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Abstract

We propose and validate a model for pedestrian walking behaviour, based on discrete
choice modelling. We are interested in modelling the short range behaviour in normal
conditions, as a reaction to the surrounding environment and to the presence of other
individuals. The term “normal” refers to non-evacuation and non-panic situations. Two
main behaviours are identified: unconstrained and constrained. The unconstrained
decisions are independent from the presence of others pedestrians whereas constrained
decisions are induced by interactions with other individuals. Concerning the discrete
choice model architecture, the spatial correlation between the alternatives is taken into
account defining a cross nested logit model. The nests concern the direction cones and
speed regimes. The model has been estimated by maximum likelihood on a Japanese
dataset, using the free distributed Biogeme package. The dataset consists of pedes-
trians trajectories manually tracked from video sequences. It has been collected on a
large pedestrian crossing road in Sendai, Japan, on August 2000. The estimated coef-
ficients are significant and their signs are consistent with our behavioural assumptions.
The model has been validated using a two steps procedure. The first step consists in
the specification validation using the estimation dataset, the second is the prediction
evaluation using a Dutch dataset not involved in the estimation process. It is the exper-
imental version of the Japanese dataset, collected at the Delft university in 2000-2001.
The model has been compared to a simple model with more parameters (the utility of
each alternative contains only a constant) to illustrate the importance of the explana-
tory variables. The proposed validation procedure underlines a good stability of the
model and a good generalization performance.
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1 Introduction

Pedestrian behavior modeling is an important topic in different contexts. Architects
are interested in understanding how individuals move into buildings to create optimal
space designs. Transport engineers face the problem of integration of transportation
facilities, with particular emphasis on safety issues for pedestrians. Recent tragic events
have increased the interest for automatic video surveillance systems, able to monitor
pedestrian flows in public spaces, throwing alarms when abnormal behavior occurs.
Special emphasis has been given to more specific evacuation scenarios, for obvious rea-
sons. In this spirit, it is important to define mathematical models based on behavioral
assumptions, tested by means of proper statistical methods. Data collection for pedes-
trian dynamics is particularly difficult and only few models presented in the literature
have been calibrated and validated on real data sets.

Previous methods for pedestrian behavior modeling can be classified into two main cat-
egories: macroscopic and macroscopic models. In the last years much more attention
has focused on microscopic modeling, where each pedestrian is modeled as an agent.
Examples of microscopic models are the social forces model in Helbing and Molnar
(1995) and Helbing et al. (2002) where the authors use Newtonian mechanics with a
continuous space representation to model long-range interactions, and the multi-layer
utility maximization model by Hoogendoorn et al. (2002) and Daamen (2004).

Leader-follower and collision avoidance behavior play a major role in explaining pedes-
trian movements. In order to include these aspects in our model, we took inspiration
from previous car following models in transport engineering (including Newell, 1961,
Herman and Rothery, 1965, Lee, 1966, Ahmed, 1999). The main idea in these models
is that two vehicles are involved in a car following situation when a subject vehicle
follows a leader, normally represented by the vehicle in front, reacting to its actions.
In general, a sensitivity-stimulus framework is adopted. According to this framework a
driver reacts to stimuli from the environment, where the stimulus is usually the leader’s
relative speed. Different models differ in the specification of the sensitivity term. This
modeling idea is extended here and adapted to the more complex case of pedestrian
behavior. We want to stress the fact that in driver behavior modeling a distinction be-
tween acceleration and direction (or lane) is almost natural (see Toledo, 2003 and Toledo
et al., 2003), being suggested by the transport facility itself, organized into lanes. The
pedestrian case is more complex, since movements are two-dimensional on the walking
plane, where acceleration and direction changes are not easily separable. Constrained
behavior in general, and collision avoidance in particular are also inspired by studies in
human sciences and psychology, leading to the concept of personal space (see Horowitz
et al., 1964, Dosey and Meisels, 1969 and Sommer, 1969).

The validation of pedestrian walking models is a difficult task, and has not been exten-
sively reported in the literature. Berrou et al. (2007) and Kretz et al. (2008) validate
their model by comparing real and simulated flows and densities at bottlenecks. Bro-
gan and Johnson (2003) compare real walking paths with simulated paths using three
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different metrics: the distance error, that is the mean distance between the real and the
simulated path for all simulation time steps, the area error, that is the area between
the two paths, and the speed error, that is the mean difference in speed between the
two paths for all simulation time steps.

2 Modeling framework

In this work we refer to the general framework for pedestrian behavior described by
Daamen (2004). Individuals make different decisions, following a hierarchical scheme:
strategical, tactical and operational. Destinations and activities are chosen at a strate-
gical level; the order of the activity execution, the activity area choice and route choice
are performed at the tactical level, while instantaneous decisions such as walking and
stops are taken at the operational level. In this paper, we focus on pedestrian walking
behavior, naturally identified by the operational level of the hierarchy just described.
We consider that strategic and tactical decisions have been exogenously made, and are
interested in modeling the short range behavior in normal conditions, as a reaction to
the surrounding environment and to the presence of other individuals. By“normal” we
mean non-evacuation and non-panic situations.

The motivations and the soundness of discrete choice methods have been addressed
in our introductory work (Bierlaire et al., 2003, Antonini, Bierlaire and Weber, 2006,
Antonini and Bierlaire, 2007). The objective of this paper is twofold. First, we aim to
provide an extended disaggregate, fully estimable behavioral model, calibrated on real
pedestrian trajectories manually tracked from video sequences. Second, we want to test
the coherence, interpretability and generalization power of the proposed specification
through a detailed validation on external data. Compared with Antonini, Bierlaire and
Weber (2006), we present three important contributions: (i) we estimate the model
using significantly more data representing revealed walking behavior, (ii) the model
specification explicitly captures leader-follower and collision-avoidance patterns and (iii)
the model is successfully validated both using cross-validation on the estimation data
set, and forecasting validation on another experimental data set, not involved in the
estimation process.

We illustrate in Figure 1 the behavioral framework. Unconstrained decisions are inde-
pendent of the presence of other pedestrians and are generated by subjective and/or
unobserved factors. The first of these factors is represented by the individual’s desti-
nation. It is assumed to be exogenous to the model. The second factor is represented
by the tendency of people to keep their current direction, minimizing their angular
displacement. Finally, unconstrained acceleration and deceleration are dictated by the
individual’s desired speed. The implementation of these ideas is made through the three
unconstrained patterns indicated in Figure 1.

We assume that behavioral constraints are induced by interactions with other indi-
viduals nearby. The collision avoidance pattern is designed to capture the effects of
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Pedestrian walking behavior
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Figure 1: Conceptual framework for pedestrian walking behavior

possible collisions on the current trajectory of the decision maker. The leader-follower
pattern is designed to capture the tendency of people to follow another individual in a
crowd, in order to benefit from the space she creates.

The discrete choice model introduced by Antonini, Bierlaire and Weber (2006) is ex-
tended here. The basic elements are the same and summarized below. Pedestrian
movements and interactions take place on the horizontal walking plane. The spatial
resolution depends on the current speed vector of the individuals. The geometrical
elements of the space model are illustrated in Figure 2.

Vndn

Figure 2: The basic geometrical elements of the space structure

In a given coordinate system, the current position of the decision maker n is p,, =
(%n, Yn), her current speed v, € R, her current direction is d, € R? (normalized such
that ||d.|| = 1) and her visual angle is 6,, (typically, 8., = 170°). The region of interest
is situated in front of the pedestrian, ideally overlapping with her visual field. An
individual-specific and adaptive discretization of the space is obtained to generate a set
of possible places for the next step. Three speed regimes are considered. The individual
can accelerate to 1.5 times her speed, decelerate to half time her speed, or maintain
her current speed. Therefore, the next position will lie in one of the zones, as depicted
in Figure 3(b). For a given time step t (typically, 1 second), the deceleration zones
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range from 0.25v,t to 0.75v,t, with the center being at 0.5v,t, the constant speed
zones range from 0.75v,.t to 1.25v,,t, with the center being at v,t, and the acceleration
zones range from 1.25v,.t to 1.75v,t, with the center being at 1.5v,,t. With respect to
the direction, a discretization into 11 radial directions is used, as illustrated in Figure
3(a), where the angular amplitudes of the radial cones are reported in degrees.

\

(a) Discretization of directions

Acceleration

Constant speed

0.5v,t vt 1.5v,t
(b) Discretization of speed regimes

Figure 3: The spatial discretization.

A choice set of 33 alternatives is generated where each alternative corresponds to a
combination of a speed regime v and a radial direction d, as illustrated in Figure 4.
Each alternative is identified by the physical center of the corresponding cell in the
spatial discretization c,q, that is

Cvd :pn +th) (1)

where t is the time step. The choice set varies with direction and speed and so does
the distance between an alternative’s center and other pedestrians.

3 The model

Individuals walk on a 2D plane and we model two kinds of behavior: changes in di-
rection and changes in speed, i.e. accelerations. Five behavioral patterns are defined:
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Figure 4: Choice set representation, with numbering of alternatives

keep direction, toward destination, free flow acceleration, leader-follower and collision-
avoidance. In a discrete choice context, they have to be considered as terms entering
the utility functions of each alternative. The utilities describe the space around the de-
cision maker and under the assumption of rational behavior, the individual chooses the
location (alternative) with the maximum utility. The details of the model are discussed
in a referenced article (see Robin et al., n.d.).

4 Data

The data set used to estimate the model consists of pedestrian trajectories manually
tracked from video sequences.

It was collected in Sendai, Japan, in August 2000 (see Teknomo et al., 2000, Teknomo,
2002). The video sequence was recorded from the 6th floor of the JTB parking building,
situated at an important pedestrian crossing. Two main pedestrian flows cross the
street, giving rise to a large number of interactions. A frame extracted from this video
is represented in Figure 5.

The data set consists of 190 pedestrian trajectories, manually tracked at a rate of 2 pro-
cessed frames per second, for a total number of 10200 position observations. The map-
ping between the image plane and the walking plane was performed by Arsenal Research
(Bauer, 2007) using a 3D-calibration with the standard DLT algorithm (Shapiro, 1978).
The reference system on the walking plane has the origin arbitrarily placed at the bot-
tom left corner of the cross-walk. The x axis represents the width of the crossing while
the y axis represents the length.

For each frame, the following information for each visible pedestrian was collected: (i)
the time t corresponding to the frame f (in this case t = f/2), (ii) the pedestrian
identifier n, and (iii) the coordinates p/ = (x,y’) identifying the location of the
pedestrian in the walking plane. In Figure 6 we report the speed histogram and in
Table 1 the speed statistics.
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(a) Japanese scenario

Figure 5: A frame from the Japanese video

Mean | 1.31

Standard Error | 0.012
Median | 1.27
Mode | 1.28
Standard Deviation | 0.37
Minimum | 0.43
Maximum | 4.84

Table 1: Speed statistics (m/sec). Note that standard error is the estimated standard
deviation of the sample mean

Japanese speed histogram
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Figure 6: Speed histogram
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Then, a specific choice set (see Figure 4) was constructed for each pedestrian, based
on (1) where t = 1 sec (that is, 2 frames), v = v,, for constant speed alternatives,
v = 0.5v,, for decelerated alternatives, v = 1.5v,, for accelerated alternatives, d = d,,
for alternatives in cone 6 (alt. 6, 17, 28), and d = rot(d,, {) is obtained by rotating d,
around p, with an angle C corresponding to the cone, that is

Cone 1: (=72.5° Conell: (=-72.5°
Cone 2: (¢ =50°, Cone 10: (= —50°,
Cone 3: (=232.5° Cone9: (=-32.5°
Cone 4: (= 20°, Cone 8: (=—-20°,
Cone 5: =10°, Cone 7: (=-—10°.

For each cell in the choice set, each variable interfering in the utility was then computed
(see Robin et al., n.d.). Note that the destination of each individual was defined by
her location in the last frame where she is visible. Finally, the chosen alternative has
been identified as the cell containing the pedestrian’s location after 1 second, that is
pf+2, In the rare instances where p’ did not belong to any cell (because of numerical
errors due to poor image resolution, or extreme speed variations), the corresponding
piece of data was removed from the sample (a total of 919 observations). We represent
in Figure 7 selected generated choice sets on a given trajectory (representing them all

would have been unreadable).

Figure 7: Example of one manually tracked trajectory with choice sets

We obtain a total of 9281 observations from 190 pedestrians. In Figure 8 we report the
frequency of the revealed choices as observed in the data set. The three peaks in the
distributions arise on the central alternatives (6, 17, 28), as expected. Note that cells 1,
12, 23 and 33 were never chosen in this sample. A summary of the observations across
the nests is detailed in Table 2.

5 Estimation results

Table 3 presents the estimation results. The parameters were estimated using Biogeme
(Bierlaire, 2003, biogeme.epfl.ch). All estimates have the expected sign.

In addition to the proposed model, we analyze also a simple model, where the utility of
each alternative is represented only by an alternative specific constant. This constant-
only model perfectly reproduces the observed shares in the sample, with 28 parameters
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Figure 8: Revealed choices histograms

Nest # steps | % of total
acceleration 1065 11.48%
constant speed | 7565 81.51%
deceleration 651 7.01%
central 4297 46.30%
not central 4984 53.70%

Table 2: Number of chosen steps in each nest for the real data set

(33 alternatives, minus 4 which are never chosen, minus one constant normalized to
0), but does not capture any causal effect. With this model, the loglikelihood drops
from —13944.74 to —17972.03, illustrating the statistical significance of the proposed
specification. Note that a classical likelihood ratio test is not appropriate here, as the
hypotheses are not nested. We believe that a more rigorous test is not really necessary
given the huge jump in loglikelihood value.

Sample size = 9281
Nbr of estimated parameters = 24
p? = 0.570

Init

Final log-likelihood = -13944.74
Likelihood ratio test = 37013

log-likelihood = -32451

Table 3: CNL estimation results for the Japanese data set

10
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6 Model validation

Two data sets are used for validation: the Japanese data set used for estimation and
described in Section 4, and a data set collected in the Netherlands, which was not
involved at all in the estimation of the parameters.

6.1 Japanese data set: validation of the model

We first apply our model with the parameters described in Table 3 on the Japanese
data set, using Biosim (Bierlaire, 2003). For each observation n, we obtain a probability
distribution P, (i) over the choice set.

Figure 9 represents the histogram of the probability value P, (i},) assigned by the model
to the chosen alternative i}, of each observation n, along with the hazard value 1/33
(where 33 is the number of alternatives). We consider observations below this threshold
as outliers. There are only 7.10% of them. As a comparison, there are 19.90% of outliers
with the constant-only model.

Predicted probabilities for Japanese data
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Figure 9: Predicted probabilities of the Japanese data

The top part of Figure 10 reports, for each i, } | Pn(i), and the bottom part reports
> . Yin, Where yi, is 1 if alternative i is selected for observation n, 0 otherwise. As
expected, the two histograms are similar, indicating no major specification error.

This is confirmed when alternatives are aggregated together, by directions (see Table
4) and by speed regimes (see Table 5). For a group I' of alternatives, the quantities

MF - anierpn(i)v
Rr = ZnZiEFyin’

11
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and

are reported in columns 3, 4 and 5, respectively, of these tables.

(Mr —Rr)/Rp

The relative errors showed in Table 4 and Table 5 are low, except for groups of alterna-
tives with few observations, that is groups corresponding to extreme left and extreme

right directions.

Figure 10: Predicted and observed shares for the Japanese data set
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6.2 Japanese data set: validation of the specification

In order to test the proposed specification, we have performed a cross validation done

on the Japanese data set.

It consists in splitting the data set into 5 subsets, each

containing 20% of the observations. We perform 5 experiments. For each of them,
one of the five subsets is saved for validation purposes, and the model is re-estimated

12
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Cone I Mr Rr (Mr — Rr)/Rr
Front 5—7,16—18,27 — 29 | 8486.16 | 8481 0.0006
Left 3,4,14,15,25, 26 348.86 | 367 —0.0494
Right 8,9,19,20,30,31 419.29. | 407 0.0302
Extreme left 1,2,12,13,23,24 12.29 10 0.2292
Extreme right | 10,11,21,22, 32 33 14.39 16 —0.1004

Table 4: Predicted (Mr) and observed (Ry) shares for alternatives grouped by directions
with the Japanese data set

Area r Mr Rr | (Mr—Rp)/Rr
acceleration 1—11 | 1059.85 | 1065 —0.0048
constant speed | 12 — 22 | 7588.28 | 7565 0.0031
deceleration |23 —33| 632.87| 651 —0.0279

Table 5: Predicted and observed shares for alternatives grouped by speed regime with
the Japanese data set.

on the remaining 4 subsets. The same procedure has been applied with the constant-
only model. The proportion of outliers for each experiment is reported in Table 6.
We observe that they are consistent with 7.10% (for our model) and 19.90% (for the
constant-only model) of outliers obtained with the complete data set, illustrating the
robustness of the specification.

Model Exp. 1 | Exp. 2 | Exp. 3 | Exp. 4 | Exp. 5
Proposed spec. | 8.62% | 6.52% | 7.44% | 7.87% | 5.87%
Constant only | 20.79% | 20.70% | 17.13% | 19.88% | 18.64%

Table 6: Summary of the cross-validation performed on the Japanese data set

The above analysis indicates a good specification and performance of the model. How-
ever, it is not sufficient to fully validate it. Consequently, we perform now the same
analysis on a validation data set, not involved in the estimation of the model.

6.3 Dutch data set: validation of the model

This data set was collected at Delft University, in the period 2000-2001 (Daamen and
Hoogendoorn, 2003b, Daamen and Hoogendoorn, 2003a, Daamen, 2004) where volunteer
pedestrians (about 80) were called to perform specific walking tasks in a controlled
experimental setup (experiment 4 in Daamen and Hoogendoorn, 2003a)

For the purposes of our validation procedure we use the subset of the Dutch data set
corresponding to a bi-directional flow. This situation is the experimental version of the
Japanese data set, which corresponds to a walkway. The subset includes 724 subjects

13
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for 47481 observed positions, collected by means of pedestrian tracking techniques on
video sequences, at a frequency of 10Hz, that is 10 frames per second. In Figure 11 we
report one frame from the experimental scenario.

For each frame, we collected for each visible pedestrian the time t corresponding to
the frame f (in this case t = f/10), the pedestrian identifier n, and the coordinates
pf = (x,y’) identifying the location of the pedestrian in the walking plane. From
these raw data, we derived the current direction and speed of each pedestrian using the
current and previous frames, that is

dn = ph—pn
v = |dal|/0.1 =10|dn]-

Consistent with the model assumptions, the chosen alternative has been identified as

the cell containing the pedestrian’s location after 1 second, that is pf1'°.

A summary of the observations across nests is detailed in Table 7. Note the very low
number of decelerations and accelerations, probably due to the experimental nature of
the data.

Figure 11: A representative frame from the video sequences used for data collection

Nest # steps | % of total
acceleration 1273 2.68%
constant speed | 45869 96.61%
deceleration 339 0.71%
central 20950 44.12%
not central 26531 55.88%

Table 7: Number of chosen steps in each nest for Dutch data

We compare the observed choices for the Japanese and the Dutch data set in Table 8
and Figure 12. Table 8 reports the percentage of observations for cells at the extreme
left of the choice set (alts. 1, 2, 12, 13, 23, 24), the left part (alts. 3, 4, 14, 15,
25, 26), the front (alts. 5-7, 16-18, 27-29), the right (alts. 8, 9, 19, 20, 30, 31) and

14
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the extreme right ( 10, 11, 21, 22, 32, 33). Figure 12 reports normalized observation,
that is, for each alternative i, ) , yin/N, where y;, is 1 if alternative i is selected for
observation n, 0 otherwise, and N is the total number of observations. We observe a
great similarity in the observed proportions, except for alternatives corresponding to
accelerations and decelerations. This suggests that a simple model, with only alternative
specific constants, may actually perform well on this data set. We show below, however
that this is not the case.

Data set | Extreme left | Left | Front | Right | Extreme right
Japanese 0.11% | 3.95% | 91.38% | 4.39% 0.17%
Dutch 0.06% | 4.40% | 91.35% | 4.15% 0.04%

Table 8: Comparison between Japanese and Dutch data sets for the observations pro-
portions in the direction’s cones
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Figure 12: Comparison between the Japanese and Dutch normalized observation dis-
tributions across the alternatives

We applied our model with the parameters described in Table 3 on the Dutch data set,
using the Biosim package. For each observation n, we obtain a probability distribution
P.(1) over the choice set.

Figure 13 represents the histogram of the probabilities P,,(i};) of the chosen alternatives
as predicted by the model, as well as the hazard value 1/33 (where 33 is the number
of alternatives) illustrating the prediction of a purely random model with equal proba-
bilities. Again, we consider observations below this threshold as outliers. We observe
that there are 2.41% of them. This is good news, as it is actually less than for the data
set used for parameter estimation. The shape of the curve, as well as the low number
of outliers are signs of the good performance of the model. When we compare it with
predictions obtained with the constant-only model (Figure 14), the superior forecasting
potential of our model is clear.

15
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The significant superiority of our model over the constant-only model is also illustrated

by comparing the proportion of outliers (2.41% vs. 10.31%) or the loglikelihood (-
51303.58 vs. -77269.28, as detailed in Table 14).

Predicted probabilities for Dutch data
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Figure 13: Prediction with the proposed model

Predicted probabilities for Dutch data
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Figure 14: Prediction with the constant-only and proposed model

We now compare the predictions performed by our model with the actual observa-
tions. The top part of Figure 15 reports the predicted probabilities obtained by sample
enumeration, that is, for each i, ) , Pn(i), and the bottom part the observed shares,
that is ) vin. The predictions are very satisfactory, except maybe for decelerations
(alternatives 22 to 33) and accelerations (alternatives 1 to 11).

16
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Figure 15: Choice histogram predicted by the model against revealed choices in the
Dutch data set

Cone I Mr Rr (Mr — Rr)/Rr
Front 5—7,16—18,27 — 29 | 43552.36 | 43374 0.0041
Left 3,4,14,15,25,26 1948.77 | 2089 —0.0671
Right 8,9,19,20,30,31 1853.34 | 1972 —0.0602
Extreme left 1,2,12,13,23,24 43.91 27 0.6261
Extreme right | 10,11,21,22,32 33 82.62 19 3.3485

Table 9: Predicted (Mr) and observed (Rr) shares for alternatives grouped by directions
with the Dutch data set.

17



Swiss Transport Research Conference October 15 - 17, 2008

Area I Mr Rr (Mr — Rr)/Rr
acceleration 1—11 | 4022.32| 1273 2.1597
constant speed | 12 — 22 | 40581.06 | 45869 —0.1153
deceleration |23 —33| 2877.62 339 7.4886

Table 10: Predicted (Mr) and observed (Rr) shares for alternatives grouped by speed
regime with the Dutch data set.

We also perform the comparison at a more aggregate level, for groups of cells. Tables
9 and 10 show a good overall performance of the model. Clearly, the extrene | eft
and extreme ri ght groups contain too few observations to reach any conclusions.
The only bias seems to consist in a systematic over-prediction of accelerations and
decelerations. This is consistent with the above-described analysis. The Dutch data
set was collected in controlled experimental conditions, which may have introduced a
bias in pedestrian behavior, depending on the exact instructions they have received.
This assumption is supported by the quasi absence of decelerations in the data set, and
by the different shapes of the speed distributions (see Figure 16). While the Japanese
curve appears to be Gaussian, the Dutch curves contain some non-Gaussian features
which are likely the result of the experimental nature of the data.

Data Set ‘ Mean speed [m/s]
Dutch (experimental) 1.297
Japanese (real) 1.341

Table 11: Average pedestrian speed in the data sets

Japanese and Dutch speed distribution

W Dutch

OJapanese

U;J_n.nﬂil i]J]J]JIIn___

0.47 0.56 0.65 0.74 0.83 0.92 1.01 1.10 1.19 1.28 1.37 146 155 164 173 1.82 191 2.00 2.08 2.17 2.26 2.35

speed (m/s)

Figure 16: Distribution of speed in the two data sets

We now report the same aggregate prediction obtained with the constant-only model
in Tables 12 and 13. The good performance of this simple model at the aggregate
level emphasizes the need for the disaggregate validation performed above. Indeed,
the relatively good performance of the model is due to the coincidental similarity of
proportions of chosen alternatives in the two data sets (see Table 8). The detailed
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analysis presented in Figure 14 clearly rejects the simple model, while the aggregate
analysis does not.

Cone I Mr Rr (Mr — Rr)/Rr
Front 5—7,16—18,27 — 29 | 43386.42 | 43374 0.0003
Left 3,4,14,15,25, 26 1877.47 | 2089 —0.1013
Right 8,9,19,20,30,31 2082.10 | 1972 0.0558
Extreme left 1,2,12,13,23,24 51.16 27 0.8947
Extreme right | 10,11,21,22 32 33 81.85 19 3.308

Table 12: Predicted (Mr) using the constant-only model and observed (Rr) shares for
alternatives grouped by direction with the Dutch data set.

Area r Mr Rr | (Mr—Rr)/Rr
acceleration 1—11 5448.24 | 1273 3.2798
constant speed | 12 — 22 | 38700.42 | 45869 —0.1563
deceleration |23 —33| 3330.34 339 8.824

Table 13: Predicted (Mr) using the constant-only model and observed (Ry) shares for
alternatives grouped by speed regime with the Dutch data set.

For the sake of completeness, a constant-only model was calibrated on the Dutch data
set, in the same way as for the Japanese. Our model estimated on the Japanese data
is better than the constant-only model estimated on the Dutch data, when applied on
the Dutch data set, both in terms of log-likelihood (-51303.58 against -71847.69) and
prediction (2.41 %, percentage of outliers against 4.33%). We have summarized the
various loglikelihood values in Table 14, where each column corresponds to a model,
and each row to a data set.

Constant-only model  Constant-only model

Data set Our model based on Japanese data based on Dutch data
Japanese -13944.74 -17972.03 —
Dutch  -51303.58 -77269.28 -71847.69

Table 14: Loglikelihood of each model applied to the two data sets

7 Conclusions

In this paper we propose a discrete choice model of pedestrian walking behavior. The
short range walking behavior of individuals is modeled, identifying two main patterns:
constrained and unconstrained. The constraints are generated by the interactions with
other individuals. We describe interactions in terms of leader-follower , and collision
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avoidance model. These models capture self-organizing effects which are characteristic
of crowd behavior, such as lane formation. Inspiration for the mathematical form of
these patterns is taken from driver behavior in transportation science, and ideas such as
the car following model and lane changing models have been reviewed and re-adapted to
the more complex pedestrian case. The difficulties of collecting pedestrian data as well
as the limited information conveyed by pure dynamic data sets limit the possibilities
in model specification. Important individual effects cannot be captured without the
support of socio-economic characteristics. Recent development of pedestrian laborato-
ries (see among others Daamen and Hoogendoorn, 2003a, Nagai et al., 2005, Helbing
et al., 2005, Cepolina and Tyler, 2005, Kretz et al., 2006), where controlled experi-
mental conditions are possible, represent an important step in this direction. We use
experimental data in a two step validation procedure. First, the model is validated
on the same data set used for estimation in order to check for possible specification
errors. Second, the model is run on a new data set collected at Delft University under
controlled experimental conditions. The proposed validation procedure suggests good
stability of the model and good forecasting performance. Few observations are badly
predicted, mostly concentrated at the extremes of the choice set. The estimated coef-
ficients are significant and their signs are consistent with our behavioral assumptions.
As opposed to other previous models, we can quantify the influence of the relative kine-
matic characteristics of leaders and colliders on decision-maker behavior. Moreover,
such quantitative analysis has been performed using real world pedestrian data.

The validation procedure is rather complete, since it involves several models, includ-
ing a simple one, and analyzes the results both at an aggregate and a disaggregate
level. The next step would be to validate the model within actual tools, such as pedes-
trian simulators or automatic video tracking systems (Antonini, Venegas, Bierlaire and
Thiran, 2006).
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