute neighbors. Vaz and
Vicente (to appear) have developed a hybrid algorithm that combines a particle swarm heuristic
with a pattern search method.
Continuous adaptations of classical heuristics in discrete optimization are also proposed for
nonlinear global optimization. The simulated annealing algorithm has been widely adapted
for the continuous case (see, for example, Chelouah and Siarry, 1997, Locatelli, 2000). New
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algorithms based on tabu search (see Chelouah and Siarry, 2000b, Battiti and Tecchiolli, 1996)
and genetic algorithms (see Chelouah and Siarry, 2000a, and Chelouah and Siarry, 2003) have
also been derived.
Clearly, most of the heuristics designed for nonlinear global optimization are inspired from
the discrete optimization literature. It is interesting to note that these papers are using either
simple local searches (random search for instance) or derivative-free methods such as direct
search strategies like Nelder-Mead. These algorithms are not making use of first and second
order derivatives. We have found only a few algorithms using more advanced local searches.
Renders and Flasse (1996) have hybridized genetic algorithms with a quasi-Newton method,
while Dekkers and Aarts (1991) made an hybridation of simulated annealing with both steepest
descent and quasi-Newton methods as local search. Recently, Mladenovic et al. (2006) have
proposed a variable neighborhood search framework for nonlinear global optimization, within
which efficient algorithms from nonlinear optimization are used. It is one of the rare approaches
where an efficient local algorithm for nonlinear optimization is adapted to global optimization.
The heuristic proposed in this paper is directly inspired by state-of-the-art algorithms for non-
linear optimization, and state-of-the-art heuristics in discrete optimization.
Among the wide variety of Newton-like methods proposed in the literature of nonlinear opti-
mization for solving (1), we are particularly interested in quasi-Newton methods which use only
the gradient of the objective function f to be supplied and construct an approximate second-
order model of f (see Nocedal and Wright, 1999). By measuring changes in the gradient∇f at
previous iterates, they perform a secant approximation of the Hessian matrix∇2f and exhibit a
fast local converge rate (typically superlinear). As the second derivatives are not required, they
represent a good tradeoff between fast convergence and low computational burden.
In addition to the use of approximated derivatives, we want to ensure convergence from remote
starting points in order to get a practical method for finding local minima of (1). Global conver-
gence can be enforced using specific techniques. On the one hand, linesearch strategies control,
at each iteration of the optimization algorithm, the step length taken in the Newtonian search
direction (see, for example, Nocedal and Wright, 1999). On the other hand, trust-region meth-
ods approximately compute the minimum of a quadratic model, centered at the current iterate
xk, in an appropriate neighborhood of xk called the trust-region (see Conn et al., 2000). More
recently, filter-trust-region methods have been proposed by Fletcher and Leyffer (2002), as an
extension of the trust-region framework.
In this paper, we adopt a trust-region algorithm using a quasi-Newton framework for construct-
ing the quadratic model of the objective function.

In discrete optimization, local search heuristics operate in a search space S, also called a so-
lution space. The elements of this space are called solutions. For every solution s ∈ S, a
neighborhoodN (s) ⊂ S is defined. A local search method starts at an initial solution, and then
moves repeatedly from the current solution to a neighbor solution in order to try to find better so-
lutions, measured by an appropriate objective function. The most popular local search methods
are the following: simulated annealing (see Kirkpatrick et al., 1983), tabu search, which was
originally proposed by Glover (1986) and Hansen (1986), and variable neighborhood search
(see Mladenovic and Hansen, 1997). A more recent local search heuristic is the variable space
search algorithm proposed by Hertz et al. (2006), which uses not only several neighborhoods,
but also several objective functions and several search spaces.
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Evolutionary heuristics encompass various algorithms such as genetic algorithms (Davis, 1991),
scatter search (Glover, 1998), ant systems (Dorigo and Blum, 2005) and adaptive memory algo-
rithms (Rochat and Taillard, 1995). They can be defined as iterative procedures that use a central
memory where information is collected during the search process. Each iteration is made of two
complementary phases which modify the central memory. In the cooperation phase, a recombi-
nation operator is used to create new offspring solutions, while in the self-adaptation phase, the
new offspring solutions are modified individually. The output solutions of the self-adaptation
phase are used for updating the content of the central memory. The most successful evolution-
ary heuristics are hybrid algorithms in the sense that a local search technique (tabu search for
example) is used during the self-adaptation phase.

In this paper, we propose a new heuristic inspired by the Variable Neighborhood Search (VNS)
framework originally proposed by Mladenovic and Hansen (1997), which is one of the most re-
cent and efficient heuristics for discrete optimization. The choice of this heuristic is motivated
by its ability to widely explore the solution space (Rn in our case) thanks to the use of several
types of neighborhoods. VNS proceeds, for example, by exploring increasingly distant neigh-
borhoods from the current solution. It is also simple to adapt and implement as it only requires
two elements: a list of neighborhoods and a local search algorithm. Moreover, a direct and
simple adaptation of the VNS algorithm of Mladenovic and Hansen (1997) has recently been
proposed for unconstrained continous global optimization by Mladenovic et al. (2006) and has
shown very encouraging results compared to other existing approaches and heuristics.
Our method combines a VNS framework with a trust-region algorithm. The philosophy of our
approach is to diversify the set of iterates in order to increase the probability of finding a global
minimum of (1) and to prematurely interrupt the local search if it is converging to a local mini-
mum which has already been visited or if the iterates are reaching an area where no significant
improvement can be expected.

The paper is organized as follows. In Section 2, we present our VNS algorithm. Intensive
numerical experiments have been conducted, and the results are presented in Section 3. Finally,
we conclude and give some perspectives for future research in Section 4.

2 Algorithm
The local search procedure plays a significant role in our algorithm. In particular, we pro-
pose a framework where the local search procedure has the ability to prematurely interrupt its
iterations, in order to save computational efforts.
In the following, we refer to the local search procedure as

(SUCCESS, y∗)← LS(y1, `max,L), (2)

where y1 is the starting point of the local search, `max is the maximum number of iterations,
L = (x∗

1, x
∗

2, . . .) is a list of already identified local minima. If this set is non empty, the local
search may be prematurely interrupted if it is likely to converge to an already identified local
minimum . If the set is empty, the local search converges to a local minimum, except in the pres-
ence of numerical problems. SUCCESS is a boolean variable which is true if the procedure has
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converged to the local minimum y∗, and false if the method has failed to converge, or has been
prematurely interrupted. If SUCCESS = false, y∗ is irrelevant. The local search procedure is
globally convergent, so that failure to converge may be due only to severe numerical problems,
or to a small value of `max. We describe our specific local search procedure in Sections 2.1 and
2.2.

A VNS heuristic requires also a procedure to define neighbors of a current iterate. We adopt
the conventional structure of nested neighborhoods Nk(x), k = 1, . . . , nmax, where Nk(x) ⊂
Nk+1(x) ⊆ R

n, for each k, and nmax is typically of the order of 5. For each k, we use a
procedure providing a list of p neighbors of x (typically, p = 5) within Nk(x), that we denote
by

(z1, z2, . . . , zp) = NEIGHBORS(x, k). (3)

We describe two specific neighbors generation procedures in Section 2.3.
The VNS framework we are proposing can be described as follows.

Initialization The algorithm must be started from x∗

1, which is a local mimimum of f . We
propose two different ways to obtain x∗

1: a cold start and a warm start procedures. A
cold start happens when the user provides a local optimum, or when the local search
procedure is run once until convergence. In this case, the set of visited local minima L
is initialized as L = {x∗

1}. The warm start procedure, which has shown to be useful in
practice, proceeds as follows.

1. Initialize the set of local minima as L = ∅.
2. Generates randomly m points yj, j = 1, . . . , m.
3. Apply m times the local search procedure, that is

(SUCCESSj, y
∗

j )← LS(yj, `small, ∅), (4)

where typical values of the parameters used in our experiments are m = 5 and
`small = 20.

4. If SUCCESSj is true, then a local minimum has been identified, and L = L∪ {y∗

j}.
5. Select y1 = argminj=1,...,m f(y∗

j ), the best point generated by the above procedure.
6. Apply the local search procedure from y1, that is

(SUCCESS, x∗

1)← LS(y1, `large, ∅), (5)

where typical values of `large range from 200 to 1000, depending on the size n of the
problem. If y1 is a local minimum, (5) is not applied. Also, we update

L = L ∪ {x∗

1}. (6)

If this last local search fails (that is, SUCCESS is false), we declare the heuristic to
fail, and stop.

The best iterate found is denoted by x1
best and is initialized by x∗

1.
The iteration counter k is initialized to 1.
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Stopping criteria The iterations are interrupted when one of the following criteria is verified.

1. The last neighborhood was unsuccessfully investigated, that is k > nmax.
2. The CPU time exceeds a given threshold tmax, typically 30 minutes (18K seconds).
3. The number of function evaluations exceeds a given threshold evalmax, typically 105.

Main loop For each VNS phase, we apply the following steps.

1. Generate neighbors of xk
best:

(z1, z2, . . . , zp) = NEIGHBORS(xk
best, k). (7)

2. The local search procedure is applied p times, starting from each generated neigh-
bors, that is, for j = 1, . . . , p,

(SUCCESSj, y
∗

j )← LS(zj, `large,L). (8)

3. If all local search procedures have been interrupted, that is if SUCCESSj = false,
for j = 1, . . . , p, we have two variants:
Economical We set k = k + 1 and proceed to the next VNS phase.
Conservative We apply the local search to convergence from the best point identi-

fied by the procedure, that is

(SUCCESS, y∗)← LS(z∗, `large, ∅), (9)

where z∗ is such that f(z∗) ≤ f(y∗

j ), j = 1, . . . , p. If SUCCESS = true, we
update the set of local optima: L = L ∪ {y∗}.

4. Otherwise, we update the list of local minima, that is for each j such that SUCCESSj =
true,

L = L ∪ {y∗

j}. (10)

5. We define xk+1

best as the best point in L, that is xk+1

best ∈ L and

f(xk+1

best ) ≤ f(x), for each x ∈ L. (11)

6. If xk+1

best = xk
best, then we could not improve the best solution during this VNS phase.

We must investigate the next neighborhood. We set k = k + 1 and we proceed to
the next VNS phase.

7. Otherwise, we have found a new candidate for the global optimum. The neighbor-
hood structure is reset, that is, x1

best = xk+1

best , k = 1 and we proceed to the next VNS
phase.

Output The output is the best solution found during the algorithm, that is xk
best.
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2.1 Local search

We now describe our local search procedure (2). It is based on a trust region framework (see
Conn et al., 2000).
A trust-region algorithm is an iterative numerical procedure in which the objective function f

is approximated in a suitable neighborhood of the current iterate (we call it the trust-region).
More formally, it can be described as follows.

Initialization Initialize the radius of the trust region1 ∆1, the iteration counter ` = 1 and
H1 = I , the identity matrix.

Model definition Define a quadratic model of f around y`, that is, for s ∈ R
n,

m`(y` + s) = f(y`) +∇f(y`)
T s +

1

2
sT H`s. (12)

Step computation. Compute a tentative step s` within the trust region, that sufficiently reduces
the model m`. This is obtained by solving (not necessarily to optimality) the so-called
trust-region subproblem:

{

mins m`(y` + s)
s.t. ‖s‖2 ≤ ∆`.

(13)

We use the truncated conjugate gradient algorithm described by Conn et al. (2000, chap.
7) (see also Toint, 1981 and Steihaug, 1983).

Acceptance of the tentative step Compute f(y` + s`) and define

ρ` =
f(y`)− f(y` + s`)

m`(y`)−m`(y` + s`)
. (14)

If ρ` ≥ 0.1, the tentative step is accepted, and we define y`+1 = x` + s`; otherwise it is
rejected and y`+1 = y`.

Trust-region radius update. Set

∆k+1 =







max(2‖s`‖2, ∆`) if ρ` ≥ 0.9,
∆` if ρ` ∈ [0.1, 0.9),
0.5‖s`‖2 if ρ` ∈ [0, 0.1).

If it happens that ρ` < 0, the adequation between the model and the objective function is
so poor that we consider it as a special case. In this case, we use the technique described
in Conn et al. (2000, chap. 17).

Update the hessian approximation using the symmetric rank one (SR1) formula when the
tentative step is accepted:

H` = H`−1 +
(g`−1 −H`−1d`−1)(g`−1 −H`−1d`−1)

T

(g`−1 −H`−1d`−1)T d`−1

(15)

where d`−1 = y` − y`−1 and g`−1 = ∇f(y`)−∇f(y`−1).
Note that H` is not necessarily positive definite when using SR1.

1In our tests, we have used the procedure proposed by Sartenaer (1997), but any arbitrary, strictly positive,
value can be used.
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Stopping criteria The algorithm is interrupted in one of the below cases.

• If ` ≥ `max, the maximum number of iterations is reached. Set SUCCESS = false,
y∗ = y` and STOP.
• If ‖∇f(y`)‖ ≤ 10−6, the local search has converged to a local minimum up to the

desired precision, set SUCCESS = true, y∗ = y` and STOP.
• If one of the tests described in Section 2.2 is verified, then it is preferable to prema-

turely interrupt the iterations. We set SUCCESS = false, y∗ = y` and STOP.

2.2 Identification of unpromising convergence

A key feature of our approach is to spare computational time by prematurely interrupting the
local search iterations if they do not look promising. Note that these tests are applied only if the
set L in (2) is not empty.
In order to do so, we combine three criteria. First, we check if the algorithm does not get closer
and closer to an already identified local minimum. Second, we check that the gradient norm is
not too small when the value of the objective function is far from the value at the best iterate in
L. Third, we check if a significant reduction in the objective function is achieved.
More formally, we prematurely interrupt the local search iterations if one of the following con-
ditions is verified when a tentative step is accepted.

• ∃x ∈ L such that ‖y` − x‖ ≤ 1,

• ‖∇f(y`)‖ ≤ 10−3 and f(y`)− fbest ≥ 3, where fbest is the value of the objective function
at the best iterate in L,

• f(y`) > f(y`−1) + 0.3∇f(y`−1)
T s`−1 and f(y`)− fbest ≥ 3. This Armijo-like condition

is supposed to be more demanding than the sufficient reduction condition, based on (14).

Note that the threshold values presented above have been empirically selected based on various
tests of the algorithm.

2.3 Generating neighborhoods

We present now the neighbors generating procedure (3). The key idea is to analyze the curvature
of f at x through an analysis of the eigenstructure of H , the approximation of the second
derivatives matrix of f at x.
Let v1, . . . , vn be the (normalized) eigenvectors of H , and λ1, . . . , λn the corresponding eigen-
values. We compute them using a standard QR procedure (see, for instance, Golub and Loan,
1996).
Neighbors are generated in direction w1, . . . , w2n, where wi = vi if i ≤ n, and wi = −vi

otherwise. The size of the neighborhood is defined as a function of k as follows. If k = 1, then
dk = dINIT. If k > 1, then dk = γdk−1. We have adopted dINIT = 1 and γ = 1.5 after various
numerical tests. The p neighbors generated by this procedure are of the type

zj = x + αdkwi (16)
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where j = 1, . . . , p, α is randomly drawn using a uniform distribution between 0.75 and 1, and
i is the index of a selected direction.
The indices i for the neighbor generation process are selected according to a sequence of random
draws among the 2n possible values. We immediately note that the same direction can be
selected more than once. In this case, the randomness of α practically guarantees that different
neighbors are generated.
The idea is to assign more probability to directions such that the curvature of the function is
larger. Indeed, it is hoped that moving in a direction of high curvature increases the chance
to jump toward another valley. Taking directions associated with small curvature might cause
the iterates to be stucked in a valley where significant improvement cannot be achieved. More
formally, the probability for wi to be selected is given by

P (wi) = P (−wi) =
e

β
λi
dk

2
n
∑

j=1

e
β

λj

dk

. (17)

The probability distribution depends on β which can be viewed as a weight factor associated
with the curvature. A value of β = 0 corresponds to a uniform distribution, where the curvature
is actually ignored. A high value of β affects all the mass to the two directions with highest
curvature, and zero probability elsewhere. In our tests, we have selected a value of β = 0.05.
Note that the curvature of the function is a local information, which may not be relevant for
large neighborhoods. The role of dk in (17) is to decrease the impact of the curvature and to
converge toward a uniform distribution as the size of the neighborhoods grows.

3 Numerical experiments
We have performed intensive numerical tests on a set of problems from the literature (see,
for instance, Hedar and Fukushima, 2002, and Chelouah and Siarry, 2003). More precisely,
we have used a total of 25 optimization problems corresponding to 15 different test functions
described in Appendix A. The functions we use to challenge our algorithm exhibit very different
and specific shapes. Most of the functions present several local minima. Some of them have
many crowded local minima such as Shubert (SH) and Rastrigin (RT) functions. Easom (ES)
function has its global minimum lying in a very narrow hole while the well-known Rosenbrock
(Rn) presents a narrow valley. Smooth and more standard functions like De Joung (DJ) function
or Zakharov (Zn) function have also been used.
Note that for each test problem, a search space is provided in which initial points can be ran-
domly selected.

3.1 Performance analysis

All variants of our algorithm and test functions have been implemented with the package Oc-
tave (see www.octave.org or Eaton, 1997) and computations have been done on a desktop
equipped with 3GHz CPU, in double precision.
For each test problem, 100 runs have been performed with our VNS algorithm, except for
larger size instances (n ≥ 50) when only 20 trials have been made. A run is considered to
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be successful if the VNS algorithm finds a global minimum of the problem. The warm start
procedure described in Section 2 has been used for all reported tests of our VNS. The random
starting points involved in this procedure have been randomly selected in the search domain
associated with the problem (see Appendix A).
We consider two measures of performance: the average percentage of success and the average
number of function evaluations across successful runs. Performances of competiting algorithms
have been obtained from the literature.
For the sake of fair comparison with competitors, the gradient of the objective function used in
the local search is computed by using finite differences, requiring n additional function evalu-
ations. Consequently, a single iteration of our local search algorithm requires n + 1 function
evaluations. In practice, analytical gradients should be used to improve the efficiency of our
algorithm.
We are presenting some results with the method proposed by Dolan and More (2002). If fp,a is
the performance index (the average number of function evaluations across successful runs) of
algorithm a on problem p, then the performance ratio is defined by

rp,a =
fp,a

minb{fp,b}
. (18)

For any given threshold π, the overall performance of algorithm a is given by

ρa(π) =
1

np

Φa(π), (19)

where np is the number of problems considered, and Φa(π) is the number of problems for which
rp,a ≤ π. In particular, the value ρa(1) gives the proportion of times that algorithm a wins over
all other algorithms.
Note that the sum of ρa(1) values for all algorithms a considered in a given profile may exceed
1 in the case that some algorithms performs exactly the same on some of the tested problems.
Note also that ρa(π) goes to 1 one as π grows. Methods such that ρa(π) converges fast to 1 are
considered more efficient.

3.2 Variants and competitors

We consider three variants of our algorithm described in Section 2:

1. the main method is called VNS. It uses the economical variant described in Section 2
and consequently never applies the local search without potentially interrupting it prema-
turely. Also, the probabilistic formula (17) is used with β = 0.05.

2. the conservative method is called V NSa. It uses the conservative variant described in
Section 2 in which the local search is applied without premature stop if all local searches
have been stopped.

3. the third variant is called V NSb. It sets β = 0 in (17), that is, it uses equal probabilities
for the neighbors generation procedure.

We compare our method with the following methods from the literature:
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1. Direct Search Simulated Annealing (DSSA), see Hedar and Fukushima, 2002.

2. Continuous Hybrid Algorithm (CHA), see Chelouah and Siarry, 2003.

3. Simulated Annealing Heuristic Pattern Search (SAHPS), see Hedar and Fukushima, 2004.

4. Directed Tabu Search (DTS), see Hedar and Fukushima, 2006.

5. General Variable Neighborhood Search (GVNS), see Mladenovic et al., 2006. Note that
the authors report the number of function evaluations necessary to find the global mini-
mum (the first one of them if several have been identified during the optimization process)
and not the number of function evaluations performed before the algorithm stops. The
measure of performance is thus slightly different.

The respective features of these algorithms have been described in Section 1. Note that we have
chosen the DTS algorithm with Adaptative Pattern Search (APS), called DTSAPS, which was
the best of two variants proposed by Hedar and Fukushima (2006).

3.3 Tests

In the tables presented in this section, some of the cells, corresponding to competitors, are
empty when the information was not reported in the paper.
Table 1 gives the number of successes over the 100 runs for 25 problems. Note that we do not
report results for variants of our algorithm, V NSa and V NSb, as the results are very similar.
Table 2 gives the average number of function evaluations for successful runs on the same 25
problems. In this table, results for all 3 variants of our VNS are included. The comparison
between VNS and GVNS on their 10 common problems is available in a specific table (see Ta-
ble 4) as the measure of performance is slightly different. While Tables 2 and 4 present absolute
values for the average number of function evaluations, Tables 3 and 5 give the corresponding
normalized values with respect to our VNS algorithm.
Finally, Table 6 provides a few results available in terms of CPU time for DTS heuristic on large
size problems. CPU time comparison is always complicated. As DTS has been published in
2006, we believe that it illustrates well the good performance of our algorithm.

3.3.1 Comparison of VNS with competitors except GVNS

We first focus on the five first columns of Tables 1 and 2 for problems of small size (skipping
the three last rows).
From Table 1, we can see that VNS is the most robust algorithm as it achieves a maximal
success rate of 100% on almost all problems, actually 18 out of 20. The best challenger of VNS
with regard to robustness is CHA as it is able to solve on each run 12 problems among 16. For
instance, VNS in the only algorithm able to reach 100% of success on the Shekel S4,n functions.
Table 2 shows that VNS presents the lowest average number of function evaluations on the
majority of the tested problems. One can also see that the efficiency of VNS on Rosenbrock
(Rn) and Zakharov (Zn) functions is becoming better and better when the dimension n of the
problem increases from 2 to 10. In particular, VNS is able to significantly decrease (up to a
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Problem VNS CHA DSSA DTS SAHPS GVNS
RC 100 100 100 100 100 100
ES 100 100 93 82 96
RT 84 100 100 100
SH 78 100 94 92 86 100
R2 100 100 100 100 100 100
Z2 100 100 100 100 100
DJ 100 100 100 100 100
H3,4 100 100 100 100 95 100
S4,5 100 85 81 75 48 100
S4,7 100 85 84 65 57
S4,10 100 85 77 52 48 100
R5 100 100 100 85 91
Z5 100 100 100 100 100
H6,4 100 100 92 83 72 100
R10 100 83 100 85 87 100
Z10 100 100 100 100 100
HM 100 100
GR6 100 90
GR10 100 100
CV 100 100
DX 100 100
MG 100 100
R50 100 79 100
Z50 100 100 0
R100 100 72 0

Table 1: Percentage of success
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Problem VNS CHA DSSA DTS SAHPS V NSa V NSb

RC 153 295 118 212 318 179 165
ES 167 952 1442 223 432 249 237
RT 246 132 252 346 340 234
SH 366 345 457 274 450 630 424
DJ 104 371 273 446 398 104 104
H3,4 249 492 572 438 517 292 268
H6,4 735 930 1737 1787 997 1036 759
S4,5 583 698 993 819 1073 769 589
S4,7 596 620 932 812 1059 752 591
S4,10 590 635 992 828 1035 898 664
R2 556 459 306 254 357 847 618
Z2 251 215 186 201 276 273 280
R5 1120 3290 2685 1684 1104 2197 1157
Z5 837 950 914 1003 716 866 831
R10 2363 14563 16785 9037 4603 4503 2358
Z10 1705 4291 12501 4032 2284 1842 1754
HM 335 225 388 359
GR6 807 1830 1011 831
CV 854 1592 1346 782
DX 2148 6941 3057 2243
R50 11934 55356 510505
Z50 17932 75520 177125∗

R100 30165 124302 3202879
Superscript ∗ means that DTS only obtains points close to the global minimum

Table 2: Average number of function evaluations
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Problem VNS CHA DSSA DTS SAHPS V NSa V NSb

RC 1 1.93 0.77 1.39 2.08 1.17 1.08
ES 1 5.70 8.63 1.34 2.59 1.49 1.42
RT 1 0.54 1.02 1.41 1.38 0.95
SH 1 0.94 1.25 0.75 1.23 1.72 1.16
DJ 1 3.57 2.62 4.29 3.83 1 1
H3,4 1 1.98 2.30 1.76 2.08 1.17 1.08
H6,4 1 1.27 2.36 2.43 1.36 1.41 1.03
S4,5 1 1.20 1.70 1.40 1.84 1.32 1.01
S4,7 1 1.04 1.56 1.36 1.78 1.26 0.99
S4,10 1 1.08 1.68 1.4 1.75 1.52 1.13
R2 1 0.83 0.55 0.46 0.64 1.52 1.11
Z2 1 0.86 0.74 0.80 1.10 1.09 1.12
R5 1 2.94 2.40 1.50 0.99 1.96 1.03
Z5 1 1.14 1.09 1.20 0.86 1.03 0.99
R10 1 6.16 7.10 3.82 1.95 1.91 0.99
Z10 1 2.52 7.33 2.36 1.34 1.08 1.03
HM 1 0.67 1.16 1.07
GR6 1 2.27 1.25 1.03
CV 1 1.86 1.58 0.92
DX 1 3.23 1.42 1.04
R50 1 4.64 42.78
Z50 1 4.21 9.88∗

R100 1 4.12 106.18
Superscript ∗ means that DTS only obtains points close to the global minimum

Table 3: Normalization of average number of function evaluations

Problem VNS GVNS
RC 99 45
SH 305 623
R2 176 274
R10 1822 39062
GR10 1320 1304
H3,4 174 385
H6,4 532 423
S4,5 468 652
S4,10 481 676
MG 17 73

Table 4: Average number of function evaluations - VNS against GVNS
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Problem VNS GVNS
RC 1 0.45
SH 1 2.04
R2 1 1.56
R10 1 21.44
GR10 1 0.99
H3,4 1 2.21
H6,4 1 0.80
S4,5 1 1.39
S4,10 1 1.41
MG 1 4.29

Table 5: Normalization of average number of function evaluations - VNS against GVNS

Problem VNS DTS
R50 208 1080
Z50 228 1043
R100 1171 15270

Table 6: Average CPU time in seconds - Large size problems

factor 7 compared to some methods) the average number of evaluations of f on problems R10

and Z10.
We now present the performance profiles of all 5 heuristics on 15 common problems (out of the
20 problems in Table 2) in Figure 1. A zoom for π between 1 and 5 is provided in Figure 2. The
measure of performance is the average number of function evaluations (from Table 2). From
Figure 2, we see that VNS is the best algorithm on 60% of the problems. Moreover, when VNS
is not the best algorithm, it remains within a factor around 1.5 of the best method on 90% of
the problems. Results are very satisfactory as VNS is the most robust but also the most efficient
method among the 5 tested methods.
As we have already seen, our VNS behaves better and better on Rosenbrock and Zakharov
problems when the dimension of the problem increases. This motivated us to perform sev-
eral tests in larger dimension to see if our algorithm can achieve a significant gain in terms of
number of function evaluations as well as CPU time. Table 1 shows the robustness of VNS
compared to CHA and DTS methods on these 3 large size problems while Table 2 provides
the average number of function evaluations. The performance with regard to the CPU time for
VNS and DTS can be found in Table 6. VNS is the most robust as well as the most efficient on
these 3 problems. Even if CHA is the best competitor, it requires up to 5 times more function
evaluations.
These results are very encouraging for the future use of our algorithm to real applications,
such as the estimation of discrete choice models. Comparing VNS with DTS, we clearly see
that there is a computational overhead associated with our algorithm as the gain in CPU time
(see Table 6) is less impressive compared to the gain in number of function evaluations (see
Table 2). This is mainly due to our more costly local search and the QR-analysis discussed in
Section 2.3. However, even if the tested functions are not cumbersome to compute, our method
requires significantly less time to identify the global minimum, showing that the additional
computational cost of our algorithm is compensated by its better efficiency. Given that, we are
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Figure 1: Average number of function evaluations

confident that the proposed algorithm will reduce the CPU time for solving problems such that
the evaluation of the objective function dominates all other computations of numerical algebra,
as it is the case for the log-likelihood function of advanced discrete choice models.

3.3.2 Comparison of VNS with GVNS

Now we consider the columns associated with VNS and GVNS in Table 1 as well as in Table 4.
10 common problems allow to challenge our VNS against the GVNS recently proposed by
Mladenovic et al. (2006).
VNS and GVNS exhibit the same high level of robustness on the tested problems. GVNS
always reaches the maximal rate of success while VNS attains 100% of success on all common
problems, except one. Still, 78 runs on the Shubert (SH) function were successful.
From Table 4, we can note that VNS is the most efficient method on 7 out of the 10 problems.
It is able to significantly decrease the number of function evaluations required to identify the
global minimum of tested problems. When VNS is beaten, it remains within a reasonable
factor of GVNS, requiring at worst the double of function evaluations on the Branin RCOS (RC)
function. Contrarily to VNS, GVNS can be much slower on several problems. The performance
profiles corresponding to Table 4 are provided in Figures 3(a) and 3(b).

3.3.3 Comparison of the variants of VNS

We consider the three columns of Table 2 associated with the three variants of our VNS.
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Figure 2: Zoom on the average number of function evaluations

Comparing VNS with V NSa, we clearly see that applying a full local search for each VNS
iteration significantly increases the number of evaluations of f , up to a factor 2. As both algo-
rithms are similar in terms of robustness (percentage of runs leading to the global minimum), it
means that the tests proposed in Section 2.2 allow to reduce the number of function evaluations
without deteriorating the capability of finding the global minimum. Moreover, we can argue
that applying a classical VNS framework in which full local searches are applied to all neigh-
bors generated within the VNS would be definitely too cumbersome from a computional point
of view.
Comparison bewteen VNS and V NSb shows that VNS is the best method for most of the 20
tested problems, with an important gain on some problems. From the related performance
profile provided in Figure 4, it appears that VNS is the fastest method on about 75% of the
problems. The gain obtained can be up to a factor of 1.5, meaning that using a purely random
selection for search directions in order to compute neighbors may need 50% additional function
evaluations compared to the strategy proposed in Section 2.3. This strategy prevents the algo-
rithm from getting stucked in a given valley, where no significant improvement can be achieved,
and gives the possibility to jump over valleys by using information on the curvature of f .

4 Conclusions and perspectives
The paper deals with nonlinear global optimization. We have proposed a new heuristic ded-
icated to identify the global minimum of an unconstrained nonlinear problem. Limiting the
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Figure 3: Average number of function evaluations - VNS against GVNS

number of function evaluations is of major importance when the objective function is cumber-
some to evaluate.
Within our VNS heuristic, we use an efficient nonlinear optimization algorithm using first and
second order derivatives in order to quickly identify a local minimum of the problem. The
ability to prematurely stop the local search allows to reduce the number of function evaluations
(as well as the CPU time). Information about the function and its derivatives is also used to
compute the list of neighborhoods involved in the VNS and to select the associated neighbors.
The better use of available and relevant information on f is determinant in the good behavior of
the proposed method.
Numerical results obtained with our method are very satisfactory as VNS is the most robust but
also the most efficient method on the problems we used in the experiments. The VNS frame-
work makes the algorithm robust by its capability to explore and diversify the search space. The
proposed algorithm significantly reduces the number of function evaluations compared to other
efficient published methods. This makes the method particularly appealing for problems where
the CPU time spent in function evaluations is dominant, such as those involving simulation.
The results are consistent with the way the heuristic has been designed.
As conclusion, we could say that this paper represents a nice and profitable collaboration and
interaction between nonlinear optimization and discrete optimization.
The next step related to this research will be to integrate the algorithm presented in this paper
into the software package BIOGEME developed by Bierlaire (2003). As our approach is shown
to reduce the number of function evaluations necessary to identify a global minimum of a prob-
lem while improving the probability of success, we are confident that the algorithmic method
we propose is an efficient way of estimating discrete choice models in which the log-likelihood
function is cumbersome to evaluate and presents several optima. Significant gain is expected in
the estimation time.
Several improvements should also be investigated. We believe that we could have a better es-
timation of convergence basins of already encountered minima by stocking also other previous
iterates and not only local minima. Also, defining p as dynamic from iteration to iteration of
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the VNS might also be interesting to investigate.
From a numerical point of view, we could implement a more efficient eigen-structure analysis
in the VNS algorithm, aiming to reduce the computational cost of the overall method. Other
stopping criteria could also be used to compare heuristics challenged in the paper. For instance,
we could see how each method behaves with a given budget of CPU time or a given budget of
function evaluations.
Another track of development would be to incorporate the VNS presented in this paper into
an Adaptive Memory Method (AMM) framework (see Rochat and Taillard, 1995) in order to
improve the diversification inside our algorithm.
Finally, we could investigate how the ideas presented in this paper could be tailored to con-
strained nonlinear global optimization.
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A List of test functions

A.1 Branin RCOS Function (RC)
• 2 variables

• RC(x1, x2) = (x2 − (5.1/4π2)x2
1 + (5/π)x1 − 6)2 + 10(1− (1/8π)) cos(x1) + 10

• Range of initial points: −5 < x1 < 10, 0 < x2 < 15.

• Global minima: (x∗

1, x
∗

2) = (−π, 12.275), (π, 2.275), (9.42478, 2.475);
RC(x1, x

∗

2) = 0.397887
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A.2 Easom Function (ES)
• 2 variables

• ES(x1, x2) = − cos(x1)cos(x2)e
−(x1−π)2−(x2−π)2

• Range of initial points: −10 < xj < 10, j = 1, 2.

• Several local minima

• Global minimum: (x∗

1, x
∗

2) = (π, π); ES(x1, x
∗

2) = −1

A.3 Rastrigin Function (RT)
• 2 variables

• RT (x1, x2) = x2
1 + 2x2

2 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7

• Range of initial points: −1 < xj < 1, j = 1, 2.

• Many local minima

• Global minimum: (x∗

1, x
∗

2) = (0, 0); RT (x1, x
∗

2) = 0

A.4 Shubert Function (SH)
• 2 variables

• SH(x1, x2) = (
5

∑

j=1

j cos((j + 1)x1 + j))(
5
∑

j=1

j cos((j + 1)x2 + j))

• Range of initial points: −10 < xj < 10, j = 1, 2.

• 760 local minima

• 18 global minima: SH(x1, x
∗

2) = −186.7309

A.5 De Joung Function (DJ)
• 3 variables

• DJ(x1, x2, x3) = x2
1 + x2

2 + x2
3

• Range of initial points: −5 < xj < 5, j = 1, 2, 3.

• Global minimum: (x∗

1, x
∗

2, x
∗

3) = (0, 0, 0); DJ(x1, x
∗

2, x
∗

3) = 0

A.6 Hartmann Function (H3,4)
• 3 variables

• H3,4(x) = −
4
∑

i=1

cie
−

3
P

j=1

aij(xj−pij)
2

• Range of initial points: 0 < xj < 1, j = 1, 2, 3.

• 4 local minima

• Global minimum: x∗ = (0.114614, 0.555649, 0.852547);
H3,4(x∗) = −3.86278
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i aij ci pij

1 3.0 10.0 30.0 1.0 0.689 0.1170 0.2673
2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470
3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547
4 0.1 10.0 35.0 3.2 0.0381 0.5743 0.8828

A.7 Hartmann Function (H6,4)
• 6 variables

• H6,4(x) = −
4
∑

i=1

cie
−

6
P

j=1

aij(xj−pij)
2

• Range of initial points: 0 < xj < 1, j = 1, . . . , 6.

• 6 local minima

• Global minimum: x∗ = (0.201690, 0.150011, 0.476874, 0.275332, 0.311652, 0.657300);
H6,4(x∗) = −3.32237

i aij ci

1 10.0 3.0 17.0 3.50 1.70 8.00 1.0
2 0.05 10.0 17.0 0.10 8.00 14.00 1.2
3 3.00 3.50 1.70 10.0 17.00 8.00 3.0
4 17.00 8.00 0.05 10.00 0.10 14.00 3.2

i pij

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

A.8 Shekel Functions (S4,m)
• 4 variables

• S4,m(x) = −
m
∑

i=1

(
4
∑

j=1

(xj − aij)
2 + c(i))−1

• 3 functions are considered, namely: S4,5, S4,7 and S4,10

• Range of initial points: 0 < xj < 10, j = 1, . . . , 4.

• m local minima

• Global minimum: x∗ = (4, 4, 4, 4);
S4,5(x∗) = −10.1532, S4,7(x∗) = −10.4029 and S4,10(x∗) = −10.5364
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i aij ci

1 4.0 4.0 4.0 4.0 0.1
2 1.0 1.0 1.0 1.0 0.2
3 8.0 8.0 8.0 8.0 0.2
4 6.0 6.0 6.0 6.0 0.4
5 3.0 7.0 3.0 7.0 0.4
6 2.0 9.0 2.0 9.0 0.6
7 5.0 5.0 3.0 3.0 0.3
8 8.0 1.0 8.0 1.0 0.7
9 6.0 2.0 6.0 2.0 0.5
10 7.0 3.6 7.0 3.6 0.5

A.9 Rosenbrock Function (Rn)
• n variables with n = 2, 5, 10, 50, 100

• Rn(x) =
n−1
∑

j=1

(100(x2
j − xj+1)

2 + (xj − 1)2)

• Range of initial points: −5 < xj < 10, j = 1, 2, . . . , n

• Global minimum: x∗ = (1, . . . , 1), Rn(x∗) = 0

A.10 Zakharov Function (Zn)
• n variables with n = 2, 5, 10, 50

• Zn(x) =
n
∑

j=1

x2
j + (

n
∑

j=1

0.5jxj)
2 + (

n
∑

j=1

0.5jxj)
4

• Range of initial points: −5 < xj < 10, j = 1, 2, . . . , n

• Global minimum: x∗ = (0, . . . , 0), Rn(x∗) = 0

A.11 Hump Function (HM)
• 2 variables

• HM(x1, x2) = 1.0316285 + 4x2
1 − 2.1x4

1 + 1
3x6

1 + x1x2 − 4x2
2 + 4x4

2

• Range of initial points: −5 < xj < 5, j = 1, 2.

• Global minima: (x∗

1, x
∗

2) = (0.0898,−0.7126).(−0.0898, 0.7126);
HM(x1, x

∗

2) = 0

A.12 Griewank Function (GRn)
• n variables with n = 6, 10

• GRn(x) =
n
∑

j=1

x2
j/4000−

n
∏

j=1

cos(xj/
√

j) + 1

• Range of initial points: −10 < xj < 10, j = 1, 2, . . . , n

• Many local minima

• Global minimum: x∗ = (0, . . . , 0), GRn(x∗) = 0
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A.13 Colville Function (CV)
• 4 variables

• CV (x) = 100(x2
1 − x2)

2 + (x1 − 1)2 + (x3 − 1)2 + 90(x2
3 − x4)

2 + 10.1((x2 − 1)2 + (x4 − 1)2) +
19.8(x2 − 1)(x4 − 1)

• Range of initial points: −10 < xj < 10, j = 1, . . . , 4

• Global minimum: x∗ = (1, 1, 1, 1), CV (x∗) = 0

A.14 Dixon Function (DX)
• 10 variables

• DX(x) = (1− x1)
2 + (1− x10)

2 +
9

∑

j=1

(x2
j − xj+1)

2

• Range of initial points: −10 < xj < 10, j = 1, . . . , 10

• Global minimum: x∗ = (1, . . . , 1), DX(x∗) = 0

A.15 Martin&Gaddy Function (MG)
• 2 variables

• MG(x) = (x1 − x2)
2 + (x1+x2−10

3 )2

• Range of initial points: −20 < xj < 20, j = 1, 2

• Global minimum: x∗ = (5, 5), MG(x∗) = 0
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