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Abstract

In this paper we present a new point of view on choice set géioerfor route choice models.
When modeling route choice behavior using random utilitydels choice sets of paths need to
be defined. Existing approaches generate paths and assatraetthal choice sets are found. On
the contrary, we assume that actual choice sets are thefsgtpaths connecting each origin-
destination pair. These sets are however unknown and wegeapstochastic path generation
algorithm that corresponds to an importance sampling agbr.oThe path utilities should then
be corrected according to the used sampling protocol inraaebtain unbiased parameter
estimates. We derive such a sampling correction for theqzeg algorithm.

We present numerical results based on synthetic data. Hutseshow that the model in-
cluding sampling correction yields unbiased coefficietinegstes but we also make important
observations concerning the Path Size attribute. Namiehyases the estimation results if it
is not computed based on the true correlation structure.s& hesults suggest that the Path
Size attribute should be computed based on as many altexaas possible, more than in the
generated choice sets.
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Figure 1: Route choice modeling process

1 Introduction

Route choice modeling involves several steps and we staiving an overview of this process.
Figure 1 shows schematically the different steps beforeiag to the route choice model: the
probability that individual. chooses path given a choice sef,,, P(i|C,,). In a real network
a very large number of paths (intractable if the network ams loops) connect an origin
and destinationl. This set, referred to as the universal choicelgets unknown. In order
to estimate a route choice model a subset of paths needs tefinedl and path generation
algorithms are used for this purpose. There exist detesttrand stochastic approaches for
generating paths. The former refers to algorithms alway®gging the same sdi( of paths
for a given OD pair whereas an individual (or observatiorgcsfic subsetM,, is generated
with stochastic approaches. A choice &gtfor individual n can be defined based owt (or
M.,,) in either a deterministic way by including all feasible mgtC,, = M (or C, = M,),
or by using a probabilistic mode?(C,,) where all non-empty subseg, of M (or M,,) are
considered. Defining choice sets in a probabilistic way implex due to the size df, and
has never been used in areal size application. (See Mar®kiJ1Swait and Ben-Akiva, 1987,
Ben-Akiva and Boccara, 1995, Morikawa, 1996 and Cascettdapola, 2001 for more details
on the probabilistic approach.)

In this paper we focus on stochastic path generation andfsadg on how to take into account
in the route choice model that we limit the analysis to path$1,. We view path generation
as importance sampling of alternatives and we propose actan of the path utilities for the
sampling approach. This is a substantially different apphofrom existing ones because we
hypothesize that the true choice set is the universal one.

In the following section we give an overview of existing pgémeration algorithms. An intro-
duction to sampling of alternatives is presented in Sec3iolVe describe the proposed algo-
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rithm in Section 4 and we continue by deriving the samplingexdion in Section 5. Numerical
results based on synthetic data are presented (Sectiofdsg lse@me conclusions.

2 Path Generation Algorithms

Many heuristics for generating paths have been proposdukititerature. Most of them are
deterministic approaches, for example, labeled paths-@eava et al., 1984), link elimination
(Azevedo et al., 1993), link penalty (de la Barra et al., J988nstrained k-shortest paths (e.g.
van der Zijpp and Catalano, 2005) and branch-and-bounddfich et al., 2001, Hoogendoorn-
Lanser, 2005 and Prato and Bekhor, 2006).

Stochastic approaches are of interest for this paper siecéew path generation as sampling
of alternatives. Only two stochastic algorithms have beep@sed in the literature. Ramming

(2001) uses a simulation method that produces alternasitlesgoy drawing link impedances

from different probability distributions. The shortestipaccording to the randomly distributed

impedance is calculated and introduced in the choice seerRly, Bovy and Fiorenzo-Catalano

(2006) proposed the so-called doubly stochastic choicgesgtration approach. It is similar

to the simulation method but the generalized cost functias Iboth random parameters and
random attributes.

Bovy (2007) discusses the role of choice set generationuterchoice modeling and gives an
overview of existing approaches. Bekhor and Prato (2008)yae empirically the effects of
choice set generation on route choice model estimationtseJiney observe differences in the
estimation results for various algorithms. They conclud# the branch-and-bound algorithm
(Prato and Bekhor, 2006) performs best.

Existing approaches, both deterministic and stochastgyrae that actual choice sets are gen-
erated. Empirical studies suggest however that this ismet $ince in general not even all
observed paths are found (see e.g. Ramming, 2001, Prato ekitbB 2006, Frejinger and
Bierlaire, 2007 and Bierlaire and Frejinger, to appear). a&sume that the true choice set is
U. This set is however to large to be enumerate and we therdéfiiee a random samplet.,.

In order to obtain unbiased estimation results, the pathiesi must be corrected according to
the used sampling protocol. In the following section we gaverief introduction to sampling
of alternatives.

3 Sampling of Alternatives

The multinomial logit (MNL) model can be consistently estited on a subset of alternatives.
The probability that an individuat chooses an alternativds then conditional on the choice
setC,, defined by the modeler. This conditional probability is

evin +In Q(Cn |Z)
P(ilC,) = (1)

B Y eV tinaCald)

J€Cn

and includes an alternative specific termg(C,|7), correcting for sampling bias. This cor-
rection term is based on the probability of samplihiggiven that; is the chosen alternative,

4
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q(C,)j). See for example Ben-Akiva and Lerman (1985) for a more etaliscussion on
sampling of alternatives. Bierlaire, Bolduc and McFadd2®06) show that the more general
family of GEV models can also be consistently estimated anggse a new estimator. Here
we focus however on the MNL model.

If all alternatives have equal selection probabilitieg, dstimation on the subset is done in the
same way as the estimation on the full set of alternativesmelyg ¢(C,.|¢) is then equal to
q(C,]7) ¥ 7 € C, (uniform conditioning property, McFadden, 1978) and theection for sam-
pling bias cancels out in Equation (1). This simple randomgang protocol is however not
appropriate in a path generation context. First of all, veelaraware of any algorithm generat-
ing paths with equal probabilities without first enumergtall paths ini/. Second, due to the
large (possibly intractable) number of paths, a simple oamdample is likely to contain many
alternatives that a traveler would never consider. Compgetie chosen path to a set of highly
unattractive alternatives would not provide much inforim@abn the traveler’s route choice. In
this context, a simple random sample would need to be prorehly large. We therefore pro-
pose a path generation algorithm that corresponds to anrtenme sampling approach where
attractive paths have higher probability of being sampheshtunattractive paths. In this case,
the correction terms in Equation (1) do not cancel out ant pélities must be corrected in
order to obtain unbiased results.

The Path Size Logit (PSL), proposed by Ben-Akiva and Ramr(ifg8) (see also Ben-Akiva
and Bierlaire, 1999), and the C-Logit (Cascetta et al., ) 886iels are the most commonly used
MNL models for route choice analysis. An attribute, PatheSIRS) or Commonality Factor
respectively, captures the correlation among paths ardtisdcito the deterministic utilities. Up
to date, these attributes are computed based on the gehehatee sets. Since we assume that
the true choice set i& we hypothesize that these attributes should be computextilyas a
path set as large as possible in order to approximate thedmelation structure. We test this
hypothesis numerically in Section 6.

Note that existing stochastic path generation approactssaiso be viewed as importance
sampling approaches. It is however unclear to us how to cterthe sampling correction for
these algorithms.

4 A Stochastic Path Generation Approach

In this section, we first present a general stochastic apprima generating paths (also described
in Bierlaire and Frejinger, 2007). The approach is flexilnld ean be used in various algorithms
including those presented in the literature. We then desaibiased random walk algorithm

that is used in this paper.

This stochastic path generation approach is based on tleegbaf subpath where a subpath
is a sequence of links. (A link is a special case of a subp&tie. associate a probability with
a subpath based on its distance to the shortest path. Marsglsg its probability is defined
by the double bounded Kumaraswamy distribution (Kumarasyyd 980) whose cumulative
distribution function is'(x,|a, b) = 1 — (1 —,%)® for z, € [0, 1]. « andb are shape parameters
and for a given subpathwith source node and sink nodev, z, is defined as

SP(o,d)
SP(o,w)+ C(s)+ SP(w,d)’

Tsg =

5
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Figure 2: Kumaraswamy distribution - cumulative distribatfunction

whereC(s) is the cost ofs, o the origin,d the destination and' P(vy, v9) is the cost of the
shortest path between nodgsandv,. Any generalized cost can be used in this context. Note
thatx, equals one it is part of the shortest path and — 0 asC; — oo. In Figure 2 we show
the cumulative distribution function for different valuesa whenb = 1. The probabilities
assigned to the subpaths can be controlled by the definitidrealistribution parameters. High
values ofa whenb = 1 yield low probabilities for subpaths with high cost. Low was ofa
have the opposite effect.

This approach can be used in various algorithms. For exanmpéa algorithm similar to link
elimination approach but where the choice of subpaths tdivenated is stochastic. Another
example is a gateway algorithm, where a subpath is selentadre in the network, using the
probability distribution described above. A generatedhpsthen composed of three segments:
the shortest path from the origin to the source node of theathb the subpath itself, and the
shortest path from the sink node of the subpath to the déistinal his gateway algorithm was
used by Bierlaire, Frejinger and Stojanovic (2006) (see &ic et al., 2006) for modeling
long distance route choice behavior in Switzerland.

In this paper, we use a biased random walk algorithm whichsba®e properties which makes
it appropriate as an importance sampling approach. Riksni generate potentially any path in
U. Second, path selection probabilities can be computedtirambktforward way.

4.1 Biased Random Walk Algorithm

Starting from the origin, this algorithm selects a link ugsthe probability distribution described
previously. Another link starting at the sink node of thetfinse is then selected and this process
is applied until the destination is reached and a compldtelzs been generated. The algorithm
biases the random walk towards the shortest path in a wayalet by the parameters of the
distribution. If a uniform distribution (special case of laraswamy distribution with = 0
andb = 1) is used then the algorithm corresponds to a simple randdin Wate however that
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a simple random walk does not generate a simple random sainpdehs.

The probabilityq(j) of generating a path is the probability of selecting the ordered sequence
of links T';

q(j) = [ a(t/&,, a.b) (2)
where/ denotes a linky its source node anf, the set of outgoing links from. In accordance
with the general approach presented previoyslye,, a, b) is defined by the Kumaraswamy
distribution using

SP(v,d)
C(0) + SP(w,d)

Ty —

5 Caorrection for Sampling in Route Choice Models

Importance sampling takes expected choice probabilitesaccount, paths which are expected
to have high choice probabilities have higher sampling abdities than paths with lower ex-
pected choice probabilities. As mentioned in Section 3 tireection termsy(C,|j) V j € C,
must be defined since they do not cancel out for this type opsagprotocol. Note however
that if alternative specific constants are estimated, adipater estimates except the constants
would be unbiased even if the correction is not included entiities. In a route choice context

it is in general not possible to estimate alternative spectnstants due to the large number of
alternatives and the correction for sampling is therefgseatial.

We define a sampling protocol for path generation as follaneetC, is generated by drawing

R paths with replacement from the universal set of pathend adding the chosen path to it
(IC.| = R+ 1). IntheorylUd can be unbounded, here we assume that paths with many loops
have infinitely small sampling probability (due to the imfamce sampling) and we trefdtas
bounded with size/. Each patly € U has sampling probability(j) and K} ., q(j) = 1
whereK is a normalizing constant. (This constant does not playairolhe same way a&,

in Equation (5) and is therefore ignored in the following ations.)

The outcome of this protocol i@l,%g, e ,EJ) Where%j is the number of times alternative

was drawn ., %j = R). Following Ben-Akiva (1993) we derive the formulationgfC,, ;)
for this sampling protocol. The probability of an outcomeirgen by the multinomial distribu-
tion
~ ~ ~ R! N
P(ky, ko, ... kj) = 7~'Hq(j) 3. (3)
Hjeu kj‘ jeu

The number of times alternativeappears irC, is k; = Ej + ., wherec denotes the index
of the chosen alternative ang. equals one iff = ¢ and zero otherwise. Le&l, be the set
containing all alternatives corresponding to tRelraws C,, = {j € U | k; > 0}). The size of

C, ranges from one t® + 1; |C,| = 1 if only duplicates of the chosen alternative were drawn
and|C,| = R + 1 if the chosen alternative was not drawn nor were any duglgcat

Using Equation (3), the probability of drawir@} given the chosen alternativeean be defined
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as
- Rl k,
q(Cnli) = q(Cnli) = g@) " 1 q(i)" = Ke,— (4)
(ki — DT &' ng “q(i)
JECn J#
i#i

where K, = ﬁ [, q(7)%. We can now define the probability that an individual
chooses alternativiein C,, as

e erln( )
S Vintin(ary)
J€Cn

where K¢, in Equation 4 does not play a role since it is constant for idiraatives inC,.
When using the previously presented biased random walki#iigowe therefore need to count
the number of times a given paghis generated as well as its sampling probability given by
Equation (2).

P(ilCn) = (5)

6 Numerical Results

With the numerical results presented in this section, wetwarevaluate the impact on the
estimation results of

e the sampling correction;
¢ the definition of the PS attribute; and

¢ the biased random walk algorithm parameters.

We therefore use synthetic data for which the true coefficialues are known. We then evalu-
ate different model specifications with the t-test valuethefcoefficient estimates with respect
to (w.r.t.) their true values.

6.1 Synthetic Data

The network is shown in Figure 3 and is composed of 38 node$4aniahks. It is a network
without loops and the universal choice gétan therefore be enumeratdt¥| = 170). The
length of the links is proportional to the length in the figarel some links have a speed bump
(SB).

3000 observations have been generated by assuming a pedtuladel. In this case we use a
PSL model, and we specify a deterministic utility functiam each alternativg € i/: V, =
BPSP§4 + p.Length + ﬁSBSpeedBumps Whereﬁps =1,0. = —0.3andfsg = —0.1. The
PS attribute is defined by BS= Zeer L S - wherel’; is the set of links in path, I, is

length of link¢, L, length of pathi andd,; equals one if path contains link?, zero otherwise.
Note that we explicitly index/ since later on we compute PS based on sampled choice sets.

The probability of pathi is defined byP(i|i/) = ﬁ
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Figure 3. Example Network

6.2 Model Specifications

Four models are estimated in order to evaluate the possibiinations of with/without sam-
pling correction and PS attribute computed based on allspatksampled paths:

e Model Mgg%g;r: Vin = BpsPS, + ALLength + 3spSpeedBumps

o ModeIMggf(rc): Vin = BpsPS, + BLLength + sz SpeedBumpst In(-Lx)

q(4)

e Model M} Vi = BePS + [ Length + BszSpeedBumps
o Model MEY,: Vi = BpsPS' + GiLength + BspSpeedBumpst- In( )

1

The PS attribute based on sampled paths is defined fy-PS", ;. é—’m
v LujeCy 8

6.3 Estimation Results

Table 1 shows estimation resuttfor a specific parameter setting of the biased random walk al-
gorithm (10 draws, Kumaraswamy parameters 5 andb = 1). Length is used as generalized
cost for the shortest path computations.

'There may be an issue with the scale for the computation dftixets in models\i/37eT and ME2T.,. This
will be further investigated but we do not anticipate thas tthanges the conclusions of the results.

9
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True [ Mpger | Mg, | Mpgas | Mege)
PSL PSL PSL PSL PSL
Ops 1 0.363 0.443 -0.203 1.03
Standard error 0.0729 0.086 0.0487 | 0.0465
t-testw.rt. 1 -8.74 -6.48 -24.70 0.65
1675 -0.3 || -0.0529 | -0.326 | -0.0453 | -0.291
Standard error 0.00864 | 0.0085 | 0.00828| 0.00788
t-testw.r.t. -0.3 28.60 -3.06 30.76 1.14
Oss -0.1 || -0.345 | -0.134 | -0.404 | -0.0773
Standard error 0.0315 | 0.0259 | 0.0298 | 0.0258
t-test w.r.t. -0.1 -7.78 -1.31 -10.20 0.88
Final Log-likelihood -6596.22| -6047.14| -6598.46| -5840.80
Adj. rho square 0.02 0.10 0.02 0.13
Null Log-likelihood: -6719.733, 3000 observations
Algorithm parameters: 10 draws,= 5,b =1, C({) = Ly
Average size of sampled choice sets: 9.43
BIOGEME (Bierlaire, 2007, Bierlaire, 2003) has been usedfb
model estimations

Table 1: Path Size Logit Estimation Results

Our hypothesis in Section 3 stating that the PS attributalsiize computed based 6hand not
C, is confirmed by these results. Indeed, the two models where P&ed oit’,, (Mggfg)” and

Mggr(rc)) have biased coefficient estimates. Note however that theehiocluding a sampling
correction, M%7, has coefficient estimates closer to their true values thamne which has

not, Mpge.

The model including sampling correction and PS baseld oMggr(;,)) has unbiased coefficient
estimates and has a remarkably better model fit than the otbeels. InA73377, even though

the PS attribute is based éhthe results are completely biased due to the lacking samplin
correction. This clearly shows the strength of the sampimgroach proposed here.

We now analyze the estimation results as a function of twh@biased random walk algorithm
parameters: the Kumaraswamy distribution parametand the number of draws. Figure 4

shows the absolute value of the t-tests with respect to treevialues for modeM g7, In-

dependently of the algorithm paramete@ss and 353 are unbiased. As expected, the results
deteriorate as increase. This is particularly the case f&yrthat is significantly different from
its true value fora > 20. Recall from Figure 2 that the higher the valueaothe more the
biased random walk is oriented towards the shortest patiallffiwe note that the results are
rather constant for different number of draws. In the Appenee present the results for all
four models in table form. The other three models do not havgased results for all three co-
efficients for any of the parameter settings. This clearlywshthe superiority of the approach
with sampling correction and computing PS based on the tuelation structure.

Finally we show in Figure 5 the average number of paths in bwece sets. As expected, the
number of paths increase with the number of draws but dez@ssincrease. Based on the
estimation results we can however conclude that unbiasedtsecan be obtained with rather

10
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7 Conclusions and Future Work

This paper presents a substantially different approacthoice set generation and route choice
modeling compared to existing ones. We view path generagan importance sampling
approach and derive a sampling correction to be added taatheufilities. We hypothesize that
the true choice set is the set of all paths connecting anrodgstination pair. Accordingly, we
propose to compute the PS attribute on all path (or as mangssiye) so that it reflects the
actual correlation structure.

We present numerical results based on synthetic data wkeelly show the strength of the
approach. Models including a sampling correction are r&atdy better than the ones that do
not. Moreover, unbiased estimation results are obtaingeiPS attribute is computed based on
all paths and not on generated choice sets. This is a coryptitierent approach from route
choice modeling praxis where generated choice sets areagdio correspond to the true ones
and PS (or Commonality Factors) is computed on these geigpath sets.

In the near future we will continue the analysis of the numifgpaths used for the Path Size
computation. We will also test the approach on real GPS datiran Sweden.
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A Additional Estimation Results

The following tables show the absolute value of t-test valioe the four different models dis-
cussed in the paper.

Kumaraswamy parameter

Coef. | Nb. draws| O 1 3 5 7 9 11 20 40
10 447 3.80 18.13 30.76 40.85 49.38 55.29 50.81 10.57
20 421 3.60 1879 30.76 40.30 49.23 57.46 65.00 17.88
Br, 30 415 404 1857 30.11 39.70 48.01 56.61 69.91 21.57
40 354 418 1838 29.51 39.06 4752 5510 74.19 25.73
50 3.18 432 18.04 29.13 3845 46.28 53.92 76.50 28.50

10 20.71 17.44 1339 1020 855 7.45 7.22 642 591
20 21.20 17.70 1250 890 7.06 6.25 574 591 4/96
Bsp 30 20.96 17.09 11.37 754 552 469 415 461 446
40 20.03 16.33 1035 6.35 4.45 343 311 3.66 384
50 19.23 1535 943 557 324 236 199 284 3.p4

10 33.73 31.28 26.34 24.70 24.13 24.00 23.84 20.70 14.26
20 3197 2891 2358 2193 2135 21.35 2128 19.76 11.18
Bps 30 2955 25.61 2096 19.71 19.22 19.25 19.50 18.57 896
40 26.84 2312 1869 1791 17.70 18.02 1830 17.87 7.66
50 2469 2090 16.88 16.45 16.53 16.93 17.36 17.30 650

Table 2: ModelM 3307
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Kumaraswamy parameter

Coef. | Nb. draws| O 1 3 5 7 9 11 20 40
10 110 6.98 17.74 28.60 36.66 44.12 47.57 48.08 10.43
20 098 6.19 18.04 27.97 3539 4164 47.04 5191 17.93
BL 30 024 6.26 17.61 26.73 32.61 39.70 44.31 51.15 21.46

40 0.74 588 17.21 26.08 33.21 38.67 43.06 50.62 23%.50
50 0.25 593 16.84 2598 32.67 37.08 4124 50.38 2§.10

10 1574 1339 1080 7.78 6.31 6.05 546 586 565
20 1432 1227 895 6.24 500 455 532 585 5p4
BSB 30 13.84 1081 7.25 438 043 325 3.04 525 49
40 11.69 1035 6.11 326 263 204 257 440 3.86
50 1168 8.73 518 346 167 123 140 358 264

10 439 543 764 874 950 12.26 1085 10.78 8.86
20 546 6.96 8.65 10.15 11.84 12.88 15.52 13.36 11.61

Bps 30 729 6.89 849 920 9.05 1328 14.01 15.21 1199
40 494 8.04 827 942 1223 1331 1531 15.83 1144
50 6.83 6.25 8.13 11.14 1245 13,50 1519 16.21 10.21

Table 3: ModelV/ 33"

Kumaraswamy parameter

Coef. | Nb. draws| O 1 3 5 7 9 11 20 40
10 424 387 477 3.06 278 0.36 0.15 245 1)68
20 283 352 473 460 422 3.06 120 0.61 1/47
BL 30 251 279 515 6.62 6.96 458 4.44 0.34 0/98
40 151 252 532 7.32 6.44 537 432 0.78 017
50 1.25 213 536 7.38 6.57 598 486 0.79 0/92
10 246 159 200 131 096 046 0.73 1.86 2)48
20 0.34 0.62 062 040 060 043 046 228 321
BSB 30 092 250 241 124 190 1.13 166 253 3)28
40 3.71 3.17 345 2.17 090 1.10 161 259 353
50 385 518 428 182 106 145 1.60 2.59 4|07
10 574 515 544 648 6.25 7.62 538 5.18 521
20 6.11 6.00 542 6.82 7.30 6.99 8.11 5.14 5,69
Bps 30 713 5.17 4.18 4.43 347 6.09 540 5.11 5)03
40 420 561 314 334 571 573 6.03 590 431
50 517 3.34 224 4.05 560 556 6.07 5.89 363

Table 4: ModelM/£27,,
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Kumaraswamy parameter
Coef. | Nb. draws| O 1 3 5 7 9 11 20 40
10 0.76 0.78 0.26 1.14 0.11 089 1.11 202 151
20 093 054 082 1.08 0.37 0.67 0.67 194 1/46
BL 30 0.81 0.83 0.70 0.68 050 0.69 0.30 2.08 1/43
40 1.10 083 056 082 052 046 061 1.78 134
50 1.24 083 056 0.69 0.79 036 053 271 0/90
10 1.08 130 055 088 051 090 111 113 1432
20 1.36 1.08 0.79 065 050 0.77 1.07 0.96 1/53
BSB 30 1.03 101 068 059 0.78 087 0.8 1.08 1/13
40 1.12 101 061 057 061 065 1.01 1.29 1/03
50 1.28 1.17 0.73 052 0.80 087 090 1.33 120
10 1.07 131 156 065 1.04 081 0.79 0.66 089
20 0.67 0.68 1.15 045 1.10 0.84 0.42 0.24 0|69
Bps 30 0.69 069 093 046 090 0.87 0.85 0.00 0)77
40 0.69 046 0.70 046 0.68 0.66 0.65 0.15 0/71
50 093 0.70 0.70 047 0.46 044 0.65 0.63 0{74

Table 5: ModelM g2y,
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