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hAbstra
tWe propose and validate a model for pedestrian walking behaviour, based on dis
rete
hoi
e modelling. We are interested in modelling the short range behaviour in normal
onditions, as a rea
tion to the surrounding environment and to the presen
e of otherindividuals. The term �normal� refers to non-eva
uation and non-pani
 situations. Twomain behaviours are identi�ed: un
onstrained and 
onstrained. The un
onstrainedde
isions are independent from the presen
e of others pedestrians whereas 
onstrainedde
isions are indu
ed by intera
tions with other individuals. Con
erning the dis
rete
hoi
e model ar
hite
ture, the spatial 
orrelation between the alternatives is taken intoa

ount de�ning a 
ross nested logit model. The nests 
on
ern the dire
tion 
ones andspeed regimes. The model has been estimated by maximum likelihood on a Japanesedataset, using the free distributed Biogeme pa
kage. The dataset 
onsists of pedes-trians traje
tories manually tra
ked from video sequen
es. It has been 
olle
ted on alarge pedestrian 
rossing road in Sendaï, Japan, on August 2000. The estimated 
oef-�
ients are signi�
ant and their signs are 
onsistent with our behavioural assumptions.The model has been validated using a two steps pro
edure. The �rst step 
onsists inthe spe
i�
ation validation using the estimation dataset, the se
ond is the predi
tionevaluation using a Dut
h dataset not involved in the estimation pro
ess. It is the exper-imental version of the Japanese dataset, 
olle
ted at the Delft university in 2000-2001.The model has been 
ompared to a simple model with more parameters (the utility ofea
h alternative 
ontains only a 
onstant) to illustrate the importan
e of the explana-tory variables. The proposed validation pro
edure underlines a good stability of themodel and a good generalization performan
e.
Keywordswalking, pedestrian, operational level, mi
ros
opi
 model, dis
rete 
hoi
e model, fore-
ast model, 
ross nested logit model, estimation, validation, 
ross-validation2
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tionPedestrian behavior modeling is an important topi
 in di�erent 
ontexts. Ar
hite
tsare interested in understanding how individuals move into buildings to 
reate optimalspa
e designs. Transport engineers fa
e the problem of integration of transportationfa
ilities, with parti
ular emphasis on safety issues for pedestrians. Re
ent tragi
 eventshave in
reased the interest for automati
 video surveillan
e systems, able to monitorpedestrian �ows in publi
 spa
es, throwing alarms when abnormal behavior o

urs.Spe
ial emphasis has been given to more spe
i�
 eva
uation s
enarios, for obvious rea-sons. In this spirit, it is important to de�ne mathemati
al models based on behavioralassumptions, tested by means of proper statisti
al methods. Data 
olle
tion for pedes-trian dynami
s is parti
ularly di�
ult and only few models presented in the literaturehave been 
alibrated and validated on real data sets.Previous methods for pedestrian behavior modeling 
an be 
lassi�ed into two main 
at-egories: mi
ros
opi
 and ma
ros
opi
 models. In the last years mu
h more attentionhas fo
used on mi
ros
opi
 modeling, where ea
h pedestrian is modeled as an agent.Examples of mi
ros
opi
 models are the so
ial for
es model in Helbing and Molnar(1995) and Helbing et al. (2002) where the authors use Newtonian me
hani
s with a
ontinuous spa
e representation to model long-range intera
tions, and the multi-layerutility maximization model by Hoogendoorn et al. (2002) and Daamen (2004).Leader-follower and 
ollision avoidan
e behavior play a major role in explaining pedes-trian movements. In order to in
lude these aspe
ts in our model, we took inspirationfrom previous 
ar following models in transport engineering (in
luding Newell, 1961,Herman and Rothery, 1965, Lee, 1966, Ahmed, 1999). The main idea in these modelsis that two vehi
les are involved in a 
ar following situation when a subje
t vehi
lefollows a leader, normally represented by the vehi
le in front, rea
ting to its a
tions.In general, a sensitivity-stimulus framework is adopted. A

ording to this framework adriver rea
ts to stimuli from the environment, where the stimulus is usually the leader'srelative speed. Di�erent models di�er in the spe
i�
ation of the sensitivity term. Thismodeling idea is extended here and adapted to the more 
omplex 
ase of pedestrianbehavior. We want to stress the fa
t that in driver behavior modeling a distin
tion be-tween a

eleration and dire
tion (or lane) is almost natural (see Toledo, 2003 and Toledoet al., 2003), being suggested by the transport fa
ility itself, organized into lanes. Thepedestrian 
ase is more 
omplex, sin
e movements are two-dimensional on the walkingplane, where a

eleration and dire
tion 
hanges are not easily separable. Constrainedbehavior in general, and 
ollision avoidan
e in parti
ular are also inspired by studies inhuman s
ien
es and psy
hology, leading to the 
on
ept of personal spa
e (see Horowitzet al., 1964, Dosey and Meisels, 1969 and Sommer, 1969).The validation of pedestrian walking models is a di�
ult task, and has not been exten-sively reported in the literature. Berrou et al. (2007) and Kretz et al. (2008) validatetheir model by 
omparing real and simulated �ows and densities at bottlene
ks. Bro-gan and Johnson (2003) 
ompare real walking paths with simulated paths using three3
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tober 15 - 17, 2008di�erent metri
s: the distan
e error, that is the mean distan
e between the real and thesimulated path for all simulation time steps, the area error, that is the area betweenthe two paths, and the speed error, that is the mean di�eren
e in speed between thetwo paths for all simulation time steps.2 Modeling frameworkIn this work we refer to the general framework for pedestrian behavior des
ribed byDaamen (2004). Individuals make di�erent de
isions, following a hierar
hi
al s
heme:strategi
al, ta
ti
al and operational. Destinations and a
tivities are 
hosen at a strate-gi
al level; the order of the a
tivity exe
ution, the a
tivity area 
hoi
e and route 
hoi
eare performed at the ta
ti
al level, while instantaneous de
isions su
h as walking andstops are taken at the operational level. In this paper, we fo
us on pedestrian walkingbehavior, naturally identi�ed by the operational level of the hierar
hy just des
ribed.We 
onsider that strategi
 and ta
ti
al de
isions have been exogenously made, and areinterested in modeling the short range behavior in normal 
onditions, as a rea
tion tothe surrounding environment and to the presen
e of other individuals. By�normal� wemean non-eva
uation and non-pani
 situations.The motivations and the soundness of dis
rete 
hoi
e methods have been addressedin our introdu
tory work (Bierlaire et al., 2003, Antonini, Bierlaire and Weber, 2006,Antonini and Bierlaire, 2007). The obje
tive of this paper is twofold. First, we aim toprovide an extended disaggregate, fully estimable behavioral model, 
alibrated on realpedestrian traje
tories manually tra
ked from video sequen
es. Se
ond, we want to testthe 
oheren
e, interpretability and generalization power of the proposed spe
i�
ationthrough a detailed validation on external data. Compared with Antonini, Bierlaire andWeber (2006), we present three important 
ontributions: (i) we estimate the modelusing signi�
antly more data representing revealed walking behavior, (ii) the modelspe
i�
ation expli
itly 
aptures leader-follower and 
ollision-avoidan
e patterns and (iii)the model is su

essfully validated both using 
ross-validation on the estimation dataset, and fore
asting validation on another experimental data set, not involved in theestimation pro
ess.We illustrate in Figure 1 the behavioral framework. Un
onstrained de
isions are inde-pendent of the presen
e of other pedestrians and are generated by subje
tive and/orunobserved fa
tors. The �rst of these fa
tors is represented by the individual's desti-nation. It is assumed to be exogenous to the model. The se
ond fa
tor is representedby the tenden
y of people to keep their 
urrent dire
tion, minimizing their angulardispla
ement. Finally, un
onstrained a

eleration and de
eleration are di
tated by theindividual's desired speed. The implementation of these ideas is made through the threeun
onstrained patterns indi
ated in Figure 1.We assume that behavioral 
onstraints are indu
ed by intera
tions with other indi-viduals nearby. The 
ollision avoidan
e pattern is designed to 
apture the e�e
ts of4



Swiss Transport Resear
h Conferen
e O
tober 15 - 17, 2008Pedestrian walking behavior
Un
onstrained Constrained

Keep Toward Free �owdire
tion destination a

/de
 Collision Leaderavoidan
e followerFigure 1: Con
eptual framework for pedestrian walking behaviorpossible 
ollisions on the 
urrent traje
tory of the de
ision maker. The leader-followerpattern is designed to 
apture the tenden
y of people to follow another individual in a
rowd, in order to bene�t from the spa
e she 
reates.The dis
rete 
hoi
e model introdu
ed by Antonini, Bierlaire and Weber (2006) is ex-tended here. The basi
 elements are the same and summarized below. Pedestrianmovements and intera
tions take pla
e on the horizontal walking plane. The spatialresolution depends on the 
urrent speed ve
tor of the individuals. The geometri
alelements of the spa
e model are illustrated in Figure 2.
θn

pn ≡ (xn, yn)

vndn

Figure 2: The basi
 geometri
al elements of the spa
e stru
tureIn a given 
oordinate system, the 
urrent position of the de
ision maker n is pn ≡

(xn, yn), her 
urrent speed vn ∈ IR, her 
urrent dire
tion is dn ∈ IR2 (normalized su
hthat ‖dn‖ = 1) and her visual angle is θn (typi
ally, θn = 170◦). The region of interestis situated in front of the pedestrian, ideally overlapping with her visual �eld. Anindividual-spe
i�
 and adaptive dis
retization of the spa
e is obtained to generate a setof possible pla
es for the next step. Three speed regimes are 
onsidered. The individual
an a

elerate to 1.5 times her speed, de
elerate to half time her speed, or maintainher 
urrent speed. Therefore, the next position will lie in one of the zones, as depi
tedin Figure 3(b). For a given time step t (typi
ally, 1 se
ond), the de
eleration zones5
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tober 15 - 17, 2008range from 0.25vnt to 0.75vnt, with the 
enter being at 0.5vnt, the 
onstant speedzones range from 0.75vnt to 1.25vnt, with the 
enter being at vnt, and the a

elerationzones range from 1.25vnt to 1.75vnt, with the 
enter being at 1.5vnt. With respe
t tothe dire
tion, a dis
retization into 11 radial dire
tions is used, as illustrated in Figure3(a), where the angular amplitudes of the radial 
ones are reported in degrees.
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◦(a) Dis
retization of dire
tions

De
elerationConstant speedA

eleration
0.5vnt vnt 1.5vnt(b) Dis
retization of speed regimesFigure 3: The spatial dis
retization.A 
hoi
e set of 33 alternatives is generated where ea
h alternative 
orresponds to a
ombination of a speed regime v and a radial dire
tion d, as illustrated in Figure 4.Ea
h alternative is identi�ed by the physi
al 
enter of the 
orresponding 
ell in thespatial dis
retization cvd, that is

cvd = pn + vtd, (1)where t is the time step. The 
hoi
e set varies with dire
tion and speed and so doesthe distan
e between an alternative's 
enter and other pedestrians.3 The modelIndividuals walk on a 2D plane and we model two kinds of behavior: 
hanges in di-re
tion and 
hanges in speed, i.e. a

elerations. Five behavioral patterns are de�ned:6
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1 2 3 4 5 6 7 8 9 10 111213 14 1516171819 20 2122232425 28 313233Figure 4: Choi
e set representation, with numbering of alternativeskeep dire
tion, toward destination, free �ow a

eleration, leader-follower and 
ollision-avoidan
e. In a dis
rete 
hoi
e 
ontext, they have to be 
onsidered as terms enteringthe utility fun
tions of ea
h alternative. The utilities des
ribe the spa
e around the de-
ision maker and under the assumption of rational behavior, the individual 
hooses thelo
ation (alternative) with the maximum utility. The details of the model are dis
ussedin a referen
ed arti
le (see Robin et al., n.d.).4 DataThe data set used to estimate the model 
onsists of pedestrian traje
tories manuallytra
ked from video sequen
es.It was 
olle
ted in Sendai, Japan, in August 2000 (see Teknomo et al., 2000, Teknomo,2002). The video sequen
e was re
orded from the 6th �oor of the JTB parking building,situated at an important pedestrian 
rossing. Two main pedestrian �ows 
ross thestreet, giving rise to a large number of intera
tions. A frame extra
ted from this videois represented in Figure 5.The data set 
onsists of 190 pedestrian traje
tories, manually tra
ked at a rate of 2 pro-
essed frames per se
ond, for a total number of 10200 position observations. The map-ping between the image plane and the walking plane was performed by Arsenal Resear
h(Bauer, 2007) using a 3D-
alibration with the standard DLT algorithm (Shapiro, 1978).The referen
e system on the walking plane has the origin arbitrarily pla
ed at the bot-tom left 
orner of the 
ross-walk. The x axis represents the width of the 
rossing whilethe y axis represents the length.For ea
h frame, the following information for ea
h visible pedestrian was 
olle
ted: (i)the time t 
orresponding to the frame f (in this 
ase t = f/2), (ii) the pedestrianidenti�er n, and (iii) the 
oordinates pf

n
= (xf

n
, yf

n
) identifying the lo
ation of thepedestrian in the walking plane. In Figure 6 we report the speed histogram and inTable 1 the speed statisti
s. 7
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(a) Japanese s
enarioFigure 5: A frame from the Japanese video Mean 1.31Standard Error 0.012Median 1.27Mode 1.28Standard Deviation 0.37Minimum 0.43Maximum 4.84Table 1: Speed statisti
s (m/se
). Note that standard error is the estimated standarddeviation of the sample mean
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hoi
e set (see Figure 4) was 
onstru
ted for ea
h pedestrian, basedon (1) where t = 1 se
 (that is, 2 frames), v = vn for 
onstant speed alternatives,
v = 0.5vn for de
elerated alternatives, v = 1.5vn for a

elerated alternatives, d = dnfor alternatives in 
one 6 (alt. 6, 17, 28), and d = rot(dn, ζ) is obtained by rotating dnaround pn with an angle ζ 
orresponding to the 
one, that isCone 1: ζ = 72.5◦, Cone 11: ζ = −72.5◦,Cone 2: ζ = 50◦, Cone 10: ζ = −50◦,Cone 3: ζ = 32.5◦, Cone 9: ζ = −32.5◦,Cone 4: ζ = 20◦, Cone 8: ζ = −20◦,Cone 5: ζ = 10◦, Cone 7: ζ = −10◦.For ea
h 
ell in the 
hoi
e set, ea
h variable interfering in the utility was then 
omputed(see Robin et al., n.d.). Note that the destination of ea
h individual was de�ned byher lo
ation in the last frame where she is visible. Finally, the 
hosen alternative hasbeen identi�ed as the 
ell 
ontaining the pedestrian's lo
ation after 1 se
ond, that is
pf+2

n . In the rare instan
es where pf+2

n did not belong to any 
ell (be
ause of numeri
alerrors due to poor image resolution, or extreme speed variations), the 
orrespondingpie
e of data was removed from the sample (a total of 919 observations). We representin Figure 7 sele
ted generated 
hoi
e sets on a given traje
tory (representing them allwould have been unreadable).
ldrsrs rs rs rs rs rs rs rs rs rs rs rs rs

rs rs rs rs rs
rs rs rs rs rs

rs rs
rs
rs rs

rs rs
rs rs rs rs rs rs rs rs rs rs rs rs rs rs

rs rs
rs rs rs rs rsrs

rs rsrs rs rs rs rs
rs

Figure 7: Example of one manually tra
ked traje
tory with 
hoi
e setsWe obtain a total of 9281 observations from 190 pedestrians. In Figure 8 we report thefrequen
y of the revealed 
hoi
es as observed in the data set. The three peaks in thedistributions arise on the 
entral alternatives (6, 17, 28), as expe
ted. Note that 
ells 1,12, 23 and 33 were never 
hosen in this sample. A summary of the observations a
rossthe nests is detailed in Table 2.5 Estimation resultsTable 3 presents the estimation results. The parameters were estimated using Biogeme(Bierlaire, 2003, biogeme.ep�.
h). All estimates have the expe
ted sign.In addition to the proposed model, we analyze also a simple model, where the utility ofea
h alternative is represented only by an alternative spe
i�
 
onstant. This 
onstant-only model perfe
tly reprodu
es the observed shares in the sample, with 28 parameters9
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Figure 8: Revealed 
hoi
es histogramsNest # steps % of totala

eleration 1065 11.48%
onstant speed 7565 81.51%de
eleration 651 7.01%
entral 4297 46.30%not 
entral 4984 53.70%Table 2: Number of 
hosen steps in ea
h nest for the real data set(33 alternatives, minus 4 whi
h are never 
hosen, minus one 
onstant normalized to0), but does not 
apture any 
ausal e�e
t. With this model, the loglikelihood dropsfrom −13944.74 to −17972.03, illustrating the statisti
al signi�
an
e of the proposedspe
i�
ation. Note that a 
lassi
al likelihood ratio test is not appropriate here, as thehypotheses are not nested. We believe that a more rigorous test is not really ne
essarygiven the huge jump in loglikelihood value.Sample size = 9281 Init log-likelihood = -32451Nbr of estimated parameters = 24 Final log-likelihood = -13944.74	ρ2 = 0.570 Likelihood ratio test = 37013Table 3: CNL estimation results for the Japanese data set
10
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e O
tober 15 - 17, 20086 Model validationTwo data sets are used for validation: the Japanese data set used for estimation anddes
ribed in Se
tion 4, and a data set 
olle
ted in the Netherlands, whi
h was notinvolved at all in the estimation of the parameters.6.1 Japanese data set: validation of the modelWe �rst apply our model with the parameters des
ribed in Table 3 on the Japanesedata set, using Biosim (Bierlaire, 2003). For ea
h observation n, we obtain a probabilitydistribution Pn(i) over the 
hoi
e set.Figure 9 represents the histogram of the probability value Pn(i∗
n
) assigned by the modelto the 
hosen alternative i∗

n
of ea
h observation n, along with the hazard value 1/33(where 33 is the number of alternatives). We 
onsider observations below this thresholdas outliers. There are only 7.10% of them. As a 
omparison, there are 19.90% of outlierswith the 
onstant-only model.

Figure 9: Predi
ted probabilities of the Japanese dataThe top part of Figure 10 reports, for ea
h i, ∑
n

Pn(i), and the bottom part reports
∑

n
yin, where yin is 1 if alternative i is sele
ted for observation n, 0 otherwise. Asexpe
ted, the two histograms are similar, indi
ating no major spe
i�
ation error.This is 
on�rmed when alternatives are aggregated together, by dire
tions (see Table4) and by speed regimes (see Table 5). For a group Γ of alternatives, the quantities

MΓ =
∑

n

∑
i∈Γ

Pn(i),

RΓ =
∑

n

∑
i∈Γ

yin,11
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(MΓ − RΓ)/RΓare reported in 
olumns 3, 4 and 5, respe
tively, of these tables.The relative errors showed in Table 4 and Table 5 are low, ex
ept for groups of alterna-tives with few observations, that is groups 
orresponding to extreme left and extremeright dire
tions.

(a) Predi
ted shares

(b) Observed sharesFigure 10: Predi
ted and observed shares for the Japanese data set6.2 Japanese data set: validation of the spe
i�
ationIn order to test the proposed spe
i�
ation, we have performed a 
ross validation doneon the Japanese data set. It 
onsists in splitting the data set into 5 subsets, ea
h
ontaining 20% of the observations. We perform 5 experiments. For ea
h of them,one of the �ve subsets is saved for validation purposes, and the model is re-estimated12
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tober 15 - 17, 2008Cone Γ MΓ RΓ (MΓ − RΓ)/RΓFront 5 − 7, 16 − 18, 27 − 29 8486.16 8481 0.0006Left 3, 4, 14, 15, 25, 26 348.86 367 −0.0494Right 8, 9, 19, 20, 30, 31 419.29. 407 0.0302Extreme left 1, 2, 12, 13, 23, 24 12.29 10 0.2292Extreme right 10, 11, 21, 22, 32, 33 14.39 16 −0.1004Table 4: Predi
ted (MΓ) and observed (RΓ) shares for alternatives grouped by dire
tionswith the Japanese data setArea Γ MΓ RΓ (MΓ − RΓ)/RΓa

eleration 1 − 11 1059.85 1065 −0.0048
onstant speed 12 − 22 7588.28 7565 0.0031de
eleration 23 − 33 632.87 651 −0.0279Table 5: Predi
ted and observed shares for alternatives grouped by speed regime withthe Japanese data set.on the remaining 4 subsets. The same pro
edure has been applied with the 
onstant-only model. The proportion of outliers for ea
h experiment is reported in Table 6.We observe that they are 
onsistent with 7.10% (for our model) and 19.90% (for the
onstant-only model) of outliers obtained with the 
omplete data set, illustrating therobustness of the spe
i�
ation.Model Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5Proposed spe
. 8.62% 6.52% 7.44% 7.87% 5.87%Constant only 20.79% 20.70% 17.13% 19.88% 18.64%Table 6: Summary of the 
ross-validation performed on the Japanese data setThe above analysis indi
ates a good spe
i�
ation and performan
e of the model. How-ever, it is not su�
ient to fully validate it. Consequently, we perform now the sameanalysis on a validation data set, not involved in the estimation of the model.6.3 Dut
h data set: validation of the modelThis data set was 
olle
ted at Delft University, in the period 2000-2001 (Daamen andHoogendoorn, 2003b, Daamen and Hoogendoorn, 2003a, Daamen, 2004) where volunteerpedestrians (about 80) were 
alled to perform spe
i�
 walking tasks in a 
ontrolledexperimental setup (experiment 4 in Daamen and Hoogendoorn, 2003a)For the purposes of our validation pro
edure we use the subset of the Dut
h data set
orresponding to a bi-dire
tional �ow. This situation is the experimental version of theJapanese data set, whi
h 
orresponds to a walkway. The subset in
ludes 724 subje
ts13
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tober 15 - 17, 2008for 47481 observed positions, 
olle
ted by means of pedestrian tra
king te
hniques onvideo sequen
es, at a frequen
y of 10Hz, that is 10 frames per se
ond. In Figure 11 wereport one frame from the experimental s
enario.For ea
h frame, we 
olle
ted for ea
h visible pedestrian the time t 
orresponding tothe frame f (in this 
ase t = f/10), the pedestrian identi�er n, and the 
oordinates
pf

n
= (xf

n
, yf

n
) identifying the lo
ation of the pedestrian in the walking plane. Fromthese raw data, we derived the 
urrent dire
tion and speed of ea
h pedestrian using the
urrent and previous frames, that is

dn = pf

n − pf−1

n ,

vn = ‖dn‖/0.1 = 10‖dn‖.Consistent with the model assumptions, the 
hosen alternative has been identi�ed asthe 
ell 
ontaining the pedestrian's lo
ation after 1 se
ond, that is pf+10
n .A summary of the observations a
ross nests is detailed in Table 7. Note the very lownumber of de
elerations and a

elerations, probably due to the experimental nature ofthe data.

Figure 11: A representative frame from the video sequen
es used for data 
olle
tionNest # steps % of totala

eleration 1273 2.68%
onstant speed 45869 96.61%de
eleration 339 0.71%
entral 20950 44.12%not 
entral 26531 55.88%Table 7: Number of 
hosen steps in ea
h nest for Dut
h dataWe 
ompare the observed 
hoi
es for the Japanese and the Dut
h data set in Table 8and Figure 12. Table 8 reports the per
entage of observations for 
ells at the extremeleft of the 
hoi
e set (alts. 1, 2, 12, 13, 23, 24), the left part (alts. 3, 4, 14, 15,25, 26), the front (alts. 5-7, 16-18, 27-29), the right (alts. 8, 9, 19, 20, 30, 31) and14
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tober 15 - 17, 2008the extreme right ( 10, 11, 21, 22, 32, 33). Figure 12 reports normalized observation,that is, for ea
h alternative i, ∑
n

yin/N, where yin is 1 if alternative i is sele
ted forobservation n, 0 otherwise, and N is the total number of observations. We observe agreat similarity in the observed proportions, ex
ept for alternatives 
orresponding toa

elerations and de
elerations. This suggests that a simple model, with only alternativespe
i�
 
onstants, may a
tually perform well on this data set. We show below, howeverthat this is not the 
ase.Data set Extreme left Left Front Right Extreme rightJapanese 0.11% 3.95% 91.38% 4.39% 0.17%Dut
h 0.06% 4.40% 91.35% 4.15% 0.04%Table 8: Comparison between Japanese and Dut
h data sets for the observations pro-portions in the dire
tion's 
ones
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Figure 12: Comparison between the Japanese and Dut
h normalized observation dis-tributions a
ross the alternativesWe applied our model with the parameters des
ribed in Table 3 on the Dut
h data set,using the Biosim pa
kage. For ea
h observation n, we obtain a probability distribution
Pn(i) over the 
hoi
e set.Figure 13 represents the histogram of the probabilities Pn(i∗

n
) of the 
hosen alternativesas predi
ted by the model, as well as the hazard value 1/33 (where 33 is the numberof alternatives) illustrating the predi
tion of a purely random model with equal proba-bilities. Again, we 
onsider observations below this threshold as outliers. We observethat there are 2.41% of them. This is good news, as it is a
tually less than for the dataset used for parameter estimation. The shape of the 
urve, as well as the low numberof outliers are signs of the good performan
e of the model. When we 
ompare it withpredi
tions obtained with the 
onstant-only model (Figure 14), the superior fore
astingpotential of our model is 
lear. 15
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h Conferen
e O
tober 15 - 17, 2008The signi�
ant superiority of our model over the 
onstant-only model is also illustratedby 
omparing the proportion of outliers (2.41% vs. 10.31%) or the loglikelihood (-51303.58 vs. -77269.28, as detailed in Table 14).

Figure 13: Predi
tion with the proposed model

Figure 14: Predi
tion with the 
onstant-only and proposed modelWe now 
ompare the predi
tions performed by our model with the a
tual observa-tions. The top part of Figure 15 reports the predi
ted probabilities obtained by sampleenumeration, that is, for ea
h i, ∑
n

Pn(i), and the bottom part the observed shares,that is ∑
n

yin. The predi
tions are very satisfa
tory, ex
ept maybe for de
elerations(alternatives 22 to 33) and a

elerations (alternatives 1 to 11).16
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(a) Predi
ted

(b) ObservedFigure 15: Choi
e histogram predi
ted by the model against revealed 
hoi
es in theDut
h data setCone Γ MΓ RΓ (MΓ − RΓ)/RΓFront 5 − 7, 16 − 18, 27 − 29 43552.36 43374 0.0041Left 3, 4, 14, 15, 25, 26 1948.77 2089 −0.0671Right 8, 9, 19, 20, 30, 31 1853.34 1972 −0.0602Extreme left 1, 2, 12, 13, 23, 24 43.91 27 0.6261Extreme right 10, 11, 21, 22, 32, 33 82.62 19 3.3485Table 9: Predi
ted (MΓ) and observed (RΓ) shares for alternatives grouped by dire
tionswith the Dut
h data set. 17
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h Conferen
e O
tober 15 - 17, 2008Area Γ MΓ RΓ (MΓ − RΓ)/RΓa

eleration 1 − 11 4022.32 1273 2.1597
onstant speed 12 − 22 40581.06 45869 −0.1153de
eleration 23 − 33 2877.62 339 7.4886Table 10: Predi
ted (MΓ) and observed (RΓ) shares for alternatives grouped by speedregime with the Dut
h data set.We also perform the 
omparison at a more aggregate level, for groups of 
ells. Tables9 and 10 show a good overall performan
e of the model. Clearly, the extreme leftand extreme right groups 
ontain too few observations to rea
h any 
on
lusions.The only bias seems to 
onsist in a systemati
 over-predi
tion of a

elerations andde
elerations. This is 
onsistent with the above-des
ribed analysis. The Dut
h dataset was 
olle
ted in 
ontrolled experimental 
onditions, whi
h may have introdu
ed abias in pedestrian behavior, depending on the exa
t instru
tions they have re
eived.This assumption is supported by the quasi absen
e of de
elerations in the data set, andby the di�erent shapes of the speed distributions (see Figure 16). While the Japanese
urve appears to be Gaussian, the Dut
h 
urves 
ontain some non-Gaussian featureswhi
h are likely the result of the experimental nature of the data.Data Set Mean speed [m/s℄Dut
h (experimental) 1.297Japanese (real) 1.341Table 11: Average pedestrian speed in the data sets
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Figure 16: Distribution of speed in the two data setsWe now report the same aggregate predi
tion obtained with the 
onstant-only modelin Tables 12 and 13. The good performan
e of this simple model at the aggregatelevel emphasizes the need for the disaggregate validation performed above. Indeed,the relatively good performan
e of the model is due to the 
oin
idental similarity ofproportions of 
hosen alternatives in the two data sets (see Table 8). The detailed18
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h Conferen
e O
tober 15 - 17, 2008analysis presented in Figure 14 
learly reje
ts the simple model, while the aggregateanalysis does not.Cone Γ MΓ RΓ (MΓ − RΓ)/RΓFront 5 − 7, 16 − 18, 27 − 29 43386.42 43374 0.0003Left 3, 4, 14, 15, 25, 26 1877.47 2089 −0.1013Right 8, 9, 19, 20, 30, 31 2082.10 1972 0.0558Extreme left 1, 2, 12, 13, 23, 24 51.16 27 0.8947Extreme right 10, 11, 21, 22, 32, 33 81.85 19 3.308Table 12: Predi
ted (MΓ) using the 
onstant-only model and observed (RΓ) shares foralternatives grouped by dire
tion with the Dut
h data set.Area Γ MΓ RΓ (MΓ − RΓ)/RΓa

eleration 1 − 11 5448.24 1273 3.2798
onstant speed 12 − 22 38700.42 45869 −0.1563de
eleration 23 − 33 3330.34 339 8.824Table 13: Predi
ted (MΓ) using the 
onstant-only model and observed (RΓ) shares foralternatives grouped by speed regime with the Dut
h data set.For the sake of 
ompleteness, a 
onstant-only model was 
alibrated on the Dut
h dataset, in the same way as for the Japanese. Our model estimated on the Japanese datais better than the 
onstant-only model estimated on the Dut
h data, when applied onthe Dut
h data set, both in terms of log-likelihood (-51303.58 against -71847.69) andpredi
tion (2.41 %, per
entage of outliers against 4.33%). We have summarized thevarious loglikelihood values in Table 14, where ea
h 
olumn 
orresponds to a model,and ea
h row to a data set.Constant-only model Constant-only modelData set Our model based on Japanese data based on Dut
h dataJapanese -13944.74 -17972.03 �Dut
h -51303.58 -77269.28 -71847.69Table 14: Loglikelihood of ea
h model applied to the two data sets
7 Con
lusionsIn this paper we propose a dis
rete 
hoi
e model of pedestrian walking behavior. Theshort range walking behavior of individuals is modeled, identifying two main patterns:
onstrained and un
onstrained. The 
onstraints are generated by the intera
tions withother individuals. We des
ribe intera
tions in terms of leader-follower , and 
ollision19
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h Conferen
e O
tober 15 - 17, 2008avoidan
e model. These models 
apture self-organizing e�e
ts whi
h are 
hara
teristi
of 
rowd behavior, su
h as lane formation. Inspiration for the mathemati
al form ofthese patterns is taken from driver behavior in transportation s
ien
e, and ideas su
h asthe 
ar following model and lane 
hanging models have been reviewed and re-adapted tothe more 
omplex pedestrian 
ase. The di�
ulties of 
olle
ting pedestrian data as wellas the limited information 
onveyed by pure dynami
 data sets limit the possibilitiesin model spe
i�
ation. Important individual e�e
ts 
annot be 
aptured without thesupport of so
io-e
onomi
 
hara
teristi
s. Re
ent development of pedestrian laborato-ries (see among others Daamen and Hoogendoorn, 2003a, Nagai et al., 2005, Helbinget al., 2005, Cepolina and Tyler, 2005, Kretz et al., 2006), where 
ontrolled experi-mental 
onditions are possible, represent an important step in this dire
tion. We useexperimental data in a two step validation pro
edure. First, the model is validatedon the same data set used for estimation in order to 
he
k for possible spe
i�
ationerrors. Se
ond, the model is run on a new data set 
olle
ted at Delft University under
ontrolled experimental 
onditions. The proposed validation pro
edure suggests goodstability of the model and good fore
asting performan
e. Few observations are badlypredi
ted, mostly 
on
entrated at the extremes of the 
hoi
e set. The estimated 
oef-�
ients are signi�
ant and their signs are 
onsistent with our behavioral assumptions.As opposed to other previous models, we 
an quantify the in�uen
e of the relative kine-mati
 
hara
teristi
s of leaders and 
olliders on de
ision-maker behavior. Moreover,su
h quantitative analysis has been performed using real world pedestrian data.The validation pro
edure is rather 
omplete, sin
e it involves several models, in
lud-ing a simple one, and analyzes the results both at an aggregate and a disaggregatelevel. The next step would be to validate the model within a
tual tools, su
h as pedes-trian simulators or automati
 video tra
king systems (Antonini, Venegas, Bierlaire andThiran, 2006).A
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