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Abstract

In this paper we present a new point of view on choice set generation for route choice models.
When modeling route choice behavior using random utility models choice sets of paths need to
be defined. Existing approaches generate paths and assume that actual choice sets are found. On
the contrary, we assume that actual choice sets are the sets of all paths connecting each origin-
destination pair. These sets are however unknown and we propose a stochastic path generation
algorithm that corresponds to an importance sampling approach. The path utilities should then
be corrected according to the used sampling protocol in order to obtain unbiased parameter
estimates. We derive such a sampling correction for the proposed algorithm.

We present numerical results based on synthetic data. The results show that the model in-
cluding sampling correction yields unbiased coefficient estimates but we also make important
observations concerning the Path Size attribute. Namely, it biases the estimation results if it
is not computed based on the true correlation structure. These results suggest that the Path
Size attribute should be computed based on as many alternatives as possible, more than in the
generated choice sets.
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Figure 1: Route choice modeling process

1 Introduction

Route choice modeling involves several steps and we start bygiving an overview of this process.
Figure 1 shows schematically the different steps before arriving to the route choice model: the
probability that individualn chooses pathi given a choice setCn, P (i|Cn). In a real network
a very large number of paths (intractable if the network contains loops) connect an origino
and destinationd. This set, referred to as the universal choice setU , is unknown. In order
to estimate a route choice model a subset of paths needs to be defined and path generation
algorithms are used for this purpose. There exist deterministic and stochastic approaches for
generating paths. The former refers to algorithms always generating the same setM of paths
for a given OD pair whereas an individual (or observation) specific subsetMn is generated
with stochastic approaches. A choice setCn for individual n can be defined based onM (or
Mn) in either a deterministic way by including all feasible paths,Cn = M (or Cn = Mn),
or by using a probabilistic modelP (Cn) where all non-empty subsetsGn of M (or Mn) are
considered. Defining choice sets in a probabilistic way in complex due to the size ofGn and
has never been used in a real size application. (See Manski (1977), Swait and Ben-Akiva, 1987,
Ben-Akiva and Boccara, 1995, Morikawa, 1996 and Cascetta and Papola, 2001 for more details
on the probabilistic approach.)

In this paper we focus on stochastic path generation and specifically on how to take into account
in the route choice model that we limit the analysis to paths in Mn. We view path generation
as importance sampling of alternatives and we propose a correction of the path utilities for the
sampling approach. This is a substantially different approach from existing ones because we
hypothesize that the true choice set is the universal one.

In the following section we give an overview of existing pathgeneration algorithms. An intro-
duction to sampling of alternatives is presented in Section3. We describe the proposed algo-
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rithm in Section 4 and we continue by deriving the sampling correction in Section 5. Numerical
results based on synthetic data are presented (Section 6) before some conclusions.

2 Path Generation Algorithms

Many heuristics for generating paths have been proposed in the literature. Most of them are
deterministic approaches, for example, labeled paths (Ben-Akiva et al., 1984), link elimination
(Azevedo et al., 1993), link penalty (de la Barra et al., 1993), constrained k-shortest paths (e.g.
van der Zijpp and Catalano, 2005) and branch-and-bound (Friedrich et al., 2001, Hoogendoorn-
Lanser, 2005 and Prato and Bekhor, 2006).

Stochastic approaches are of interest for this paper since we view path generation as sampling
of alternatives. Only two stochastic algorithms have been proposed in the literature. Ramming
(2001) uses a simulation method that produces alternative paths by drawing link impedances
from different probability distributions. The shortest path according to the randomly distributed
impedance is calculated and introduced in the choice set. Recently, Bovy and Fiorenzo-Catalano
(2006) proposed the so-called doubly stochastic choice setgeneration approach. It is similar
to the simulation method but the generalized cost function has both random parameters and
random attributes.

Bovy (2007) discusses the role of choice set generation in route choice modeling and gives an
overview of existing approaches. Bekhor and Prato (2006) analyze empirically the effects of
choice set generation on route choice model estimation results. They observe differences in the
estimation results for various algorithms. They conclude that the branch-and-bound algorithm
(Prato and Bekhor, 2006) performs best.

Existing approaches, both deterministic and stochastic, assume that actual choice sets are gen-
erated. Empirical studies suggest however that this is not true since in general not even all
observed paths are found (see e.g. Ramming, 2001, Prato and Bekhor, 2006, Frejinger and
Bierlaire, 2007 and Bierlaire and Frejinger, to appear). Weassume that the true choice set is
U . This set is however to large to be enumerate and we thereforedefine a random sampleMn.
In order to obtain unbiased estimation results, the path utilities must be corrected according to
the used sampling protocol. In the following section we givea brief introduction to sampling
of alternatives.

3 Sampling of Alternatives

The multinomial logit (MNL) model can be consistently estimated on a subset of alternatives.
The probability that an individualn chooses an alternativei is then conditional on the choice
setCn defined by the modeler. This conditional probability is

P (i|Cn) =
eVin+ln q(Cn|i)

∑

j∈Cn

eVjn+ln q(Cn|j)
(1)

and includes an alternative specific term,ln q(Cn|j), correcting for sampling bias. This cor-
rection term is based on the probability of samplingCn given thatj is the chosen alternative,
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q(Cn|j). See for example Ben-Akiva and Lerman (1985) for a more detailed discussion on
sampling of alternatives. Bierlaire, Bolduc and McFadden (2006) show that the more general
family of GEV models can also be consistently estimated and propose a new estimator. Here
we focus however on the MNL model.

If all alternatives have equal selection probabilities, the estimation on the subset is done in the
same way as the estimation on the full set of alternatives. Namely, q(Cn|i) is then equal to
q(Cn|j) ∀ j ∈ Cn (uniform conditioning property, McFadden, 1978) and the correction for sam-
pling bias cancels out in Equation (1). This simple random sampling protocol is however not
appropriate in a path generation context. First of all, we are unaware of any algorithm generat-
ing paths with equal probabilities without first enumerating all paths inU . Second, due to the
large (possibly intractable) number of paths, a simple random sample is likely to contain many
alternatives that a traveler would never consider. Comparing the chosen path to a set of highly
unattractive alternatives would not provide much information on the traveler’s route choice. In
this context, a simple random sample would need to be prohibitively large. We therefore pro-
pose a path generation algorithm that corresponds to an importance sampling approach where
attractive paths have higher probability of being sampled than unattractive paths. In this case,
the correction terms in Equation (1) do not cancel out and path utilities must be corrected in
order to obtain unbiased results.

The Path Size Logit (PSL), proposed by Ben-Akiva and Ramming(1998) (see also Ben-Akiva
and Bierlaire, 1999), and the C-Logit (Cascetta et al., 1996) models are the most commonly used
MNL models for route choice analysis. An attribute, Path Size (PS) or Commonality Factor
respectively, captures the correlation among paths and is added to the deterministic utilities. Up
to date, these attributes are computed based on the generated choice sets. Since we assume that
the true choice set isU we hypothesize that these attributes should be computed based on a
path set as large as possible in order to approximate the truecorrelation structure. We test this
hypothesis numerically in Section 6.

Note that existing stochastic path generation approaches may also be viewed as importance
sampling approaches. It is however unclear to us how to compute the sampling correction for
these algorithms.

4 A Stochastic Path Generation Approach

In this section, we first present a general stochastic approach for generating paths (also described
in Bierlaire and Frejinger, 2007). The approach is flexible and can be used in various algorithms
including those presented in the literature. We then describe a biased random walk algorithm
that is used in this paper.

This stochastic path generation approach is based on the concept of subpath where a subpath
is a sequence of links. (A link is a special case of a subpath.)We associate a probability with
a subpath based on its distance to the shortest path. More precisely, its probability is defined
by the double bounded Kumaraswamy distribution (Kumaraswamy, 1980) whose cumulative
distribution function isF (xs|a, b) = 1− (1−xs

a)b for xs ∈ [0, 1]. a andb are shape parameters
and for a given subpaths with source nodev and sink nodew, xs is defined as

xs =
SP (o, d)

SP (o, w) + C(s) + SP (w, d)
,
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Figure 2: Kumaraswamy distribution - cumulative distribution function

whereC(s) is the cost ofs, o the origin,d the destination andSP (v1, v2) is the cost of the
shortest path between nodesv1 andv2. Any generalized cost can be used in this context. Note
thatxs equals one ifs is part of the shortest path andxs → 0 asCs → ∞. In Figure 2 we show
the cumulative distribution function for different valuesof a whenb = 1. The probabilities
assigned to the subpaths can be controlled by the definition of the distribution parameters. High
values ofa whenb = 1 yield low probabilities for subpaths with high cost. Low values ofa
have the opposite effect.

This approach can be used in various algorithms. For example, in an algorithm similar to link
elimination approach but where the choice of subpaths to be eliminated is stochastic. Another
example is a gateway algorithm, where a subpath is selected anywhere in the network, using the
probability distribution described above. A generated path is then composed of three segments:
the shortest path from the origin to the source node of the subpath, the subpath itself, and the
shortest path from the sink node of the subpath to the destination. This gateway algorithm was
used by Bierlaire, Frejinger and Stojanovic (2006) (see also Vrtic et al., 2006) for modeling
long distance route choice behavior in Switzerland.

In this paper, we use a biased random walk algorithm which hassome properties which makes
it appropriate as an importance sampling approach. First, it can generate potentially any path in
U . Second, path selection probabilities can be computed in a straightforward way.

4.1 Biased Random Walk Algorithm

Starting from the origin, this algorithm selects a link using the probability distribution described
previously. Another link starting at the sink node of the first one is then selected and this process
is applied until the destination is reached and a complete path has been generated. The algorithm
biases the random walk towards the shortest path in a way controlled by the parameters of the
distribution. If a uniform distribution (special case of Kumaraswamy distribution witha = 0
andb = 1) is used then the algorithm corresponds to a simple random walk. Note however that
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a simple random walk does not generate a simple random sampleof paths.

The probabilityq(j) of generating a pathj is the probability of selecting the ordered sequence
of links Γj

q(j) =
∏

ℓ∈Γj

q(ℓ|Ev, a, b) (2)

whereℓ denotes a link,v its source node andEv the set of outgoing links fromv. In accordance
with the general approach presented previouslyq(ℓ|Ev, a, b) is defined by the Kumaraswamy
distribution using

xℓ =
SP (v, d)

C(ℓ) + SP (w, d)
.

5 Correction for Sampling in Route Choice Models

Importance sampling takes expected choice probabilities into account, paths which are expected
to have high choice probabilities have higher sampling probabilities than paths with lower ex-
pected choice probabilities. As mentioned in Section 3 the correction termsq(Cn|j) ∀ j ∈ Cn

must be defined since they do not cancel out for this type of sampling protocol. Note however
that if alternative specific constants are estimated, all parameter estimates except the constants
would be unbiased even if the correction is not included in the utilities. In a route choice context
it is in general not possible to estimate alternative specific constants due to the large number of
alternatives and the correction for sampling is therefore essential.

We define a sampling protocol for path generation as follows:a setC̃n is generated by drawing
R paths with replacement from the universal set of pathsU and adding the chosen path to it
(|C̃n| = R + 1). In theoryU can be unbounded, here we assume that paths with many loops
have infinitely small sampling probability (due to the importance sampling) and we treatU as
bounded with sizeJ . Each pathj ∈ U has sampling probabilityq(j) andK

∑
j∈U q(j) = 1

whereK is a normalizing constant. (This constant does not play a role in the same way asKCn

in Equation (5) and is therefore ignored in the following equations.)

The outcome of this protocol is(k̃1, k̃2, . . . , k̃J) wherek̃j is the number of times alternativej
was drawn (

∑
j∈U k̃j = R). Following Ben-Akiva (1993) we derive the formulation ofq(Cn|j)

for this sampling protocol. The probability of an outcome isgiven by the multinomial distribu-
tion

P (k̃1, k̃2, . . . , k̃J) =
R!

∏
j∈U k̃j !

∏

j∈U

q(j)
ekj . (3)

The number of times alternativej appears iñCn is kj = k̃j + δjc, wherec denotes the index
of the chosen alternative andδjc equals one ifj = c and zero otherwise. LetCn be the set
containing all alternatives corresponding to theR draws (Cn = {j ∈ U | kj > 0}). The size of
Cn ranges from one toR + 1; |Cn| = 1 if only duplicates of the chosen alternative were drawn
and|Cn| = R + 1 if the chosen alternative was not drawn nor were any duplicates.

Using Equation (3), the probability of drawing̃Cn given the chosen alternativei can be defined
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as

q(Cn|i) = q(C̃n|i) =
R!

(ki − 1)!
∏

j∈Cn

j 6=i

kj!
q(i)ki−1

∏

j∈Cn

j 6=i

q(j)kj = KCn

ki

q(i)
(4)

whereKCn
= R!Q

j∈Cn
kj !

∏
j∈Cn

q(j)kj . We can now define the probability that an individual

chooses alternativei in Cn as

P (i|Cn) =
e

Vin+ln( ki
q(i))

∑

j∈Cn

e
Vjn+ln

“
kj

q(j)

” , (5)

whereKCn
in Equation 4 does not play a role since it is constant for all alternatives inCn.

When using the previously presented biased random walk algorithm we therefore need to count
the number of times a given pathj is generated as well as its sampling probability given by
Equation (2).

6 Numerical Results

With the numerical results presented in this section, we want to evaluate the impact on the
estimation results of

• the sampling correction;

• the definition of the PS attribute; and

• the biased random walk algorithm parameters.

We therefore use synthetic data for which the true coefficient values are known. We then evalu-
ate different model specifications with the t-test values ofthe coefficient estimates with respect
to (w.r.t.) their true values.

6.1 Synthetic Data

The network is shown in Figure 3 and is composed of 38 nodes and64 links. It is a network
without loops and the universal choice setU can therefore be enumerated (|U| = 170). The
length of the links is proportional to the length in the figureand some links have a speed bump
(SB).

3000 observations have been generated by assuming a postulated model. In this case we use a
PSL model, and we specify a deterministic utility function for each alternativej ∈ U : Vj =
βPSPSUj + βLLengthj + βSBSpeedBumpsj, whereβPS = 1, βL = −0.3 andβSB = −0.1. The
PS attribute is defined by PSU

i =
∑

ℓ∈Γi

Lℓ

Li

1P
j∈U

δℓj
whereΓi is the set of links in pathi, lℓ is

length of linkℓ, Li length of pathi andδℓj equals one if pathj contains linkℓ, zero otherwise.
Note that we explicitly indexU since later on we compute PS based on sampled choice sets.
The probability of pathi is defined byP (i|U) = eViP

j∈U
e
Vj

.
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Figure 3: Example Network

6.2 Model Specifications

Four models are estimated in order to evaluate the possible combinations of with/without sam-
pling correction and PS attribute computed based on all paths or sampled paths:

• ModelMNoCorr
PS(C) : Vin = βPSPSCin + βLLengthi + βSBSpeedBumpsi

• ModelMCorr
PS(C): Vin = βPSPSCin + βLLengthi + βSBSpeedBumpsi + ln( ki

q(i)
)

• ModelMNoCorr
PS(U) : Vi = βPSPSUi + βLLengthi + βSBSpeedBumpsi

• ModelMCorr
PS(U): Vj = βPSPSUi + βLLengthi + βSBSpeedBumpsi + ln( ki

q(i)
)

The PS attribute based on sampled paths is defined by PSC
in =

∑
ℓ∈Γi

lℓ
Li

1P
j∈Cn

δℓj
.

6.3 Estimation Results

Table 1 shows estimation results1 for a specific parameter setting of the biased random walk al-
gorithm (10 draws, Kumaraswamy parametersa = 5 andb = 1). Length is used as generalized
cost for the shortest path computations.

1There may be an issue with the scale for the computation of thet-tests in modelsMNoCorr
PS(C) andMCorr

PS(C). This
will be further investigated but we do not anticipate that this changes the conclusions of the results.
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True MNoCorr
PS(C) MCorr

PS(C) MNoCorr
PS(U) MCorr

PS(U)

PSL PSL PSL PSL PSL

β̂PS 1 0.363 0.443 -0.203 1.03
Standard error 0.0729 0.086 0.0487 0.0465
t-test w.r.t. 1 -8.74 -6.48 -24.70 0.65
β̂L -0.3 -0.0529 -0.326 -0.0453 -0.291
Standard error 0.00864 0.0085 0.00828 0.00788
t-test w.r.t. -0.3 28.60 -3.06 30.76 1.14
β̂SB -0.1 -0.345 -0.134 -0.404 -0.0773
Standard error 0.0315 0.0259 0.0298 0.0258
t-test w.r.t. -0.1 -7.78 -1.31 -10.20 0.88

Final Log-likelihood -6596.22 -6047.14 -6598.46 -5840.80
Adj. rho square 0.02 0.10 0.02 0.13

Null Log-likelihood: -6719.733, 3000 observations
Algorithm parameters: 10 draws,a = 5, b = 1, C(ℓ) = Lℓ

Average size of sampled choice sets: 9.43
BIOGEME (Bierlaire, 2007, Bierlaire, 2003) has been used for all
model estimations

Table 1: Path Size Logit Estimation Results

Our hypothesis in Section 3 stating that the PS attribute should be computed based onU and not
Cn is confirmed by these results. Indeed, the two models where PSis based onCn (MNoCorr

PS(C) and
MCorr

PS(C)) have biased coefficient estimates. Note however that the model including a sampling
correction,MCorr

PS(C), has coefficient estimates closer to their true values than the one which has
not,MNoCorr

PS(C) .

The model including sampling correction and PS based onU (MCorr
PS(U)) has unbiased coefficient

estimates and has a remarkably better model fit than the othermodels. InMNoCorr
PS(U) , even though

the PS attribute is based onU the results are completely biased due to the lacking sampling
correction. This clearly shows the strength of the samplingapproach proposed here.

We now analyze the estimation results as a function of two of the biased random walk algorithm
parameters: the Kumaraswamy distribution parametera and the number of draws. Figure 4
shows the absolute value of the t-tests with respect to the true values for modelMCorr

PS(U). In-

dependently of the algorithm parameters,β̂PS and β̂SB are unbiased. As expected, the results
deteriorate asa increase. This is particularly the case forβ̂L that is significantly different from
its true value fora > 20. Recall from Figure 2 that the higher the value ofa the more the
biased random walk is oriented towards the shortest path. Finally we note that the results are
rather constant for different number of draws. In the Appendix we present the results for all
four models in table form. The other three models do not have unbiased results for all three co-
efficients for any of the parameter settings. This clearly shows the superiority of the approach
with sampling correction and computing PS based on the true correlation structure.

Finally we show in Figure 5 the average number of paths in the choice sets. As expected, the
number of paths increase with the number of draws but decrease asa increase. Based on the
estimation results we can however conclude that unbiased results can be obtained with rather
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Figure 4: T-test values with respect to true values for the coefficients ofMCorr
PS(U)

few draws.

7 Conclusions and Future Work

This paper presents a substantially different approach forchoice set generation and route choice
modeling compared to existing ones. We view path generationas an importance sampling
approach and derive a sampling correction to be added to the path utilities. We hypothesize that
the true choice set is the set of all paths connecting an origin destination pair. Accordingly, we
propose to compute the PS attribute on all path (or as many as possible) so that it reflects the
actual correlation structure.

We present numerical results based on synthetic data which clearly show the strength of the
approach. Models including a sampling correction are remarkably better than the ones that do
not. Moreover, unbiased estimation results are obtained ifthe PS attribute is computed based on
all paths and not on generated choice sets. This is a completely different approach from route
choice modeling praxis where generated choice sets are assumed to correspond to the true ones
and PS (or Commonality Factors) is computed on these generated path sets.

In the near future we will continue the analysis of the numberof paths used for the Path Size
computation. We will also test the approach on real GPS data set from Sweden.
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A Additional Estimation Results

The following tables show the absolute value of t-test values for the four different models dis-
cussed in the paper.

Kumaraswamy parametera

Coef. Nb. draws 0 1 3 5 7 9 11 20 40

β̂L

10 4.47 3.80 18.13 30.76 40.85 49.38 55.29 50.81 10.57
20 4.21 3.60 18.79 30.76 40.30 49.23 57.46 65.00 17.88
30 4.15 4.04 18.57 30.11 39.70 48.01 56.61 69.91 21.57
40 3.54 4.18 18.38 29.51 39.06 47.52 55.10 74.19 25.73
50 3.18 4.32 18.04 29.13 38.45 46.28 53.92 76.50 28.50

β̂SB

10 20.71 17.44 13.39 10.20 8.55 7.45 7.22 6.42 5.91
20 21.20 17.70 12.50 8.90 7.06 6.25 5.74 5.91 4.96
30 20.96 17.09 11.37 7.54 5.52 4.69 4.15 4.61 4.46
40 20.03 16.33 10.35 6.35 4.45 3.43 3.11 3.66 3.84
50 19.23 15.35 9.43 5.57 3.24 2.36 1.99 2.84 3.24

β̂PS

10 33.73 31.28 26.34 24.70 24.13 24.00 23.84 20.70 14.26
20 31.97 28.91 23.58 21.93 21.35 21.35 21.28 19.76 11.18
30 29.55 25.61 20.96 19.71 19.22 19.25 19.50 18.57 8.96
40 26.84 23.12 18.69 17.91 17.70 18.02 18.30 17.87 7.66
50 24.69 20.90 16.88 16.45 16.53 16.93 17.36 17.30 6.50

Table 2: ModelMNoCorr
PS(U)
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Kumaraswamy parametera

Coef. Nb. draws 0 1 3 5 7 9 11 20 40

β̂L

10 1.10 6.98 17.74 28.60 36.66 44.12 47.57 48.08 10.43
20 0.98 6.19 18.04 27.97 35.39 41.64 47.04 51.91 17.93
30 0.24 6.26 17.61 26.73 32.61 39.70 44.31 51.15 21.46
40 0.74 5.88 17.21 26.08 33.21 38.67 43.06 50.62 25.50
50 0.25 5.93 16.84 25.98 32.67 37.08 41.24 50.38 28.10

β̂SB

10 15.74 13.39 10.80 7.78 6.31 6.05 5.46 5.86 5.65
20 14.32 12.27 8.95 6.24 5.00 4.55 5.32 5.85 5.24
30 13.84 10.81 7.25 4.38 0.43 3.25 3.04 5.25 4.69
40 11.69 10.35 6.11 3.26 2.63 2.04 2.57 4.40 3.86
50 11.68 8.73 5.18 3.46 1.67 1.23 1.40 3.58 2.64

β̂PS

10 4.39 5.43 7.64 8.74 9.50 12.26 10.85 10.78 8.86
20 5.46 6.96 8.65 10.15 11.84 12.88 15.52 13.36 11.61
30 7.29 6.89 8.49 9.20 9.05 13.28 14.01 15.21 11.99
40 4.94 8.04 8.27 9.42 12.23 13.31 15.31 15.83 11.44
50 6.83 6.25 8.13 11.14 12.45 13.50 15.19 16.21 10.21

Table 3: ModelMNoCorr
PS(C)

Kumaraswamy parametera

Coef. Nb. draws 0 1 3 5 7 9 11 20 40

β̂L

10 4.24 3.87 4.77 3.06 2.78 0.36 0.15 2.45 1.68
20 2.83 3.52 4.73 4.60 4.22 3.06 1.20 0.61 1.47
30 2.51 2.79 5.15 6.62 6.96 4.58 4.44 0.34 0.98
40 1.51 2.52 5.32 7.32 6.44 5.37 4.32 0.78 0.17
50 1.25 2.13 5.36 7.38 6.57 5.98 4.86 0.79 0.92

β̂SB

10 2.46 1.59 2.00 1.31 0.96 0.46 0.73 1.86 2.48
20 0.34 0.62 0.62 0.40 0.60 0.43 0.46 2.28 3.21
30 0.92 2.50 2.41 1.24 1.90 1.13 1.66 2.53 3.28
40 3.71 3.17 3.45 2.17 0.90 1.10 1.61 2.59 3.53
50 3.85 5.18 4.28 1.82 1.06 1.45 1.60 2.59 4.07

β̂PS

10 5.74 5.15 5.44 6.48 6.25 7.62 5.38 5.18 5.21
20 6.11 6.00 5.42 6.82 7.30 6.99 8.11 5.14 5.69
30 7.13 5.17 4.18 4.43 3.47 6.09 5.40 5.11 5.03
40 4.20 5.61 3.14 3.34 5.71 5.73 6.03 5.90 4.31
50 5.17 3.34 2.24 4.05 5.60 5.56 6.07 5.89 3.63

Table 4: ModelMCorr
PS(C)
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Kumaraswamy parametera

Coef. Nb. draws 0 1 3 5 7 9 11 20 40

β̂L

10 0.76 0.78 0.26 1.14 0.11 0.89 1.11 2.02 1.51
20 0.93 0.54 0.82 1.08 0.37 0.67 0.67 1.94 1.46
30 0.81 0.83 0.70 0.68 0.50 0.69 0.30 2.08 1.43
40 1.10 0.83 0.56 0.82 0.52 0.46 0.61 1.78 1.34
50 1.24 0.83 0.56 0.69 0.79 0.36 0.53 2.71 0.90

β̂SB

10 1.08 1.30 0.55 0.88 0.51 0.90 1.11 1.13 1.32
20 1.36 1.08 0.79 0.65 0.50 0.77 1.07 0.96 1.53
30 1.03 1.01 0.68 0.59 0.78 0.87 0.86 1.08 1.13
40 1.12 1.01 0.61 0.57 0.61 0.65 1.01 1.29 1.03
50 1.28 1.17 0.73 0.52 0.80 0.87 0.90 1.33 1.20

β̂PS

10 1.07 1.31 1.56 0.65 1.04 0.81 0.79 0.66 0.89
20 0.67 0.68 1.15 0.45 1.10 0.84 0.42 0.24 0.69
30 0.69 0.69 0.93 0.46 0.90 0.87 0.85 0.00 0.77
40 0.69 0.46 0.70 0.46 0.68 0.66 0.65 0.15 0.71
50 0.93 0.70 0.70 0.47 0.46 0.44 0.65 0.63 0.74

Table 5: ModelMCorr
PS(U)
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