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Abstract

In this exploratory paper we consider a robust approach to decisional problems subject to un-
certain data in which we have an additional knowledge on the strategy (algorithm) used to react
to an unforeseen event or recover from a disruption. This is atypical situation in scheduling
problems where the decision maker has no a priori knowledge on the probabilistic distribution
of such events but he only knows rough information on the event, such as its impact on the
schedule. We discuss a general framework to address this situation and its links with other ex-
isting methods, we present an illustrative example on the Shortest Path Problem with Interval
Data (SPPID) and we discuss a more general application to airline scheduling with recovery.
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1 Introduction

Mathematical modeling is an effective way to solve a wide range of decisional problems. Appli-
cations in production, transportation, engineering and finance benefits from quantitative meth-
ods developed for mathematical optimization. As the wordmodel suggests, we represent the
reality through a set of equations and we solve this set of equations in order to take decisions
with some quantitative support. Sometimes, some strong assumptions are taken to model de-
cisional problems, because otherwise, they are intractable from a computational point of view.
For example objective functions and constraints are assumed to be linear and data is assumed
to be completely and deterministically known in advance. Indeed it is impressive to notice
how many real life problems can be modeled with accuracy using linear programs. However,
data uncertainty is one major issue that might completely invalidate the solution to a decisional
problem.

There are many fields where operations research tools are needed and used to help the deci-
sion makers, as for example airline scheduling, container transshipment, traffic control, vehicle
routing and many others. These tools are useful to solve difficult problems the decision taker is
faced with. The common point of all these problems is that thetaken decision is carried out in a
constantly varying world, and thus the initial plan is rarely fulfilled as planned. There are many
works in the literature that try to deal with this uncertainty. There are mainly two approaches:
react or modify decisions when data is revealed or anticipate data realization explicitly in the
solution. We find in the literature several contributions inthese two domains. We refer the
reader to Grötschel et al., 2001 and Albers, 2003 for the first, and Kall and Wallace, 1994 and
Kouvelis and Yu, 1997 and the references therein for the second type of approach. We refer to
them asReactive Algorithms (RA) andProactive Algorithms (PA) respectively.

We study in this paper a general framework to deal with this data uncertainty and illustrate the
difference with the existing methods on the Shortest Path Problem with Interval Data, which
is a simple but widely studied problem that arises in many transportation applications. We
then extend the principle to airline scheduling that is a challenging problem taking more and
more importance as the airline transport develops and is faced to bigger and harder scheduling
problems than ever.

In section 2 we propose a classification of the different approaches we found in the literature.
We then consider in section 3 a general optimization problemand we propose a framework to
consider RA and PA together. We state the differences between our framework and stochastic
optimization with recourse. We provide the motivation on a simple problem, the Shortest Path
Problem with Interval Data (SPPID) in section 4 and we extendthe concepts to airline schedule
optimization in section 5.

2 Algorithm Classification

Given a general optimization problemP subject to data uncertainty it is common to characterize
it as anuncertainty set U . A particularrealization, also called ascenario, within this uncertainty
set is denoted byu ∈ U . We assume, without loss of generality, that we are faced with an
uncertain problem for which we want to minimize some cost function. Let S be the set of
feasible solutions to the problem andcu(s) be the cost of solutions ∈ S of problemP under
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scenariou ∈ U .

Our first characterization criteria is the nature of this uncertainty set. We distinguish be-
tweenProbabilistic Uncertainty Sets (PUS) andNon Probabilistic Uncertainty Sets (NPUS).
In PUS, we are given a probability distribution, mappingu ∈ U into p(u) ∈ (0, 1], and with
∑

u∈U p(u) = 1, holding some probabilistic information on the frequency scenariou will occur.
Notice that we suppose here the support ofU to be discrete for notation simplicity. Recall that
for a continuous uncertainty set, on must replace the summation by an integral. In general, in
uncertain problems with PUS, the optimal solution to the problem is the one performing best
in average over the whole uncertainty set, thus one needs to evaluate the expectation of the cost
over the whole uncertainty set.

On the other hand, in NPUS, no probabilistic information is given, we assume to know only
the bounds of this uncertainty set, without any frequency indication. Thus, one does not need
to evaluate the solution over the whole uncertainty set, butonly on the extreme scenarios. The
underlying difficulty is to identify these extreme scenarios.

We also distinguish betweenReactive Algorithms (RA) andProactive Algorithms (PA) as dis-
cussed in section 1.

We get four distinct classes, as shown in Table 2.

Reactive Algorithms
(RA)

Proactive Algorithms
(PA)

Probabilistic Uncer-
tainty Set (PUS)

Stochastic optimization
with Recourse

Stochastic proactive
optimization

Non Probabilistic Un-
certainty Set (NPUS)

On-Line optimization Worst-Case Optimiza-
tion

Table 1: Characterization of the different approaches for an optimization problem under uncer-
tainty.

On-line optimization This class of algorithms is reactive: a new decision is takenaccording
to the revealed data and the previous decisions. Thus, an on-line algorithm usually encodes a
decisional strategy rather than a forecast solution. The advantage of these techniques is that this
type of situation often occurs in real world. Moreover, theyallow to react to any data change in
real time. However, it is difficult to measure their performance, as the nature of the scenario is
revealed iteratively. The usual way is to compute thecompetitivity ratio, which corresponds to
compare the final cost of the obtained solution against the deterministic optimal solution when
the scenario that occurred is known. This is clearly an a posteriori performance measure, as
one compare the costs once the solution has been computed andcarried out. Thus, it is usual
to determine bounds on the worst competitivity ratio, whichcan be tight for some applications
(see Albers, 2003). In real world applications this approach performs at acceptable ranges in
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terms of optimality deviation, but we can usually find scenarios for which the on-line algorithm
performs poorly, making it difficult to get any estimates of the costs a priori.

Stochastic optimization with Recourse The main idea of the stochastic optimization with
recourse is to include the possibility of taking reactive decisions when a scenario makes the
solution unfeasible. The way this is taken into account is toadd a constraint violation cost to
the overall solution cost. The sum of solution cost and theexpected recourse costs over the
whole uncertainty set has to be minimized (see Kall and Wallace, 1994). The recourse costs
are evaluated through experience and thesecond-stage problem, that determines the optimal
reaction and its cost to a given one particular scenario, is supposed to be always feasible, i.e.
one can always take a recourse decision to make a solution feasible, whatever the solution and
the scenario.

We mention here that the definition of stochastic optimization with recourse has slightly dif-
ferent definition according to the applications. In Polychronopoulos and Tsitsiklis, 1996 and
Provan, 2003 is given an application of stochastic optimization with recourse to the Shortest
Path Problem with Interval Data (SPPID), but in both papers,the technique is presented as a
reactive algorithm that encodes a strategy to react to data revealing. We thus classify the method
in the reactive class, as it allows reaction and re-optimization after new data is revealed.

Stochastic proactive optimization The aim of stochastic proactive optimization algorithms
is to exploit the a priori knowledge about the probabilitiesof the different scenarios and to com-
pute a solution that has lowest expected cost or that minimizes the probability of high costs over
the whole uncertainty setU when carried out without any reaction to any data revealing.This
approach implies the evaluation of the expected cost of a solution over the whole uncertainty
set, which might be computationally hard.

In both expected cost or high cost probability minimization, the scenarios with low probability
have few impact on the optimal solution. If a solutions ∈ S is unfeasible under a certain
scenariou ∈ U , but with a positive probability, it has infinite cost:cu(s) = ∞. Thus, in the
expected cost minimization case, if a solutions ∈ S such thatcu(s) < ∞, ∀u ∈ U exists,
then solutions is feasible for every scenariou ∈ U and the optimal solution also is. On the
other hand, high cost probability minimization might lead to a solution with worse potential
(higher expected cost), but with the probability of this event being the smallest. See Wallace
and Ziemba, 2005, Kall and Wallace, 1994 for details on stochastic algorithms and Laumanns
and Zenklusen, 2007 for a high cost probability minimization algorithm.

Stochastic algorithms are useful for both feasibility and cost reducing objectives. However,
their main disadvantages are that they need evaluation of the solution on the whole uncertainty
set to compute the solution’s expected cost, and that they are built on the fact that the expected
cost with respect to the random occurrences of the scenariostends to its mean value according to
the probabilistic distribution on the uncertainty set. Thestochastic approach is thus useful and
a good predictor if we apply the computed solution recursively to many scenarios assuming the
probability measure onU remains unchanged, as, in this case, the law of big numbers ensures
average costs tends to its expected value. The assumption ofthe stochastic approach is valid for
the case that irreversible structural decisions are made over a long planning horizon or when the
decision maker is assumed to be risk neutral (Kouvelis and Yu, 1997), but might predict very
badly when the solution is applied only a few scenarios.
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Worst-case optimization This approach tends to minimize the maximal possible cost, thus
to get an upper cost bound. Similarly to the stochastic algorithm minimizing the expected cost,
a worst-case algorithm will find, if it exists, a solutions ∈ S that isrobust, i.e. that is feasible
and thus with finite cost, for all scenariosu ∈ U . Although the bound on the cost might be
very pessimistic, it remains a valid bound, in opposition tothe estimated cost of the stochastic
solution, where the cost might become dramatically high. Unfortunately, this gain in security
translates in a loss of focus on low costs: as we focus on minimizing the upper cost bound in
the worst case and we do not consider any probability, we might protect against a scenario that
might occur only in extremely rare cases in reality. Moreover, as there is no consideration of
better realizations, the solution might have high cost (meaning close to the cost bound) for every
scenario, which is in this case a bad property of the robust solution (Kouvelis and Yu, 1997): a
solution with a slightly higher worst case cost bound but a much lower best case bound would
be much more interesting. In their contribution Bertsimas and Sim, 2004 propose to bound data
uncertainty using a box-interval with the additional hypothesis that it is unlikely that all the
data changes simultaneously. The approach is similar to thehigh cost probability minimization
but with the objective of worst cost minimization. The authors define aprotection level, which
corresponds to the probability of the solution to be unfeasible.

3 A worst case pro-active method based on a reactive algo-
rithm

We want to focus on a worst-case strategy because we want our solution to be protected against
some very nasty scenarios and to bound the costs. The main reason is that determining a valid
probabilistic structure of the uncertainty set that matches the nature is extremely difficult and it
is a process that usually needs a wide set of observations. However, modeling the uncertainty
with stochastic distributions is useful in all situations where it can be done properly (see appli-
cations in Wallace and Ziemba, 2005). Moreover, using worst-case measure does not require
the evaluation of the solution on the whole uncertainty set but only for the extreme scenarios.

We also want to avoid the reaction process of reactive algorithm, because we don’t want the
behavior of the solution to be dictated by the nature’s realizations: the reason we try to capture
some information about the uncertainty is to be able to exploit it as much as possible.

However, we want to keep the modelization of the uncertaintyset as simple as possible: we
only assume that we know some information about the nature ofthe scenarios that experience
allows us to capture, but we do not try to measure their recurrences.

We are given additional tools: we are able to determine whether and when a solution becomes
unfeasible under a certain scenario and we also know the deterministic reactive algorithm, com-
monly addressed asrecovery algorithm. It encodes the strategies to recover the unfeasible solu-
tion given the disruption point in the scenario. We exploit this knowledge in every scenario with
the final goal of finding a solution that has low cost on both thescenarios where it is performed
as planned and in the scenarios where some reactive decisions must be taken.

We formalize this concept with the aid of some mathematics. We recall the following notation:
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P the problem to be solved;
u ∈ U one scenario or realization in the uncertainty set;
s ∈ S one solution in the set of all possible solutions;
cu(s) the cost of solutions under scenariou;
c∗u the optimal solution to the deterministic problem given scenariou;
c̃u(s) the partial cost of solutions under scenariou up to the disruption point;
cRECu (s) the additional cost of the recovery algorithm for solutions in scenariou.

c̃u(s) is the cost of the solution one has to pay to reach the disruption point that, once a scenario
u and a solutions are given, can be evaluated by hypothesis.

We formulate our worst-case optimization problem as follows:

(P ) min
s∈S

{

max
u∈U

c̃u(s) + cRECu (s)

}

(P ) is indeed worst-case based as it seeks the minimal cost of a solution in the worst possible
case. As discussed in section 1, this is a pessimistic objective. Thus, we also want to include
some information about more optimistic cases. In fact, in order to try to compensate the para-
noiac behavior of worst-case approaches, we add the measureof the best-case approach to the
objective function. The point there is that both worst and best cases are extreme scenarios and
considering the two extrema simultaneously eventually annihilates the extremum-case effects.
We thus focus on the following problem:

(P ′) min
s∈S

{

max
u∈U

c̃u(s) + cRECu (s) + min
u′∈U

c̃u′(s) + cRECu′ (s)

}

The optimal solution of(P ′) is the one that minimizes the arithmetical mean between worst
and best case over the whole uncertainty set including some reaction costs. Notice that this
solution considers the reaction parts in all the scenarios,for the ones that are feasible we have
cRECu (s) = 0. The originality of the above formulation is that we consider the recovery in
advance instead of only reacting a posteriori or only tryingto find a solution that never needs
reaction. In some sense we are planning the solutions which has a low recovery cost in the worst
realization; we call it arecoverable solution. We refer to this methodology asrecoverable
optimization in the reminder of the paper. In fact, we allow to have additional costs in the
worst case, that is no longer simply an unfeasible solution but a solution that is hard (maybe
even impossible) to recover, if in the best scenario, this leads to sufficiently savings, which
we refer to this as thepotential of a solution. We thus have a formulation to our uncertain
optimization problemP that includes reactive decisions and best-case consideration within a
pro-active worst-case framework.

Remark that different objective functions can be considered. It is clear that one should not use
cu(s) instead of̃cu(s), as for unfeasible scenarios,cu(s) = ∞ and thus, the recovery costs are
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pointless and the formulation reduces to find, if it exists, asolution that has finite cost, i.e. that
is robust against all scenarios and thus has alwayscRECu (s) = 0.

We also rejected the idea of minimizing the difference between the worst case and the best case:

min
s∈S

{

max
u∈U

cu(s) + c̃RECu (s) − min
u′∈U

c̃u′(s) + cRECu′ (s)

}

If at least a solution with finite cost exists, then the optimal solution to this problem will be
a recoverable solution for all scenarios, which is the desired property of the solution. On the
other hand, the objective leads to the solution with least variability instead of a solution with
bounded cost. Suppose there is a unique deterministic solution s ∈ S that is recoverable, i.e.
maxu∈U c̃RECu (s) = minu′∈U c̃u′(s) + cRECu′ (s) < ∞. Then clearly, it is the optimal solution,
but the optimality is independent of the cost itself, which can be arbitrarily big. There might
be a solutions′ ∈ S with much better potential, i.e. having lower costs thans in both best and
worst cases, but with non-zero variability, which is against scheduler’s intuition. Moreover, this
approach is contradictory to the fact we want to exploit uncertainty, as it is avoiding, potentially
by the mean of big costs, the variability.

Another possibility is to seek for a solution that is closestto the optimal solution in the deter-
ministic case, i.e. minimizing the maximal deviation defined bymaxu∈U{c̃u(s)+cRECu (s)−c∗u}.
In this case, the goal of robustness is still predominant with respect to cost minimization. Al-
though the objective of lowest optimality deviation in the worst case is interesting, especially as
it compares the worst case of a solution against another solution, the approach suffers from the
same property than the variance minimization, namely that the approach does no longer focus
on a proper cost minimization. In their paper Montemanni andGambardella, 2004 use the same
objective function applied to the shortest path problem with interval data which we use in the
next section as an illustrative example. They call the solution to this problem arobust shortest
path. In the literature, it is also referred to asminimax regret, see Averbakh and Lebedev, 2004.

4 Application to Shortest Path Problem with Interval Data

Let us illustrate the different concepts on to the Shortest Path Problem with Interval Data (SP-
PID) (Karasan et al., to appear and Montemanni and Gambardella, 2004), which is defined as
follows:

Let G = (V, A) be an oriented graph, whereV is the set of nodes andA is the set of arcs. There
is a unique source nodes ∈ V and a unique sink nodet ∈ V . The costcij of arc (i, j) is not
deterministically known, but lies within an uncertainty interval[lij , uij], wherelij ∈ [0,∞) and
uij ∈ [0,∞] (infinite arc cost means that the arc cannot be traversed). InNPUS, we do not have
any further information, in PUS, we are additionally given aprobability distribution function
for every arc. A scenariou ∈ U is then a set{cu

ij | cu
ij ∈ [lij , uij], ∀(i, j) ∈ A}, containing one

cost realization for every arc within their respective uncertainty sets. Moreover, we suppose
that when a probability measure is given, thenP{cij = uij} > 0.

We define here some dynamic properties in order to characterize the behavior of both the on-
line algorithm and the recovery one. The cost realization ofan arc is revealed when it’s origin is
reached. In order to ensure at least one feasible solution for every scenariou ∈ U , we suppose
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that there exists at least one path such that for each of the arcs of the pathuij < ∞. In these
conditions, we always find a feasible solution. By consequence, we have at least one robust
path, leading to a finite solution in both the robust and the stochastic problems. Moreover, if
stuck in a dead-end, we can always, in the worst case, use the whole reversed partial path to get
back to the origin and thus always find a feasible solution with the reactive algorithms.

Recovery algorithm If a partial path ends up in a dead end (no more outgoing arcs),we are
allowed to use the arc used to reach the dead end in reverse sense, at its highest costuij and
remove the arc from the network.

As this is an recovery decision taken when traversing the path that we want to avoid, we do not
consider the possibility of a reverse arc in the proactive problems.

On-line algorithm Take the arc with least cost leaving from the actual node.

The worst scenario for the on-line algorithm now depends on the additional cost of taking and
arc backwards.

Stochastic algorithm with recourse Compute the shortest expected path (including recourse,
i.e. turn-back at dead-ends) as soon information is revealed from the actual node to the sink
node.

The objective is to find the cheapest possible path, which is determined by the type of algorithm
that is used.

We consider the example presented in Figure 1, where the uncertainty intervals of every arc are
given. We suppose, without any further details, that the probability distributions on the arc cost
intervals for the PUS are symmetric and independent. This implies that the mean of an arc cost
equalscij =

lij+uij

2
.

We show in Table 3 the resulting costs and the average costs for the different approaches ap-
plied to a representative sample of realizations given as the cost vectors in Table 2. Recall that
for the on-line algorithm and the stochastic algorithm withrecourse, the outgoing arc costs are
revealed every time a node is reached and a new decision is taken accordingly.

Note that the shortest path in the best scenario (I1) is{s, a, b, t} with cost 11, but it is also the
path having highest cost in the worst scenario (I2), with cost 42.

The optimal path for the stochastic method is{s, e, f, t}, with an expected cost of 27. The ro-
bust path, minimizing the worst case realization, is paths{s, d, t}, with upper cost bound being
33.

With the on-line strategy, whena is reached, i.e. whencsa < csd andcsa < cse, arc (a, b) is
always chosen next, as for every possible scenario,cab ≤ cac. Moreover, whencsa > cse, the
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Figure 1: Example of a shortest path with interval data. Arc(b, t) has finite support, taking
either value 1 or∞.

I1 {8, 2, 1, 4, 10, 13, 15, 1, 3, 13} every arc is at its lower bound
I2 {12, 4,∞, 8, 14, 17, 19, 8, 5, 17} every arc is at its upper bound
I3 {10, 3, 1, 6, 12, 15, 16, 8, 4, 15} every arc takes mean value,(b, t) at lower bound
I4 {10, 3,∞, 6, 12, 15, 16, 8, 4, 15} every arc takes mean value,(b, t) at upper bound
I5 {11, 3, 1, 7, 13, 14, 15, 10, 3, 13}
I6 {11, 3,∞, 7, 13, 14, 15, 10, 3, 13}
I7 {8, 2, 1, 4, 10, 13, 16, 3, 5, 17}
I8 {8, 2,∞, 4, 10, 13, 16, 3, 5, 17}

Table 2: A sample of scenarios given by the cost vector
{csa, cab, cbt, cac, cct, ced, cdt, cse, cef , cft}.

on-line strategy leads to the same solution than the stochastic proactive one.

With the stochastic algorithm with recourse, whena is reached, the next taken arc is then either
(c, t) with expected cost ofcac + 12 or (b, t) with expected cost(cab+1)+cREC

2
, wherecREC is the

cost of the recourse path{a, b, a, c, t} in the casecbt = ∞, i.e. cab + uab + cac + 12.

Thus, path{a, b, t} is chosen ifcac +9 ≥ 2cab, which is always the case. Therefore, the optimal
path of the stochastic algorithm with recourse is either{s, a, b, t} or {s, e, f, t}, depending on
the realization ofcsa andcse: if csa < cse + 4.5 then the chosen path is{s, a, b, t}, otherwise it
is path{s, e, f, t}.

With the recoverable algorithm we compute a path prior to anycost revealing but considering
the recovery in case a dead-end is encountered. In this case,the optimal path is{s, a, b, t}, with
potential cost (sum of the best and worst case scenarios) of11 + 42 = 53. Path{s, a, c, t} has
cost 56, path{s, d, t} a cost of 61 and path{s, e, f, t} a cost of 54. Remark that for the paths
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Method I1 I2 I3 I4 I5 I6 I7 I8 Average

On-Line 17 42 27 27 26 26 25 25 26.875

Recourse 17 42 14 35 15 38 25 25 26.375

Stochastic 17 37 27 27 26 26 25 25 26.250

Robust 28 33 31 31 29 29 29 29 29.875

Recoverable 11 42 14 35 15 38 11 28 24.250

Table 3: Cost of the different methods for different scenarios and average cost over the consid-
ered scenarios.

were no dead-end is met in the worst case, the cost of the path is simply twice it’s mean cost.
This is due to the fact the distributions are assumed to be symmetric. Thus, when no recourse
is needed in any of the scenarios and the distributions are symmetric, then the recoverable path
will be the same than the proactive stochastic shortest path.

This simple example illustrates the differences of the approaches. We see how the realization
of the first arc determines how good (or bad) behave the reactive algorithms.

Note that in most of the cases, arc(s, d) has lowest cost, which explains why the on-line algo-
rithm mainly follows the path{s, e, f, t} and thus leads to the same results than the proactive
stochastic solution.

Moreover, the stochastic solution and the robust path have fairly low variance on this sample.
The stochastic path is often the shortest path whencab = ∞, although in its worst scenario
the proactive stochastic path has cost 37, as even when arc(b, t) is untraversable, we can get a
cost of 28 for the recovered path{s, a, b, a, c, t}. This shows that the possibility of arc(b, t) to
become untraversable affects highly the proactive stochastic solution.

The robust path, on the other hand, is by definition the shortest path in the worst scenario (I2),
but it has always a high cost, which translates in a significant higher average cost over the sam-
ple of instances we used: from 11% up to 23% higher than the other methods.

The path leading to the highest cost is path{s, a, b, t}, with cost 42. This is because when
cbt = ∞ one must pay the recourse fee of 4 and then follow the non-optimal path{a, c, t},
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as there is no alternative. However, in more optimistic scenarios, it is the path leading to the
cheapest solutions. The recoverable path has thus higher variability than the stochastic or the
robust ones, but according to our potential measure (sum of worst and best case), it is the most
interesting.

The difference of the stochastic approach with recourse andthe recoverable one is relevant in
instances I7 and I8: due to the known arc costscsa = 8 andcse = 3, with the stochastic algo-
rithm with recourse, path{s, e, f, t} has better potential in average, with a total expected cost
of 22 against 22.5 for path{s, a, b, t}. We see that the cost of path{s, a, b, t} highly depends
on the cost of arccbt. If cbt = ∞ (I8), then indeed path{s, e, f, t} has always lower cost, but
in this case the saving is only of 3. In the scenario wherecbt = 1 (I7), we see however that
the cost difference is significantly higher, path{s, a, b, t} leading to a save of 14, which is more
than 50% less than path{s, e, f, t}. This better potential is precisely the reason the recoverable
path is path{s, a, b, t}.

Note that if we consider the stochastic method with recoursein a proactive way, i.e. minimiz-
ing the sum of expected path length plus expected recovery costs over all scenarios without
recomputing a solution at every node, then we get the same solution than the recoverable path:
knowing the recourse function (or recovery algorithm), theexpected cots including recourse
expectation of path{s, a, b, t} is 24.5, which is clearly lower than the expected cost of path
{s, e, f, t}, which has least expected cost of 27.

The differences of the presented approaches a clearly shownthrough this example. In a more
general case, we see that both proactive stochastic and robust methods will find the shortest path
in a modified graph where all the potentially untraversable arcs are removed (for the stochastic
cas this holds as long asP{cij = uij} > 0 holds). The reactive algorithms, on the other hand,
have unpredictable behavior. The solution is guided by the realization of the arc costs, which is
a property we want to avoid. The recoverable solution shows to be both the best and the worst
path according to the situation, but outperforms the other methods on the presented instances as
it does over the whole uncertainty set.

5 Applying Recoverable Optimization to Airline Scheduling

The example of the previous section shows how to apply recoverable optimization on a simple
problem where the recovery costs can be computed easily.

In more general problems though, the recovery algorithm usually becomes a hard problem itself.
Indeed, when we formulate the recoverable problem as in(P ′), the evaluation of the terms
cRECu (s) implies the evaluation of a recovery problem given a solution s and the scenariou.
Moreover, we have to determine at which point the solution becomes unfeasible: as a proactive
scheduler we are able to evaluate whether a given solution isfeasible for a given scenario and,
in the latter, when the feasibility is lost and what the costsare up to this disruption point.

This leads to the study of scenario characterization, whereone tries to identify in a determin-
istic way depending on the uncertainty set and the recovery algorithm, which scenarios lead to
the best and to the worst cases respectively. As to recover from unfeasible solution is costly, it
usually makes sense that, in the best realization,cRECu (s) = 0. We thus are left with the problem
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of characterizing the scenario leading to the worst possible recoverable solution.

This holds for airline scheduling as well as form many other scheduling problems. The rea-
son we develop the concept on airline scheduling is because we recently addressed a recovery
algorithm for the Airplane Recovery Problem (ARP) (Bierlaire et al., 2007).

Airline scheduling is a complex and challenging optimization problem. The usual approach in
practice is to divide the problem into several smaller subproblems which are solved iteratively
according to their due dates. The first problem to solve is theroute choice problem, when airline
managers determine the legs to be flown, which is usually done6 to 12 month in advance.
Then, routes must be affected to the planes and this is done intwo stages: first a fleet (i.e.
a type of plane) is associated to a set of flights, and then the routes for every single plane
are computed, which is done 2-3 months in advance. Finally the crew pairing and the crew
roistering problems are solved to affect crews to flights. Airline schedules are usually computed
with the aim of minimizing operational costs but often unpredicted events, calleddisruptions,
make the schedule unfeasible and some recovery decisions must be taken in order to get back
to the initial schedule. We recently addressed the recoveryproblem for the ARP in Bierlaire
et al., 2007 and introduced a column generation based algorithm that solves the ARP. The
underlying pricing problem is a dynamic programming algorithm that computes elementary
resource constrained shortest paths in a so calledrecovery network generated for every plane.

These networks encode all feasible routes for one single plane. We then use a dynamic program-
ming algorithm based on Decremental State Space Relaxation(DSSR) algorithm in Righini and
Salani, 2005 to compute the solution to each pricing problem.

We want to extend the concept of recoverable solution presented in section 3 to the airline
scheduling problem having the knowledge on the recovery algorithm for the ARP. We thus
want to find a schedule for planes, i.e. a successions of flights and maintenances for every
plane, such that whatever the scenario of a given uncertainty set, the solution either remains
feasible or is recoverable (using the mentioned recovery algorithm) at limited costs.

There are three underlying difficulties. The first one is to determine when a schedule becomes
unfeasible given a scenario and compute associated partialcosts, the second being, of course,
to solve the underlying recovery problem. The last difficulty is to characterize which scenario
is the worst for a given schedules.

To answer the feasibility question is not trivial. One suggestion is to perform a feasibility test
where only delays are allowed. If some rule on these delays isnot violated, then we consider
the solution as feasible, but we add the corresponding delaycosts as the recovery costs.

The worst scenario characterization is much more difficult as it is highly dependent on both
the structure of the uncertainty set and the recovery algorithm itself, which makes a general
characterization impossible. Unfortunately, due to the complex formulation of the recovery
algorithm in the airline scheduling case, the problemmaxu∈U cu(s)+cRECu (s) given a schedule
s ∈ S is highly non-linear as, of course, the recovery decisions depend on the scenario, and
thus the variables of the underlying problem are both the recovery decisions and the scenario
coefficients.

One solution to solve this problem is to evaluate the recovery cost for every scenariou ∈ U ,
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which implies firstly that the uncertainty set has finite support, and that we need
∏

| U || S |
computations of anNP -hard problem. This is of course not affordable. We thus wantto look
at alternative ways to cope with this problem.

One idea is to sample the scenarios according to some properties that we know being hard for the
recovery algorithm, and solve the recovery problem only fora selection of scenarios. However,
one has to be careful the way the sample is chosen as when protecting against only the worst
case, we might get a solution that performs worse in a scenario that was not considered than the
one we are protected against.

The extension on the above principle is to apply it earlier, when determining the uncertainty
set. Instead of sampling a given set, one might try to structure the uncertainty set in order to
make the computation easier. This can be done through bounding on total amount of scenarios
for example or by bounding the worst case as did Bertsimas andSim, 2004. However, the same
care on the characterization has to be taken than for the sampling mentioned previously.

However, as the information needed to determine the optimalschedules is only its partial
operation costs̃cu(s) and its recovery costcRECu (s), and not the nature of the recovery decisions
themselves, we try to estimate these costs with a simpler algorithm. Although we must be
careful not to consider too elementary estimations. Indeed, in this framework we are trying
to exploit the nature of the recovery algorithm in order to build a less costly solution in case
recovery is needed. Approximating this information is equivalent to approximate the final cost
under a given scenario and as this is what we want to minimize,if the approximation is bad, the
final solution might be much more costly than expected in reality.

For example, we discard greedy measures that might be related to schedule feasibility, as
cRECu (s) = C (with C a constant) whens is unfeasible for scenariou and cRECu (s) = 0 oth-
erwise. The reason is that for this kind of measure, the optimal solution to the initial problem
tends to find the solution remaining feasible to the most possible scenarios without any infor-
mation about the true recovery costs, which turns out to be the robust solution. We thus loose
the information about the recoverability that justifies ourapproach.

Another approach is to define more schedule-based measures that help to predict the perfor-
mance of the recovery algorithm. For example, we measure thestructure of the network asso-
ciated to one schedule in terms of number of plane crossings (at a same airport and the same
time) and the average grounding time for the planes. The firstindicator helps measuring the
number of possible airplane swappings that are possible. The more there are, the better for the
recovery algorithm, as it considers plane swappings. The second indicator captures the density
of the schedule and thus estimates the un-activity gaps in the schedule that are useful to absorb
delays.

By doing so, we are in fact approximating the recovery costs through auxiliary measures that
are easy to compute. With this approach we are limiting the complexity of the scenario-based
evaluation ofc̃u(s) and cRECu (s) in order to keep the problem tractable. We thus replace the
minimization of the partial and recovery costs in (P’) by themaximization of the mentioned
auxiliary objectives. Thus, we get rid of theNP -hard recovery problem to evaluatecRECu (s) by
introducing some secondary objectives. The advantage of the multi-objective approach is its
computational tractability compared to the recoverable one. Moreover, this approach leads to
the generation of a set of Pareto optimal solutions rather than a unique one. The disadvantage
is that we do not capture the information of the recovery algorithm and the uncertainty set
explicitly. Thus it is hard to exploit well the given information in an implicit way.
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Finally, we can use the network-based measures directly on the recovery networks used to solve
the ARP in Bierlaire et al., 2007 which might lead to more explicit measures of recoverability,
and still has the advantages of the multi-objective approach.

We see that the main challenge of the recoverable approach applied to more complicated prob-
lems such as the airline scheduling problem is its computational complexity. The proposed
approaches here are only preliminary hints of possible research directions we want to explore.

6 Conclusions

In this exploratory paper we first give a classification of theexisting methods to address deci-
sional problems subject to uncertainty. This motivates thedefinition of the recoverable approach
we address to attack these kind of problems with a non probabilistic proactive methodology that
is based on the knowledge of the reaction strategy in case a disruption occurs. This allows to
compute a solution that is robust for a subset of scenarios but that we know to be recoverable at
low costs for the remaining scenarios, which is the originality of the methodology.

We give a comparative illustration of our methodology compared to the existing methods with
an application to the shortest path problem with interval data, and then give a preliminary set of
directions to explore for the application of the methodology on more complicated problems, in
particular to the recoverable airline scheduling problem.

We plan to explore more deeply the field both from theoreticaland practical point of view. We
intend to review more carefully the aspects of stochastic programming and robust optimization
and compare our findings with what has been done so far. We intend to validate the approach
with a practical application to airline optimization: we have the access to real world data, we
have a recovery algorithm and we have a set of auxiliary measures for recoverability. Thus,
we can optimize the schedule considering the exact recoverycosts and the auxiliary measures
given a set of disruption scenarios.
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