
The Dynamics of Energy Demand of the Private 
Transportation Sector

Reto Tanner, Universität Bern

Conference paper STRC 2007

STRC 
 7 th

 Swiss Transport Research Conference
 

Monte Verità / Ascona, September 
12. – 14. 2007





Swiss Transport Research Conference
________________________________________________________________________September 12 - 14, 2007

The  Dynamics  of  Energy  Demand  of  the  Private 
Transportation Sector

Reto Tanner
Universität Bern
Schanzeneckstrasse 1
CH-3001 Bern

Christoph Leuenberger
Ecole d'ingénieurs et d'architectes 
de Fribourg
Boulevard de Pérolles 82
CH-1705 Fribourg

Phone: +41 31 631 47 75
Fax: +41 31 631 39 92 
email: retanner@gmx.ch

Phone:+41 26 429 67 61
Fax:  
email: 
christoph.leuenberger@hefr.ch

September 2007

Abstract

This paper describes the influence of fuel prices on the demand of car types, car travel demand and fuel. 
The fuel price affects the type of car a household buys and the distance driven. In past studies, either the 
short-run or the long-run elasticities of fuel demand were examined, mostly without including the stock 
of cars in the models. For the short-run elasticity of fuel demand, the car stock can be considered to be 
constant. In the long run, the car stock can be considered as adapted to the new prices and therefore the 
long run price elasticity should be greater that the short run price elasticity. In this model the car stock is 
considered. The aim of this paper is to examine the demand for car types, car travel demand and fuel in 
the short and long run. We solve this problem by estimating a demand function that describes the demand 
for cars and the annual distance driven by individual households. This is done by a framework first 
introduced by Dubin and McFadden (1984) , where the consumer in the first stage chooses the type of car 
and in the second stage  the distance driven. Given the estimated parameters of this demand functions, the 
impact of an increase of  fuel prices on the choice of the cars, the car travel demand and the fuel demand 
can be simulated. The model allows also to simulate the effect of demographic changes, like the changes 
in the spatial  structure or  in the age structure of  the population.  The survey is  based on data from 
Switzerland.

Due to data availability and the modelling framework, so far only households with cars aged less that 24  
month were examined. 

Keywords
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1. Introduction

The share of CO2 emissions of the transportation sector on the total CO2 emissions is about 40% for 
Switzerland. Despite the fact that Swiss government has announced its desire to reduce CO2 emissions 
of the transportation sector to a level of 8% below the level of 1990 by 2010, the emissions in 2000-
2004 were about 9% above the level of 1990. One policy for reaching the target level in 2010 is a fuel 
tax. In this work the effect of such a tax is examined. In earlier studies, either the short-run or the long-
run elasticities of fuel demand were examined, mostly without including car stocks in the models. For 
the short-run elasticity of fuel demand, car stocks can be considered to be constant. In the long run, car 
stocks can adapt to new prices and, therefore, the long run price elasticity should be greater that the 
short run price elasticity.

To simulate the fuel  demand for the year  2010 for different  levels of  fuel  taxes,  a  model  should 
include the effects on the car specific fuel consumption per kilometre: It is assumed that if the cars 
consume less fuel per kilometre also the demand of fuel will be less. Furthermore a model should 
include some demographic impacts on car choice and travel demand, since these impacts can change 
over time. Examples of relevant demographic variables can be, if household type is a retired couple, a 
single household or a family and whether they live in an urban or a countryside area.1 In principle the 
model should also include the second hand car market and the choice of a household on the number of 
cars. For simplicity and due to data availability, the model will only include cars that are not older than 
24 month. It is assumed that simulations results for the effect of a fuel tax, will be representative for 
the whole set of cars.2 

The model used in this paper explains the demand of car travel distance of individual households. The 
fuel demand can be calculated multiplying the car travel distance by the average fuel consumption per 
kilometre  of  the  car  of  the  household.  The  model  includes  the  fuel  price,  car  attributes  and 
sociodemographic attributes as explanatory variables for the car travel demand. The model a is based 
on the framework first postulated by Dubin and McFadden. In this framework, the behaviour of a 
household is assumed to be as follows: The household decides to buy one car in the first stage and in a 
second stage how many kilometres to drive with it per year. In the first stage the household can choose 
among different types of cars. The household then takes into account the choice of a certain car and 
then chooses the consumption level of all goods including the number of kilometres it would drive by 
this car. It applies this procedure to all car models available and then ranks the cars according to the 
utility level. It will then choose the car that is on the top of the ranking. The outcome of this decision 
process is what is assumed to be observed in the data. For simplicity in a first step only households 
who  buy a  new car  are  considered.  It  will  turn  out,  that  this  behaviour  can  be  captured  by  the 
following:

1 For an overview on the impact of the age and the income on travel demand see Bundesamt für Statistik (2007b), page 82. 

2Or at least: A simulation based on this subset including only the effect of a fuel tax on the use of the car will underestimate 
and a simulation including both the choice of the car and the use of it will overestimate the impact of a fuel tax on fuel  
demand. Therefore, an upper and a lower bound for the effect of a fuel tax on fuel consumption can be calculated.
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( ) ( )max , , , , , inp
i n i i n in in n i in n i ini

v p y r b s e y r p s bβ αε ξ β α β γ δ ξ
β

− − = + − + + + +
 

, (1.1.1)

( ) ( )1, , , ,in in n in n in n in n i inx x p y r s p y r s bε α β γ δ ε= = + − + + + , (1.1.2)

where ny  is the income of household n,  ir  is the fix costs of the car type  i, and inp  is the cost per 

kilometre driving that depends strongly on the fuel price, the sociodemographic variables denoted ns , 

and the car attributes denoted ib . The sociodemographic variables ns  contain among other variables 

the  number  of  people  of  the  household  and the  type  of  area  where  the  household  lives.  The car 

attributes contain variables like comfort attributes and size. The random terms  inξ  and inε  represent 

unobserved  sociodemographic  variables,  unobserved  car  attributes  and  measurement  errors.  The 

random terms inξ  are assumed to be independent and identically-distributed random variables that are 

correlated  with  the  random  term  inε .  Both  inξ  and  inε  have  mean  zero.  The  function 

( ), , , , ,i n i i n in inv p y r b s ε ξ−  is an indirect utility function and indicates the level of utility a household n 

can reach given its income  ny  and the cost per kilometre drive  inp  when choosing the car type  i. 
Household n will then choose the car type for which his indirect utility function will yield the highest 

value.  The function  ( ), , , ,in n i n inx p y r s ε  describes the number of kilometres per year  the household 

would drive with car type i. 

The crucial econometric problem is that the expected value of ni nε  when household n chooses car type 

i  is not zero any more:  ( )( )| 0
n n ni nE I iε ξ = ≠g . The reason for this deviation from zero is because 

option  i  is  only chosen  for  certain  combinations  of  the  error  terms  inξ .  Since  inξ  and  inε  are 

correlated, not all values of inε  have the same probability like in the unconditioned case and therefore 

the expected value of inε  given the choice i  is not zero. Dubin and McFadden show now, that under 

some assumptions on the distribution of the error terms  inξ  and inε  the value of  ( )( )|
n n ni nE I iε ξ =g  

can  be  calculated  in  a  simple  way.  It  can  be  shown  that  when  ni nε  is  replaced  by 
( )( )|

n nn ni n in i nE I iε ε ξ υ= = +g  the estimated parameters  , ,  and α β γ δ  are  asymptotically consistent 

when estimating the model (1.1.2) by OLS.3

In chapter 2 the model of Dubin and McFadden will be presented and adapted to the problem of this 

paper.  It  is  also  shown how the  value  of  ( )( )|
n n ni nE I iε ξ =g  can  be  calculated.  In  chapter  3  the 

parameters of this model will be estimated for households with cars aged less that 24 month using 

Swiss Data. Further there is shown, how the expected change of total fuel can be calculated for a given 

scenario, like an increase of the fuel price for example. In chapter 4 contains the conclusions of this 

paper and the future research plans on this topic. 

3It will be shown, that this can be done by estimating (1.1.1) by the maximum likelihood method first. Then the correction 
term can be calculated using the estimated values an the data.  
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2. The discrete/continuous estimation Model 

2.1 Introduction of the Model
In this  chapter  all  the elements  of  the model  of  Dubin and McFadden are derived.  The principal 
difference to ordinary two stage models with selection bias as can be found in Maddala (1983) is that 
the  choice  of  the  functional  form  for  the  deterministic  component  for  the  choice  part  and  the 
continuous part is not arbitrary any more. In the model of Dubin and McFadden, the functional form 
of the deterministic component of the continuous part is a Marshallian demand function and the one of 
the choice part is the corresponding indirect utility function. Therefore the functional forms in the 
model of Dubin and McFadden comply to the conditions of a microeconomic demand system. In the 
following, first the model  is  derived for the most simple functional form of a Marshallian demand 
function. The result will be slightly different of the one obtained by Dubin and McFadden, since it will 
be adapted to the problem formulated above.4 After that, some assumptions for the common stochastic 
terms are made and out of this, the resulting correction terms for the regression model are calculated.

2.2 A demand system with a linear Marshallian demand 
function5

In this model the demand for driving an annual distance given the choice of a certain car shall be 
explained. The demand for other goods is not considered. This task is equivalent to the demand of the 
amount of a consumer good, given the choice of a certain bundle of capital good. The demand for 
driving an annual distance depends as well on economic as on sociodemographic variables. In the 
model, it is assumed that there exist only two goods: Good one, the demand for driving an annual 
distance  and  good  two,  the  numeraire  good  that  contains  all  the  remaining  bundle  of  goods.6 A 

demand  function  that  depends  linearly  on  the  economic  variables  inp ,  ny  and  ir -  the  cost  per 

kilometer driving by car type i=1..J, the income of household n=1..N and the annual capital costs of 

the car - as well as on the sociodemographic variables ns  and the car attributes ib  in its most simple 

functional form is given by: 

( ) ( )1 1, , ,in in n i n in in n i i n i inx x p y r s p y r s bυ α β γ δ υ= + = + − + + + , (2.2.1).

4The model would be identical to the one of Dubin and McFadden, if it would have been assumed that the kilometers could 
have driven by cars using different types  of fuel,  like gasoline or natural  gas driven or even by bifuel cars:  Dubin and 
McFadden examine the demand for the households for electricity and natural gas, given the choice of a house and water 
heating system, which is either a natural gas or a electricity based system or a combination of it. 

5This presentation follows the main lines in Hausman (1981).

6Remind that in Dubin and McFadden the demand of two goods is examined: The demand for electricity and natural gas. 
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Remind that the price inp  and the income ( )n iy r−  are expressed in units of the numeraire price. The 

numeraire  price  is  the  price  index  of  the  bundle  containing  all  goods  apart  from the  demand on 

kilometres. The price 1inp  corresponds to the marginal costs of a kilometre driving and depends on the 

car type j and the average fuel price during the period of using the car. The income ny  net the capital 

costs of the car type  i,  ir , is used for the income of the demand system. The stochastic term  1inυ  

contains  unobserved  sociodemographic  variables  ns%  and  car  attributes  ib% ,  ( )1 1 ,in n is bυ υ= %% .  The 

deterministic part of the choice model is represented by the indirect utility function that corresponds to 
the  Marshallian  demand  function  of  the  continuous  demand  part  of  the  model.  This  means  it  is 
assumed that the household calculates the maximum of utility given car type i, does this for all car 
types and then chooses the car that yields the highest utility. This utility calculation implies that the 
household recalculates all demand goods when having a look at the different cars and that it is an 
ordinary microeconomic utility maximization calculation. Therefore, the resulting utility, given a car, 
can be calculated by computing an indirect  utility function.  Therefore this indirect utility function 
must  correspond  to  the  Marshallian  demand  function  and  comply  to  the  conditions  of  a 

microeconomic demand system. The indirect utility function ( )1 , , , ,in n i n iv p y r s b  can be calculated as 

follows:

The starting point is as follows: First a utility level 0u  is defined: 

( )0 1 , , ,n in n n iu v p y s b= ) , in n iy y r= −) .

Therefore, there must exist a combination of prices 1inp  and incomes iny)  such that the utility of the 

household  n  remains  equal  0nu .  Hence,  there  must  exist  a  function  ( )1iny p) ,  such  that 

( )( )0 1 1, , ,n in in n iu v p y p s b= ) .

The function ( )1iny p)  can be determined by use of the following total differential: 

( ) ( )1 1, , , , , ,
0in n n i in n n i n

in n in

v p y s b v p y s b dy
p y dp

∂ ∂
+ ⋅ =

∂ ∂

) ) )
) . 

Transforming this total derivative one gets:

( )
( )

1 1

1 1

, , , /
, , , /

in n n i inn

in in n n i n

v p y s b pdy
dp v p y s b dy

∂ ∂
= −

∂ ∂

)
) . 

Applying Roy's Theorem7 yields:

7 ( ) ( )
( )1

, , , /
, ,

, , , /
i

i
v p y s b p

x p y s
v p y s b y

∂ ∂
= −

∂ ∂ . Remind that due to the fact, that there is only one good of interest in this problem, the 

index one is left out. Remind also that the price of good one, p, and the income y are measured in units of 2p , a price index 

containing all goods apart of good one. The theorem of Roy is still valid: Proof: Consider a demand system with prices 
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( )
( )

1
1

, , , /
, , , /

in n n i inn
in n i n i in

in in n n i n

v p y s b pdy p y s b
p v p dy s b y

α β γ δ υ
∂ ∂

= − = + + + +
∂ ∂

) )
) ) .

Solving this first order inhomogeneous differential equation yields:8

( ) 1
1

inp
in i n i in iny p c e s b pβ α γ δ υ α

β β
= ⋅ − + + + −

 
) .

Choosing 0nc u= 9 and solving for 0nu  one gets the indirect utility function:

( ) ( )1
1 1 2 1 1

1, , , , , , inp
in n i n i in in n i i n i in inv p y r s b e y r s b pβ αυ υ γ δ υ α

β β
−  = − + + + + +  

  
.

Since indirect utility functions are defined up to a positive transformation, the following function is 
also feasible.10

( ) ( )1
1 2 1 2, , , , , , inp

in n i n i in in n i in i n i in inv p y r s b e y r p s bβ αυ υ β α β γ δ υ υ
β

− = + ⋅ − + + + + +
 

.

Transforming this expression leads to the following:

expressed in units of price of the good N, Np% . The theorem of Roy is then: ( ) ( )
( )

, , , /
, ,

, , , /
i

i
v p y s b p

x p y s
v p y s b y

∂ ∂
= −

∂ ∂
 

 
  . When applying 

the theorem of Roy taking the transformed prices /i i Np p p=    and the transformed income / Ny y p= % % , it can be shown that 

the  theorem  remains  valid: 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

, , , / , , , / / , , , / 1 , , , /
, ,

, , , / , , , / / , , , / 1 , , , /
i i i i i N i

i
N

v p y s b p v p y s b p p p v p y s b p p v p y s b p
x p y s

v p y s b y v p y s b y y y v p y s b y p v p y s b y
∂ ∂ ∂ ∂ ⋅ ∂ ∂ ∂ ∂ ⋅ ∂ ∂

= − = − = − = −
∂ ∂ ∂ ∂ ⋅ ∂ ∂ ∂ ∂ ⋅ ∂ ∂

% % % % % % % % % %
% % % % % % % % % % .

8 dy p y s b
dp

α δ γ δ= + + + .  The  solution  of  the  homogeneous  differential  equation  
dy y
dp

δ=  is:  ( ) 1
1

p
Hy p c eδ= ⋅ .  The 

particular solution of the differential equation ( ) ( )P
P

y p
y p p s

p
δ α γ

∂
− = +

∂
 is: ( ) 1

Py p s pα γ α
δ δ

= − + −  
. 

This solution is obtained by applying th following general solution: ( ) ( ), P
P

y p
y p a bp b

p
∂

= + =
∂

. By comparing the 

coefficients the constants a and b can be determined.

9Applying Roy's theorem on the indirect utility function that follows from this assumption on can see that the Marshallian 

demand function is resulting. Therefore it is feasible to assume 0c u= .

10The theorem of Roy is still not violated in this case, since if ( ) ( ), 0, 0f z f z z′ > ∀ >  then ( ) ( )( ), ,v p y f v p y=)  is a 

positive transformation of ( ),v p y , Then ( ) ( )( ) ( ) ( )
( )

, /
, , , , ,

, /
i

i
v p y p

v p y f v p y x p y
v p y y

∂ ∂
= = −

∂ ∂
)

( )
( )

( )( )
( )( )

( )( ) ( ) ( )
( )( ) ( ) ( )

( )
( )

, / , / , , /, / , /
.

, / , /, / , / , , /
i ii if v p y p f v p y v p y v p y pv p y p v p y p

v p y y v p y yf v p y y f v p y v p y v p y y
∂ ∂ ∂ ∂ ⋅ ∂ ∂∂ ∂ ∂ ∂

= = =
∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ⋅ ∂ ∂

)
)

6



Swiss Transport Research Conference
________________________________________________________________________September 12 - 14, 2007

( ) ( )1
1 2 1 2, , , , , , in inp p

in n i n i in in n i in i n i in inv p y r s b e y r p s b eβ βαυ υ β α β γ δ υ υ
β

− −= + ⋅ − + + + + +
 

.

The stochastic term 2inυ  represents also unobserved sociodemographic variables  ns%%  and unobserved 

car attributes ib%% , but such ones that are influencing only the choice of car types while as ns%  and ib%  

may contain variables that influence only the demand of driving or both the demand of driving and the 

choice of the car type. This means that the stochastic vectors ns%  and ib%  may contain some components 

that are also contained in ns%%  and ib%%  , but the vectors ns%  and ib%  contain in addition some variables that 

only  influences  the  demand  for  driving.  Therefore,  the  stochastic  variables  ( )1 1 ,in n is bυ υ= %%  and 

( )2 2 ,in n is bυ υ= %%%%  are correlated. An example for an unobserved variable that only influences the choice 

of the car is the shape of the car (estate car or limousine), if this variable is not contained in the data.  
An example for an unobserved variable that influences both the choice of the distance and the choice 
of the car might be unobserved attributes of the car, like the intensity of noises inside the car when 
driving it. 

2.3 The application of the demand system in the model of 
Dubin and McFadden

The demand system derived above is similar to the two stage model of Heckman (1979). Since the 
stochastic terms of the choice and the demand model are correlated, also in this model a correction 
term must be added for estimating asymptotically consistent parameters for the Marshallian demand 
function.

The model is defined as follows

( ) ( )1 1
1 2 1 2max , , , , , , max in inp p

in n i n i in in n i in i n i in ini i
v p y r s b e y r p s b eβ βαυ υ β α β γ δ υ υ

β
− −= + ⋅ − + + + + +

 
, 

(2.3.1)

( ) ( )1 1, ,in in in n i i n inx x p y s p y r s bυ α β γ δ υ= + = + − + + + . (2.3.2)

To determine this correction term the common distribution of the two stochastic terms plays a crucial 

role. Rewriting the stochastic terms as ( ) ( )1 2, ,inp
in n i n is b e s bβξ υ υ−= ⋅ + %% %%% %  and ( )1 ,in n is bε υ=   the model 

can be written as: 

( ) ( )1
1 2max , , , , , , max inp

in n i n i in in n i in i n i ini i
v p y r s b e y r p s bβ αυ υ β α β γ δ ξ

β
− = + ⋅ − + + + +

 
,

( ) ( )1, ,in in in n i i n inx x p y s p y r s bυ α β γ δ ε= + = + − + + + .

7
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The stochastic term  inξ  depends both on unobserved variables that may influence the demand for 

driving and the choice of the cars. inε  contains variables that influence the demand for driving, but it 

may also contain variables that influence both the demand for driving and for choosing a car type. In 

each case, the stochastic terms  inξ  and  inε  are not independent,  since they are functions of some 

common unobserved variables. The problem that the stochastic term inξ  depends also on inp  is treated 

further below.

First,  some  assumptions  are  made  in  order  to  simplify  the  model  structure.  The  

common distribution of the stochastic variables inξ  and inε  depend on the form of the functions ( )1υ g  

and ( )2υ g  and on what variables are considered as arguments. To simplify the model, the following 

special case is of particular interest:

( ) ( )1 1 1, 0in in n ns sε υ υ υ= = =% % . 

In  this  case,  the  stochastic  component  of  the  demand function,  inε ,  depends  only on unobserved 

sociodemographic variables. If it is further assumed that the variation of the marginal costs for driving, 

inp , between different car types in the choice set11 is small or at least does only contribute a small 

share  of  the  variation  of  the  term  ( ) ( )1 2 ,inp
in n n is e s bβξ υ υ−= ⋅ + %%%% % ,  it  is  reasonable  to  neglect  the 

influence of inp  on inξ . Since for the choice model, the utility function is only defined up to a positive 

transformation,  one  could  subtract  the  term  ( )1
inp

ns e βυ −⋅%  from  inξ .  Therefore,  inξ  becomes 

( )2 ,in n is bξ υ= %%%% . Since the stochastic terms inξ  and inε  are still driven by some common variables, or 

at least some variables that are correlated, they are still correlated.12 

For this special case the model is as follows:

( ) ( )max , , , , , max inp
i n i i n in in n i in n i ini i

v p y r b s e y r p s bβ αε ξ β α β γ δ ξ
β

− − = + − + + + +
 

, (2.3.3)

( ) ( )1, , ,in in n n in n in n i inx x p y s p y r s bε α β γ δ ε= = + − + + + , (2.3.4)13

with: ( )2 ,in n is bξ υ= %%%% , ( )1in nsε υ= % . 

11It can be assumed that the household do not evaluate all the cars, but only cars that are „closed“ to the optimal category. 
Therefore it is reasonable to assume that the variation in marginal costs of driving is rather small.

12 ( )2 ,in n is bξ υ= %%%% ,  ( ) ( )1 1 1, 0in in n ns sε υ υ υ= = =% % .  Remind  that  the  stochastic  vectors  ns%  and  ib%  may  contain  some 

components that are also contained in ns%%  and ib%% .

13Note, that only the car travel distance driven by the car type chosen, ni , can be observed.

8
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Since every simplification decreases the power of the model, it must be discussed, if the simplification 
is reasonable and what its effects could be. In this case the assumption that the stochastic component 
of the demand function depends only on unobserved sociodemographic variables does not seem to 
cause a large deviation from the reality, because it seems realistic that observed preferences of the 
households influence the demand of the driving distance much more than unobserved car attributes 
like unobserved comfort  attributes. The assumption that the variation of marginal costs among the 

different cars can be neglected in the error term ( ) ( )1
1 2 ,inp

in n n is e s bβξ υ υ−= ⋅ +    is more problematic 

and can only be justified, when assuming that the variation of ( ) 1
1

inp
ns e βυ −⋅%  is much bigger than the 

variation of ( )2 ,n is bυ %%%% . The assumption that the stochastic component of the utility function depends 

on unobserved sociodemographic variables seems also plausible, since the car choice depends strongly 
on  consumer  preferences.  It  seems  also  reasonable  to  assume  that  there  are  unobserved 
sociodemographic variables that influence both the demand on distance and the choice of the car type. 
One  example  would  be  that  a  household  with  strong  preferences  for  driving  also  has  strong 
preferences for a comfortable car.14

To sum up, the model structure proposed above (equations (2.3.3) and (2.3.4)) seems to be reasonable 
and it will be much easier to estimate the parameters than the model (equations (2.3.1) and (2.3.2)) 
first proposed.

2.4 The correction term for the distance demand model

The  correction  term  for  the  distance  demand  equation  is  necessary,  because  of  a  selection  bias 
problem, which means that the error term of the demand function depends on the choice of the car 
type.  When  neglecting  this  fact  and  estimating  the  parameters  without  any  correction  term,  the 
estimated parameters would be biased. Therefore, an correction term must be added into the estimation 
in order to get asymptotically consistent estimators. In this section the correction term for the distance 
demand  model  is  calculated.  The  concept  of  deriving  the  correction  term is  similar  to  the  cases 
described in Maddala (1983) chapter 8 and 9. In order to calculate the correction term for this model, 

some  additional  assumptions  on  the  common  distribution  of  inξ  and  inε  are  necessary.  This 

assumptions according to Dubin and McFadden are:15

a.) The stochastic terms inξ , 1..i J= , are independent and identically Gumbel distributed:

( ) 3
in

e
inF e

ξ π γ
λξ

− −
−= .

14Find better example, since this rather means that preferences for distance are correlated with preferences for 
comfortable cars. 

15 Vekeman (2003), page 32 and Dubin and McFadden, page 352.
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The parameter  λ  is a distribution parameter and the constant  0.577...γ =  is the Euler-Mascheroni- 

constant. The expectation value of this distribution is ( ) 0inE ξ =  and the variance is ( )
2

var
2in

λξ = .16

b.) The conditional expectation value of inε  17 given nξ g  is:18

[ ]
1

2|
J

in n j jn
j

E Rσε ξ ξ
λ =

= ⋅ ∑g , ( )corr ,j in jnR ε ξ= , [ ] 0inE ε =  and [ ]2 var inσ ε= .

c.) The conditional variance of inε  given nξ g  is: 

[ ] 2 2

1

var | 1
J

in n j
j

Rε ξ σ
=


= − 

 
∑g .

d.) The correlation between inε  and jnξ , ( )corr ,j in jnR ε ξ= , fulfils the following properties:

2

1

1
J

j
j

R
=

<∑  and 
1

0
J

j
j

R
=

=∑ .

The stochastic term inε  can, therefore, be split in a component depending on i and to a component inυ :

[ ]|in in n inEε ε ξ υ= +g .

16See  also  Ben  Akiva  (1985),  page  104:  If  x is  Gumbel  distributed  with  ( ) ( )xeF x e
µ η− −−= ,  then:  ( )E x γη

µ
= +  and 

( )
2

2var
6

x π
µ

= .

17The expression [ ]|in iE ε ξ g  means, the expected value of inε , given that the household i has chosen the car type i. Remind 

also that in the dataset only inx  - where i is the car type chosen by the household - can be observed.

18Remind that from the assumption of linearity 
1

J

in j jn
j

ε α ξ
=

= ⋅∑  and independence of jnξ  and jnξ  for all j j≠ , it follows that 

[ ]
1

2|
J

in n j jn
j

E Rσε ξ ξ
λ =

= ⋅ ∑g  and [ ]
1 1

cov , cov , cov , cov , var
J J

in kn k kn jn k kn jn j jn jn j jn
k k

ε ξ α ξ ξ α ξ ξ α ξ ξ α ξ
= =

       = ⋅ = ⋅ = ⋅ = ⋅ ⇒        
∑ ∑  

[ ]
[ ]

var
corr , ,

var
jn

j in kn
in

ξ
α ε ξ

ε

  ⇒ = ⋅  where  ( )
2

var
2in

λξ =  as defined above and [ ]var inε σ= . Therefore it seems that behind 

Dubin and McFadden assumed linearity 
1

,with independent from
J

in ij jn in in jn
j

ε α ξ υ υ ξ
=


= ⋅ +

 
∑ . From this it followed b.). The 

assumptions  c.)  and  d.)  impose  some  additional  restrictions  on  the  parameters  jα .  The  same  assumption, 

1

,with independent from
J

in ij jn in in jn
j

ε α ξ υ υ ξ
=


= ⋅ +

 
∑ , is made by Bernhard, Bolduc and Bélanger (1996), page 97.
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From assumption a.) it follows that the conditional expectation value of given that the household n has 

chosen the option ni , ( )|in n nE I iξ ξ =  g , is equal to:

( )
( )( )

( )
( ) ( )( )

ln
|

ln
1

n n n

jn n n n
n n

n

P i falls j i
E I i P j

P j falls j i
P j

θ
ξ ξ

θ

 − =
 

 = =    ≠ − 

g , 3θ λ
π

= ⋅ .19

The parameter λ  is an arbitrary parameter that determines the variance of inξ , see also a.).

By plugging ( )|in n nE I iξ ξ =  g  in [ ]|in nE ε ξ g  in b.), one gets after some reformulation the following 

expression:

( ) ( )
( ) ( )( ) ( )( )

1.. \

6| ln ln
1

n
in n n j n n ni

j J i n

P j
E I i R P j R P i

P j
σξ ξ

π ∈

 
= = −      −  

∑g .

An equivalent result is:20 

( ) ( )( )
( ) ( )( )

1

ln6|
1 n

J
n

in n n j n ji
j n

P j
E I i R P j

P j
σξ ξ δ

π =

= = −   −∑g , 1,if , 0, if
n nn nji j ij i j iδ δ= = = ≠ .

Out of this the following expression for inx  results:

( ) ( )( )
( ) ( )( )

1

ln6
1

J
n

n n j nin i i ji in
j n

P j
x p y r s b R P j

P j
σα β γ δ δ υ

π =

= + − + + + − +
−∑ , (2.4.1)

with ( ) ( )( )
( ) ( )( )

1

ln6|
1n

J
n

n n j ni n ji
j n

P j
E I i R P j

P j
σε ξ δ

π =

 = = −  −∑g , 1,if , 0, if
n n nji j ij i j iδ δ= = = ≠ .

For the probabilities ( )n nP i  the estimated probabilities ( )n nP i  are substituted:

( )
ˆ

ˆ

1

ˆ
in

jn

V

n n J
V

j

eP i
e

=

=
∑ , with ( )ˆ ˆˆ ˆˆ ˆˆ

inp
in n in n iV e y r s bβ αβ γ δ

β
− 

= − + + + 
 

. (2.4.2)

19For the derivation of this expression see in the attachment. The formula can also be found in Dubin and McFadden on page 
352.

20An equivalent result one can get after some reformulations using 
1 1..\

0 1
n

n

J

j ji
j j i

R R R
= ∈

= ⇔ = −∑ ∑ :

( ) ( )( )
( ) ( )( )

1

ln6|
1n

J
n

n n j ni n ji
j n

P j
E I i R P j

P j
σε ξ δ

π =

 = = −  −∑g , 1,if , 0, if
n n nji jij i j iδ δ= = = ≠ .
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The parameters  ˆ ˆˆ ˆ, , andα β γ δ  are the parameter values that are estimated in the first step, with the 

multinomial logit model (MNL).21

In the second step, the parameters of the estimation equation (2.4.1) can be calculated. The correction 

term has to be calculated using the estimated probabilities ( )n̂P i  form the first step.

( )
( )( )
( ) ( )( )

1

ˆln6 ˆ
ˆ1

J n
n n j nin in in i ji in

j n

P j
x p y r s b R P j

P j
σα β γ δ δ υ

π =

= + − + + + ⋅ − +
−∑ . (2.4.3)

The  parameters  of  the  equation  (2.4.3)  can  be  estimated  using  OLS  and  will  be  asymptotically 
consistent. Mind that the variances of the estimated parameters form OLS are not correct. These would 
need to be estimated by a procedure described in Dubin (1981).22

21A description of the Multinomial Logit Model is enclosed in the attachment.

22Dubin  (1981),  „Two-Stage  Single  Equation  Estimation  Methods:  An  Efficiency  Comparison“,  mimeo,  Massachusetts 
Institute of Technology, 1981.
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3. Data and empirical results

3.1 Data description
The  data used to estimate the model  comes from a survey of the Swiss Federal  Statistical  Office 
(FSO).  This  survey is  performed every five  years.  About  30'000 randomly drawn households  are 
interviewed by a telephone survey. The questionnaire contains a wealth of information on household 
travelling behaviour,  residence  characteristics  and a  number of  household  characteristics.  For  this 
estimation, the dataset of the survey of the year 2000 was used. For the variable costs per kilometre of 
a car type i, the average fuel price during the period the car driven was used as a proxy. Since all the 
households are faced with the same fuel price at a certain date, the difference of the average fuel price 
during the period the car was used between cars older than three years would become very small.23 In 
addition to  this,  it  is  not  any more  certain  enough,  that  older  cars  were bought  as  new from the 
household and there is no information on when the car was bought and about the price. In addition, for 
cars bought in the year or the year before the survey the month of matriculation is available. This 
allows to calculate the period the car was used and, therefore, also to calculate the average fuel price 
very accurately.24 Therefore the sample is restricted to cars bought in the year or the year before the 
survey. The annual distances driven by these cars is calculated by dividing the value of the odometer 
by the period the car was used. To distinguish car types only the variable “engine size category” is 
available  for  the dataset  of  the year  2000.25 The categories  are:  Category one for  the engine size 
smaller or equal to 1'350 ccm, then always in 300 ccm steps up to 2550 ccm, and category six for 
engine size greater than 2550 ccm. For these categories, average annual fix costs where calculated by 
using Swiss car import statistics26 and data on car costs27. Apart from fixed costs there are no car type 

specific attributes available in the data. Therefore, the term ibδ  will be skipped in the estimation.

23Assuming that the date of survey for two households is June 1st 2000. One household has a car bought in 1994 the other has 
one bought in 1995. It is obvious, that the average fuel price during the period 1994-2000 wont differ a lot from the one of 
period 1995-2000. In contradiction to this, the difference would be much higher, if the cars were bought in 1998 and 1999 
respectively. 

24The day of the telephone survey is also known.

25For the dataset of the survey in the year 2005 the exact engine size and the 

26Always the top four car models of the statistics of car ownership, Bundesamt für Raumentwicklung (2002), are considered.

27For calculating the fix costs of these four cars, the following data sources of costs were used: Touring Club der Schweiz 
(2007a) and Touring Club der Schweiz (2007b) were used. The values for the average fix costs were found by a weighted 
average of this costs. The weights were chosen according to the number of cars imported in the year 2000.
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3.2 Estimation of the discrete continuous Model

The model that will be estimated is as defined in the previous chapter.28 First the choice model will be 
estimated. 

( ) ( )max , , , , , max inp
i n i i n in in n i in n i ini i

v p y r b s e y r p s bβ αε ξ β α β γ δ ξ
β

− − = + − + + + +
 

.(3.2.1)

Since the error terms inξ  are iid Gumbel distributed, the model is a standard Multinomial Logit Model 

(MNL), that is solved by the Maximum Likelihood method: 

( )( ) ( ) ( )( )
, , , 1

max ln 1 ln 1
n n

J

n nji ji
j

P i P i
α β γ δ

δ δ
=

⋅ + − ⋅ −∑ , (3.2.2)

with  ( ) ( )

1

,
i nn

in

jn

V
p

n in n in n iJ
V

j

eP i V e y r s b
e

β αβ γ δ
β

−

=

= = − + + + 
 ∑  and  1,if , 0, if

n nn nji j ij i j iδ δ= = = ≠ .The 

variable ni  indicates the choice of household n.

In the second step, the following model will be estimated by OLS method.

( ) ( )( )
( ) ( )( )

1

ˆln6 ˆ
ˆ1n n n n n n

J n
n n j ni n i n i n i ji i n

j n

P j
x p y r s b R P j

P j
σα β γ δ δ υ

π =

= + − + + + − +
−∑ , (3.2.3)

with ( )n̂ nP i  being the simulated choice probabilities from the first stage,

( )
ˆ

ˆ

1

ˆ
in

jn

V

n J
V

j

eP i
e

=

=
∑ , ( )ˆ ˆˆ ˆˆ ˆˆ

inp
in n in n iV e y r s bβ αβ γ δ

β
− 

= − + + + 
 

.  

For estimation, the following sociodemographic variables were included in the model: A dummy for 
living in a detached house “einfamh”,  a dummy for owning a second flat  “wng2”, the number of 
people in the household “hhanzper” and the type of area “agglotyp”, where type “1” indicates a city 
center, “2” living in an agglomeration of a city, “3” a small city and “4” countryside area. The variable 

income is represented by ny  and in ir r=  represents the fixed costs of car type i, that is assumed not to 

variate between the households for a given car type. The variable  n iy r−  is called “ein_fk”. For  the 

variable costs per kilometre of a car type i,  inp , the average fuel price during the period the car was 

driven as a proxy,  “d_bp95”, respectively for the choice model,  the fuel price two months before 
buying the car was used as a proxy for what the consumer assume of the future petrol price when they 
evaluate the car choice, “B_bp34”. Since there was no dummy for diesel engine cars available and 
diesel cars are only a small share of the cars, the price for “unleaded fuel 95” was taken as a proxy for 
the fuel price. The car types can only be distinguished by the engine size categories one to six.

28See equations (2.3.3), (2.3.4) and the version including the correction term (2.4.2), (2.4.3).
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To  calculate  the  probabilities ( )n̂P i  the  parameters  of  a linearised  version  of  the  choice  model 

(3.2.1) was estimated: 

( )( )max i n i in i n ini
a b y r cp d s ξ+ − + + + .29 

Note  that  the  framework  has  changed due to  the  linearisation,  the  parameters  , , ,i ia b c d  are  now 

calculated independently from the parameters  , , ,α β γ δ  of equation  (3.2.3).30 and are just  used to 

calculate probabilities ( )n̂P i .

Model: Multinomial Logit
Number of estimated parameters: 11
Number of  observations: 669
Number of individuals: 669
Null log-likelihood: -1198.687
Init log-likelihood: -1198.687
Final log-likelihood: -1155.873
Likelihood ratio test:85.629
Rho-square: 0.036
Adjusted rho-square: 0.027
Final gradient norm: +6.585e-004
Variance-covariance: from analytical hessian
Sample file: R:\Mikrozensus_2000\MZV_Matlab\MNL_Auto_test\Neuwagen_AnzAut_1_ver1.dat

Name Value Std err t-test p-val
Rob.  Std 
err

Rob.  t-
test Rob. p-val

 ASC_1 0 fixed
 ASC_2 0.381 0.132 2.89 0 0.132 2.89 0
 ASC_3 2.04 3.64 0.56 0.57 * 3.62 0.56 0.57 *
 ASC_4 2.3 3.64 0.63 0.53 * 3.62 0.64 0.52 *
 ASC_5 -0.754 4.38 -0.17 0.86 * 4.45 -0.17 0.87 *
 ASC_6 -0.754 4.38 -0.17 0.86 * 4.45 -0.17 0.87 *
 B_anzp34 0.141 0.0769 1.84 0.07 * 0.0774 1.83 0.07 *
 B_anzp56 0.069 0.0935 0.74 0.46 * 0.0922 0.75 0.45 *
 B_bp34 -1.95 3.17 -0.61 0.54 * 3.16 -0.62 0.54 *
 B_bp56 -0.813 3.81 -0.21 0.83 * 3.85 -0.21 0.83 *
 B_ein34 0.0136 0.0506 0.27 0.79 * 0.0502 0.27 0.79 *
 B_ein56 0.255 0.0588 4.34 0 0.0608 4.2 0

Table 1: Estimation results of the choice model

The variables „ASC_“ are alternative specific constants, ia . Note, that one of this constants ia  has to 

be set constant. The only sociodemographic variable included in this equation is the number of people 

in  the  household.  In  this  model,  the  parameter  id ,  „B_anzp“,  was restricted  as  follows:  1 2d d= , 

3 4d d=  and 5 6d d= . Note, that also for the parameter id  at least one component has to be set to zero. 

In this case, it  was  1 2 0d d= = .  Parameter  ib ,  “B_ein”, is  now variating between the alternatives, 

since the fix costs do not variate much between the car type categories and it  is assumed that the 

29There were no sociodemographic variables included in the estimation. Therefore the term nsγ  was skipped. This has to be 

changed. Since there are no car type specific attributes available, also the term ibδ  was skipped. 

30It should be checked, if this is feasible. It seems that Vekeman (2003) did it the same way.
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income is a crucial variable, when choosing the car type.31 For parameter ib , the same restrictions hold 

like for parameter id .

The results show that the parameters show the expected sign: The number of persons in the household 
has a positive influence on the probability of choosing a car with a larger engine size, since the latter 
is  positively correlated  with the  car  size.  The same holds  for  the  income.  The petrol  price  has a 
negative influence on choosing big engine sizes. The parameters are not all significant. The reason 
could be, that the car categories that are explained are a bad criterion to distinguish cars. A second 

explanation is that due to the lack of availability of car attributes, the variation of the error terms inξ  is 

very high compared to the variation of the deterministic part ( )i n i in i na b y r cp d s+ − + + . Therefore, the 

variation of the estimated parameters is high.

For estimating the parameters of the demand function of driving, for each household n the choice 

probabilities for each option  i,  ( )n̂P i ,  has to be calculated in order to compute the correction term 

( )( )
( ) ( )( )

ˆln
ˆ

ˆ1 n

n
n ji

n

P j
P j

P j
δ−

−
. The model to estimate is then: 

( ) ( )( )
( ) ( )( )

1

ˆln6 ˆ
ˆ1n n n n n n

J n
n n j ni n i n i n i ji i n

j n

P j
x p y r s b R P j

P j
σα β γ δ δ υ

π=

= + − + + + − +
−∑ ,  (3.2.4)

where 6J =  since six car types are distinguished in the dataset.

Estimation of the parameters by OLS yields:

      Source |       SS       df       MS              Number of obs =     669

-------------+------------------------------           F( 13,   655) =    4.57
       Model |  4.9651e+09    13   381927412           Prob > F      =  0.0000
    Residual |  5.4714e+10   655  83532891.3           R-squared     =  0.0832
-------------+------------------------------           Adj R-squared =  0.0650
       Total |  5.9679e+10   668  89339970.3           Root MSE      =  9139.6

------------------------------------------------------------------------------
d_km_p_a_1~n |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
      ein_fk |   .2620998   .1115249     2.35   0.019     .0431104    .4810892
      d_bp95 |   -4492.05    9286.88    -0.48   0.629     -22727.7     13743.6
   agglotyp2 |   1425.045   866.3075     1.64   0.100    -276.0299    3126.119
   agglotyp3 |  -759.9584   3806.436    -0.20   0.842    -8234.248    6714.331
   agglotyp4 |    2220.52   909.5854     2.44   0.015     434.4651    4006.575
    hhanzper |   297.3356   311.7932     0.95   0.341    -314.8991    909.5703
     einfamh |  -1773.937   763.6256    -2.32   0.020    -3273.387    -274.488
        wng2 |  -549.6823   864.8346    -0.64   0.525    -2247.865      1148.5
        c__1 |  -4733.348   912.1191    -5.19   0.000    -6524.378   -2942.318
        c__2 |   -2971.07   849.7616    -3.50   0.001    -4639.655   -1302.485
        c__3 |   28.26776     855.29     0.03   0.974    -1651.173    1707.709
        c__4 |   805.5373   828.7601     0.97   0.331    -821.8098    2432.884
        c__5 |   3251.619   909.0655     3.58   0.000     1466.585    5036.653
       _cons |    22937.9   12043.61     1.90   0.057    -710.8303    46586.64
------------------------------------------------------------------------------

Table 2: Estimation results of the travel distance demand model

31It should also be checked, if this is feasible. It seems that Vekeman (2003) did it the same way.
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Note that  6
jRσ

π
 is  unknown and has to be estimated.  Due to the restriction  

1

0
N

j
j

R
=

=∑  only the 

parameters  1 5...R R  can be estimated.32 As a proxy for the marginal cost of driving, the average fuel 

price during he period the car was driven is. Apart form this, the same variables were used like in the 
choice model. 

The results show that most estimated parameters have the expected sign: The income of the household 
net the fix cost of the car has a positive influence on car driving demand. The place of living has also a 
significant influence on driving demand: Household that live in agglomerations and households that 
live in countryside areas have a significant higher demand for car driving than household living in 
cities.  The difference between household  living in  small  towns and people  living  in  cities  is  not 
significant. The ownership of a detached house has a significant negative impact on driving demand. It 
seems that people living in a detached house more often stay at home instead of visiting places in their 
spare  time.  The ownership  of  a second flat  does  not  have a  significant  impact.  The signs  of  the 
correction term show that the higher the probability of choosing a car with a larger engine, the higher 
the demand for driving the car. This seems rather plausible since people with higher preferences for 
driving the cars may also have a higher preference for larger cars, since this cars are mostly more 
comfortable. The impact of the average fuel price on car driving demand is negative, but unfortunately 
is  not significant. The reason for it could be the lack of variation in the average fuel prices between 
the households or the low sensitivity to fuel prices of the households in the short run. 

For simulation, the values of variables should first be plugged in the choice model for calculating 

( )( )ˆ ˆˆ ˆin i n i in i nV a b y r cp d s= + − + +
( ( ( ( (

 with  the  values  , , ,n i in ny r p s( ( ( (  represent  the  input  values  of  the 

simulation and ˆ ˆˆ ˆ, , ,i ia b c d  represent  the parameters that were estimated using the values of the dataset. 

Using 
( )

1

in

jn

V

n J
V

j

eP i
e

=

=
∑

(

(

(
 and 

( )( )
( ) ( )( )ln

1 n

n
n ji

n

P j
P j

P j
δ−

−

(
(

(  the simulated choice probabilities and the correction 

term for the demand model can be calculated for each household. By plugging in the input values of 
the simulation and the correction term in

32
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( ) ( )( ) ( )( )

( ) ( )( ) ( )( )
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R R R R R R

P j P j P J
R P j R P j R P J

P j P j P J

P j
R P j

P j

σ σ σ σ σ
π π π π π

σ σ σδ δ δ
π π π

σ δ
π

− −

= = = =

− −

= = =

= ⇒ = ⇔ = = ⇔ = − =


⇒ − = − − − = − − − 

= −
−

∑ ∑ ∑ ∑

∑ ∑ ∑

( )( )
( ) ( )( )

1

1

ˆln ˆ .ˆ1 n

J n
n Ji

j n

P J
P J

P J
δ

−

=


 − −
 − 

∑

Therefore  the  variables  
( )( )
( ) ( )( ) ( )( )

( ) ( )( )
ˆ ˆln lnˆ ˆ
ˆ ˆ1 1n n

n n
n nji Ji

n n

P j P J
P j P J

P j P J
δ δ


 − − −
 − − 

 (“C__”)  have  to  be  used  to  estimate  the 

parameters 1 5...R R .
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( ) ( )( )
( ) ( )( ) ( )( )

( ) ( )( )
^

1

1

ln ln6ˆ ˆˆ ˆ
1 1n n

J
n n

in in n in n i j n nji Ji
j n n

P j P J
x p y r s b R P j P J

P j P J
σα β γ δ δ δ

π

−

=


= + − + + + − − −   − −   

∑
( (

( ( (( ( ( ( ( ( (

with 6J =  the demand for driving car for each car that can be chosen has to be estimated.

By calculating  ( )
1 1

N J

n in i
n i

D P i x k
= =

= ∑ ∑
( ( ( , where ik  denotes the fuel consumption per kilometre of car type 

i, the expected fuel demand for the simulated values,  D
(

, can be calculated and compared to the fuel 

demand calculated from the data: 
1

J

iin
i

D x k
=

= ∑ ( . Remark: The formula ( )
1 1

N J

n in i
n i

D P i x k
= =

= ∑ ∑
( ( (  yields the 

expected long run effect  of  a policy, since it  includes the change of the car  stocks.  The formula 

1 1
n

N J

short run i n i
n i

D x k
= =

= ∑ ∑
( (  would yield the short run effect of a policy, since it is assumed, that the car 

stock remains constant.  Therefore,  the long run effect  of  an increase  of  the fuel  prices  should be 
greater that the short run effect. 

Because the parameters for the fuel prices of the model estimate were not significant, no simulation so 
done so far. 
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4. Conclusions, open Questions and future research 
plans

Where as other studies like Vekeman (2003) showed a negative relation between fuel prices an use of 
cars, the estimation results for the data used in this paper could not show a significant relation between 
fuel prices an car use. The reason seems to be the data that is available. Since the differences of the 
average fuel prices the household are faced with come only from a difference of the period of use of 
cars, these differences are small. There would be also differences in fuel prices in the different regions 
of Switzerland, but this prices are not recorded. Moreover since Switzerland is a small country people 
could easily buy their fuel at a place in a region where the fuel prices are lower. Therefore no data on 
the actual fuel prices the households actually paid are available and the data calculated is – like 
mentioned – small. Another reason for the insignificant relationship between between fuel prices an 
use of cars could be, that the annual kilometers driven is calculated from reported data, the odometer 
value, that can be rather inaccurate. One possibility to reduce this problem would be to find a rule to 
eliminate at least the outliers. For instance the reported  distance driven in the last year could be used 
for such an rule. Another possibility would be, to include more sociodemographic information on the 
households in order to reduce the variance of the error term of the estimation problem. On the other 
hand, the calculated standard errors of the estimator are biased and therefore the calculated t-values 
could be wrong. A procedure to calculate this standard error as describe in Dubin (1981) should be 
implemented.

The dataset form the survey in the year 2005 will contain more information on sociodemographic 
variables. Further there will be the car brand and car model be available for most the cars. This will 
allow for distinguishing between more car types, using more car attributes and having more accurate 
data on the fix and variable cost of the cars. This should yield in more accurate correction terms for the 
demand of car travel equation. This, together with the inclusion of more sociodemographic variables, 
would lead to a lower the variance of the error term of the demand of car travel equation. Therefore, 
the standard error of the estimated parameters, for instance also the parameter of the fuel price, would 
decrease. When estimating the model with this data, it will become clear, if the results are more 
satisfying. 

Considering the theoretical model used it is unclear, how much error the linearization causes. This 
should be examined. Further the other two ways of estimating the model presented in Dubin and 
McFadden should implemented and then the results should be compared. Another problem is, that in 
this paper it was assumed that each household owns one car and just chooses the type of cars. This is 
only true for about 50% of the households. The problem of deciding whether to buy one or severals 
cars   car or not to own a car at all was not considered. This problem should be included in the next 
model. 

The role of measurement errors has also to be examined.
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A 1 Calculation of the expectation value of  the error term of the 
demand equation

For calculating the expectation value of the error term of the demand equation iε  given the choice s, 

( )|iE I sε ξ =   , the expectation value of the error term of the choice equation ( )|iE I sξ ξ =    has to 

be calculated first.33 

As will be shown by the following calculations, two cases has to be distinguished: The case  i s=  and 
the case i s≠ .
First, the model is presented again.

A1.1 The Choice Model

The choice model is defined as follows:

*
j j jU V ξ= + ,

( ) * *,  if ,  s jI s U U j sξ = > ∀ ≠ .

The  random  variables  jξ  are  independent  and  identically  Gumbel  distributed.  The  distribution 

function and the density functions are:

( ) eF e
α ξ β

ξ ξ
− +−= , ( ) ef e e

α ξ βα ξ β
ξ ξ α

− +− + −= ⋅ ⋅ .

Now, the expectation value  ( )|iE I sξ ξ =    shall be calculated. Without loss of generality the case 

( ) 1I ξ =  will be calculated.

The conditional expectation value in its general form is defined as follows: 

[ ] [ ]
( )

| AE X I
E X A

P A
⋅

= ,34 
1 if
0 ifA

A
I

A
ω
ω

∈ 
=  ∉ 

.35

33Remind: 
( ) ( )( )

1 1

2 2| | | .
N N

j j j j j j
j j

E R E I s R E I sσ σε ξ ξ ε ξ ξ ξ
λ λ= =

   = ⋅ ⇒ = = ⋅ =   ∑ ∑

See also in chapter „2.4 The correction term for distance demand model“ or in Dubin and McFadden page 352.

34See  Molchanov  (2007),  page  25.  Remark:  [ ] [ ]
( )

| AE X I
E X A

P A
⋅

=  may  also  be  written  as  (!!!) 

( ) ( ) ( ) ( )
( )( )| AE X I

E X A
P A

ω ω
ω ω

ω
 ⋅    =  , where  ω  is an element of the probability space  Ω , ω ∈ Ω .

35See Molchanov (2005), page 21.
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A1.2 Probability for ( ) 1I ξ =

Starting from this definition first the probability for  ( ) 1I ξ = ,  ( )( )1P I ξ =  has to be defined. This 

probability will be used in the following calculations. The variable N indicates the number of mutually 

exclusive choice options. The function ( )I ξ  can alternatively be defined as:

( ) 1 11,  if ,  1j jI V V jξ ξ ξ= < − + ∀ ≠ .

It follows that ( )( )1P I ξ =  can be defined as follows:

( )( ) ( )
1 11 2 1 2 1

1 2

1 2 11 ,...,
N N

N

V VV V

N NP I f d d d
ξ ξξ ξ ξ

ξ
ξ ξ ξ

ξ ξ ξ ξ ξ ξ
= − += ∞ = − +

= − ∞ = − ∞ = − ∞

= = ∫ ∫ ∫  .36

Since the random variables 1,..., Nξ ξ  are independent the common density function  ( )1,..., Nfξ ξ ξ  can 

be written as follows: ( ) ( )1
1

,...,
N

N j
j

f fξ ξξ ξ ξ
=

= ∏ . Therefore, the integral above can be simplified to the 

expression

( )( ) ( ) ( )
1

1

1 1 1 1
2

1
N

j
j

P I f F V V d
ξ

ξ ξ
ξ

ξ ξ ξ ξ
= ∞

== − ∞

= = ⋅ − +∏∫ .

Inserting for the the density function ( )1fξ ξ   and the distribution function ( )Fξ ⋅  yields

( )( )
( )1ln 111

2
1

1

11
N V V je

jeP I e e d
α

α ξ βξ
α ξ β

ξ

ξ α ξ

 − − − + + + ∑  = 
= ∞

− + −

= − ∞

= = ⋅ ⋅∫ .37

This integral can be transformed so that the argument is again a Gumbel density function

36Remarks:  
a.) The variables , 1..j j Nξ =  are used as random variables and as values. Sorry...

b.) ( ) ( ) ,
j i

f x f x i jξ ξ≡ ∀ , ( )
j

fξ ⋅  is written as ( ) ( )
j

f fξ ξ⋅ = ⋅ . The same holds for the distribution function.

37 

( )( ) ( )
( )

( ) ( )

1 1
1 1

1 11 1 21 1

1 1

11 111
1 21 1

1

1 1
2

1

1

1

N
V V j

V V j
j

N V VV V jj

j

eN
e e e

j

e ee e
e

P I e e e d e e e d

e e e d e e

α ξ β
α ξ βα ξ β α ξ β

αα α ξ βα ξ β
α ξ β

ξ ξ
α ξ β α ξ β

ξ ξ

ξ
α ξ β α ξ β

ξ

ξ α ξ α ξ

α ξ α

− − + +
− − + +− + − +

=

− −− − − +− +
− +

=

= ∞ = ∞ −
− + − +− − −

== − ∞ = − ∞

= ∞ − +− ⋅
− + − +−

= − ∞

∑
= = ⋅ ⋅ = ⋅ ⋅ ⋅ =

∑
= ⋅ ⋅ ⋅ = ⋅ ⋅

∏∫ ∫

∫
( )1ln 111 1

2
2 1

1 1

1 1.

N N V V je
jj ed e e d

α
α ξ βξ ξ

α ξ β

ξ ξ

ξ α ξ
 − − − + + + ∑  = =


= ∞ = ∞
 − + − 

= − ∞ = − ∞

∑
= ⋅ ⋅∫ ∫

24



Swiss Transport Research Conference
________________________________________________________________________September 12 - 14, 2007

( )( ) ( )
( ) ( )

( ) ( ) ( )( )

11 ln 111 1 2
1 2

1

1 1
1

1 1

1 ln 1

1
2

1

2

2 2 1

1 1

11 .
1

N N V VV V jj e
j

j j

j

j j j

eN
V V e

j

V VN
V V

N N N
V V VV Vj

j j j

P I e e e d

e ee F F
e e e e e

αα
α ξ βξ α ξ β

α

ξ

α α
α

ξ ξ
α α αα α

ξ α ξ
 − −− − − + + + ∑  = =

− = ∞ − + + +
 − − − 

= = − ∞

−
− −

−=

= = =

∑
= = + ⋅ ⋅ =

 


= + ∞ − − ∞ = = =

  + +

∑ ∫

∑
∑ ∑ ∑

.

A 1.3 Case 1i s= = : The conditional expectation value ( )1 | 1E Iξ ξ =  

The conditional expectation value ( )1 | 1E Iξ ξ =    can be calculated as follows:

( ) ( )( ) ( )( ) 1
1 1| 1 1 1E I E i I P Iξ ξ ξ ξ ξ

− = = ⋅ = ⋅ =     , while ( )( ) ( )1, if 1
1

0,else
I

i I
ξ

ξ
= 

= =  
 

. Since 

( )( )1P I ξ =  has already been derived, the expression ( )( )1 1E i Iξ ξ ⋅ =   has to be calculated 

now.38

( )( ) ( )
{ }

( )
1 11 2 1 2 1

1 1, 1 2

1 1 1 1 1 1 2 1

1

1 ,..., ,...,
N N

j j N

V VV V

N N N
V V

j

E i I f d f d d d
ξ ξξ ξ ξ

ξ ξ
ξ ξ ξ ξ ξξ

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ
= − += ∞ = − +

< − + = − ∞ = − ∞ = − ∞∈ ∀ ≠

 ⋅ = = ⋅ =  ∫ ∫ ∫ ∫ 

This  integral  can  be  simplified  in  the  same  way  as  in  the  calculation  of   ( )( )1P I ξ =  above:

( )
{ }

( )

( )

( ) ( )

1 11 2 1 2 1

1 1, 1 2

1 11 2 1 2 1

1 2

1 1 1 1 1 2 1

1

1 2 1
1

1 1 2
2

,..., ,...,
N N

j j N

N N

N

V VV V

N N N
V V

j

V VV V N

j N
j

N

j N
j

f d f d d d

f d d d

f f d d d

ξ ξξ ξ ξ

ξ ξ
ξ ξ ξ ξ ξξ

ξ ξξ ξ ξ

ξ
ξ ξ ξ

ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

= − += ∞ = − +

< − + = − ∞ = − ∞ = − ∞∈ ∀ ≠

= − += ∞ = − +

== − ∞ = − ∞ = − ∞

=

⋅ = =

= =

=

∫ ∫ ∫ ∫

∏∫ ∫ ∫

∏

K K

K K

K K
1 2 1 1 11

1 2

1

N N N

N

V V V Vξ ξ ξ ξξ

ξ ξ ξ

= − + = − += ∞

= − ∞ = − ∞ = − ∞

=∫ ∫ ∫

( ) ( )

( )
( )

( )

1 2 1 2
11

1

1
1 2 1 2 1

2

1

1ln 111
2

1

1

1 1 1
2

ln

1 1 1

1 1

exp

exp

.

j

N
V Vj

j

N V Vje
j

V V N
V V

j

V V e

e

f e e d

f e d

e e d

α

α
α ξ β

ξ ξ
αα ξ β

ξ
ξ

ξ ξ α ξ β

ξ
ξ

ξ
α ξ β

ξ

ξ ξ ξ

ξ ξ ξ

α ξ ξ

− −

=

 − − − + + + ∑  = 

= − +
− −− +

== − ∞


= − + − + +

  

= − ∞

= ∞
− + −

= − ∞


= − =

 
 ∑ = − =  

= ⋅ ⋅ ⋅

∑∫

∫

∫

Transforming this integral yields again a density function as integrand:

38 The expression ( )( )1 1E i Iξ ξ ⋅ =   means „the expectation value of 1ξ  given that all values of 1ξ  are in the set where the 

option one is chosen.“
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( )( ) ( )
( ) ( )11 ln 111 1 2

1 2

1

1 ln 1

1 1 1
2

1 1

N N V VV V jj e
j

j j
eN

V V e

j
E i I e e e d

αα
α ξ βξ α ξ β

α

ξ

ξ ξ α ξ ξ
 − −− − − + + + ∑  = =

− = ∞ − + + +
 − − − 

= = − ∞

∑
 ⋅ = = + ⋅ ⋅ 

 
∑ ∫ .

Substituting ( )1

1
2

ln 1 j
N

V V

j
z a e αξ β − −

=

 
= − + +     

∑  yields39

( )( ) ( ) ( )

( ) ( )

( )

1 1

1
1 1

1

1

1

1
2 2

1

1
2 2

2

11 1 ln 1

11 ln 1

1

zj j

zj j

j

zN N
V V V V z e

j jz

N N
V V V V z e

j j

N
V V

j

E i I e z e e e dz

e e ze e d

e

α α

ξ
α α

ξ

α

ξ ξ β
α

β ξ
α

−

−

− = ∞
− − − − − −

= == − ∞

− = ∞
− − − − − −

= = = − ∞

− −

=

  
 ⋅ = = + + + + ⋅ =        

  
= + + + + ⋅ =      


= + 

 

∑ ∑∫

∑ ∑ ∫

∑ ( )1

1

2

1 ln 1 .j
N

V V

j
e αβ γ

α

−
− −

=

 
+ + +     

∑

Replacing  ( ) ( )1

1

2
1 1 j

N
V V

j
P I e α

−
− −

=

 
= = + 

 
∑  and plugging in for the parameters the values according to 

the assumptions of Dubin and McFadden (1984), 
3

πα
λ

=  and β γ= − , yields:

( )( ) ( ) ( )( )( ) ( ) ( )( )1
1 31 1 ln 1 1 ln 1

3

E i I P I P I P I P Iλξ ξ γ γπ π
λ

 ⋅ = = = ⋅ ⋅ − − = + = − ⋅ = ⋅ =  , 

0.577...γ = .40

With this result [ ]1 | 1E Iξ =  can be determined 

( )( ) ( )( )
( )

( ) ( )( )
( ) ( )( )1

3 1 ln 11 3| 1 ln 1 .
1 1

s
P I P IE i I

E i I P I
P I P I

λ
ξ ξ λπξ ξ

π

− = = ⋅ =  = = = = − =  = =
41

39

( ) ( )1 1

1 1 1
2 2

1 1ln 1 ln 1 .j j
N N

V V V V

j j

z e z e d dzα αα ξ β ξ β ξ
α α

− − − −
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= − + + ⇒ = + + + ⇒ =           

∑ ∑

40

( )( ) ( )( ) ( )

( ) [ ] ( ) [ ] ( ) ( )
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1 1 1
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1 ln ln
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ξ ξ

γ γ

γ

− −
= ∞ = ∞

− − ⋅ − − − ⋅
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∫ ∫

41This result is identically to the result of Dubin and McFadden, page 352.
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A 1.4 Case 1i s= = : The conditional expectation value ( )1 | 1E Iξ ξ =  

Now, the conditional expectation value of  1ξ , given the choice of alternative two,  ( )1 | 2E Iξ ξ =   , 

shall  be  calculated.  Since  the  expression  for   ( )2P I =  is  known,  only  the  expression 

( )( )1 2E i Iξ ξ ⋅ =   needs  to  be  calculated.  

The indicator function leading to the integral boundaries is now 

( ) 2 22,  if ,  2j jI V V jξ ξ ξ= < − + ∀ ≠ .

Hence, the following expression

( )( )

( )
{ }

( )
3 2 3 2 2 22 1 2 1 2 4 2 4 2

2 2, 2 1 3 4

1

1 1 1 1 1 4 3 1 2
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,..., ,..., .
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f d f d d d d d
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ξ ξ
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< − + = − ∞ = − ∞ = − ∞ = − ∞ = − ∞∈ ∀ ≠

 ⋅ = = 

= ⋅ =∫ ∫ ∫ ∫ ∫ ∫K K

Due to the independence of the random variables 1,..., Nξ ξ  this integral can be simplified as follows:

( )( )
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ξ ξ
ξ ξ ξ ξ ξ ξ ξξ

ξ

ξ
ξ

ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ

= − + = − += ∞ = − + = − +

< − + = − ∞ = − ∞ = − ∞ = − ∞ = − ∞∈ ∀ ≠

=

== − ∞
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=
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∫ ∫ ∫ ∫ ∫

∏∫ ∫

Since the integral  ( )
1 2 1 2

1

1 1 1

V V

f d
ξ ξ

ξ
ξ

ξ ξ ξ
= − +

= − ∞
∫  cannot solved explicitly, the integral boundaries have to be 

changed:42

( )( ) ( ) ( ) ( )

( ) ( ) ( )

2 1 2 1 2

2 1

1 2

1 2 1 2 1

1 1 2 1 2 2 2 1
3

1 1 2 2 2 2 1
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E i I f f F V V d d
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ξ ξ ξ
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ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ
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= ∞ = ∞

== − ∞ = − +

 ⋅ = = − + = 

= − +

∏∫ ∫

∏∫ ∫

42The  change  of  the  boundaries  of  the  integral  are  based  on  the  following  transformation: 

2 1 1 2 2 2 1 1 1 2 1 2.V V V V Vξ ξ ξ ξ ξ ξ ξ> + − ⇔ + > + ⇔ < − +
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For  solving  ( )( )1 1E i Iξ ξ ⋅ =   the  following  expression  can  be  calculated  first: 
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The integrand is again a Gumbel density function and therefore the distribution function is known.
Due  to  this,  the  integral  boundaries  can  be  inserted  into  the  distribution  function 
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Inserting the result into the expression ( )( )1 1E i Iξ ξ ⋅ =   yields
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∫  is the unconditioned expectation value [ ]1E ξ . For the parameter 

values in Dubin and McFadden this expectation value is [ ]1 0E ξ = . In that case the integral above can 
be simplified as follows:
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Using the substitution ( )( )1 ln 1z P iα ξ β− = − + − = , 
( )( )( )1

1 ln 1z P iξ β
α

= + − =
 and 

1
1d dzξ

α
=

 the 
integrand can be transformed to a Gumbel density function
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Plugging in the parameter values from Dubin and McFadden, 
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=  and β γ= − , the expression 

above becomes43
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Therefore ( )1 | 1E Iξ ξ =    becomes
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43See Dubin and McFadden, page 352.
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It remains now to calculate ( )1 | 2E Iξ ξ =   :
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A 1.5 The general solution of the conditional expectation value:

By changing the indexes when doing the calculations presented above, the following general solution 

( )|jE I sξ ξ =   can be derived:
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44This result is equal the result in Dubin and McFadden, page 352. Remark: The result satisfies 
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