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Abstract

This article reports on the realization and on first applications of the Cadyts (“Calibration of
dynamic traffic simulations”) calibration tool. The presented first version of Cadyts calibrates
disaggregate demand models of dynamic traffic assignment simulators from traffic counts. The
tool is broadly applicable in that it (i) makes only very mildassumptions about the calibrated
simulator’s workings and (ii) allows for various modes of technical interaction with the simu-
lation software. The article provides a both conceptual andtechnical overview of the tool and
exemplary demonstrates its applicability to two differenttraffic microsimulators.
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1 Introduction

Iterated microsimulations have become a prominent solution procedure for the dynamic traf-

fic assignment (DTA) problem, and a wide variety of free, e.g., MATSim (accessed 2009);

SUMO (accessed 2009), not-entirely-free, e.g., DRACULA (accessed 2009); DynaMIT

(accessed 2009), and commercial, e.g., TSS Transport Simulation Systems (accessed 2009);

INRO (accessed 2009); Quadstone Paramics Ltd. (accessed 2009), simulation software pack-

ages has become available in the last decades. Arguably, this success is to a large extent due to

the intuitive workings of microsimulations when compared to mathematically more involved

analytical DTA solution approaches (Peeta and Ziliaskopoulos, 2001).

However, this advantage comes with drawbacks: (i) Transport microsimulation also requires

behavioral modeling at the individual level, which is a datahungry and methodologically chal-

lenging problem (Bowman and Ben-Akiva, 1998; Vovshaet al., 2004), and (ii) intuitive analo-

gies alone are insufficient to explain the dynamics of iterated DTA microsimulations (Cascetta,

1989; Nagelet al., 1998). These difficulties have limited the development of mathematically

consistent tools for the calibration of DTA demand microsimulations from traffic counts to

approaches that at some point in the process aggregate the demand into macroscopic quanti-

ties, e.g., Ashok (1996); Antoniou (2004); Zhou (2004), which on the one hand improves the

mathematical tractability but on the other hand discards much of the disaggregate information

available in the simulation.

This article reports on the development of the freely available Cadyts (“Calibration of dynamic

traffic simulations”) calibration tool, which aims to overcome these difficulties (Flötteröd,

2008). Cadyts is compatible with a broad class of DTA microsimulators. It calibrates the

disaggregate demand in the simulation from readily available sensor data such as traffic counts.

While the focus of this text is on the calibration software and its applicability, the presenta-

tion also provides a basic theoretical development of the method. Further material, including a

software manual, the sources of the calibration tool, and executable code can be found on the

Cadyts web site (Cadyts, accessed 2009).

The remainder of this article is organized as follows. Section 2 outlines the scope of the cali-

bration. Section 3 provides some background on the underlying methodology. Section 4 gives

two examples of how the calibration can be linked to an existing DTA microsimulator, either

through function calls or file exchanges. Finally, Section 5concludes the article and gives an

outlook on future developments.
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2 Scope of the calibration

Informally, the DTA problem is to attain consistency between a dynamic model of travel de-

mand and a dynamic model of network supply (traffic flow dynamics). In a fully disaggregate

DTA microsimulator, every traveler is modeled as an individual agent. The travel intentions of

an agent are represented by its plan, which typically comprises a sequence of trips that con-

nect intermediate stops during which activities are conducted, including all associated timing

information. This terminology comprises trip-based microsimulations when considering every

single trip as an independent plan of an independent agent.

The Cadyts tool is designed to interact with a stochastic anditerative DTA microsimulator.

Stochastic means that at least the agent behavior (i.e., theplan choice) is non-deterministic.

Iterative means that the simulator runs according to the following logic:

1. Initialization.

2. Iterations: Repeat the following until stationary conditions are reached.

(a) Demand simulation: All agents select new plans based on the network conditions

of previous iterations.

(b) Supply simulation: The plans of all agents are simultaneously executed in the net-

work.

This logic is equally applicable to simulate an equilibrium-based planning model and a telem-

atics model where drivers are spontaneous and imperfectly informed. From a simulation point

of view, the only difference between these models is that an equilibrium demand simulator

typically utilizes all information from the most recent supply simulations, whereas a telematics

demand simulator generates every elementary decision of a plan only based on such informa-

tion that could have actually been gathered up to the according point in simulated time (Bottom,

2000). In either case, the purpose of the iterations is to obtain consistency between the demand

and the supply.

The calibration adjusts the plan choice probabilities of all agents such that they result in sim-

ulated network conditions that are consistent with the traffic counts. Note that the choice of a

plan includes the choice of a complete set of departure timesfor all trips contained in the plan.

In order to technically apply the calibration tool to a microsimulator, the following additional

operations are needed:

1. Initialization. When the calibration is started, it needs to be provided with all available

traffic counts and some further parameters.

2. Iterations. The calibration is run jointly with the simulation until (calibrated) stationary

conditions are reached.
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(a) Demand simulation: The calibration needs an access point in the simulation in order

to affect the plan choice. There are various ways to realize this, depending on the

concrete simulator.

(b) Supply simulation: The calibration needs to observe thesimulated network condi-

tions in order to evaluate their deviation from the traffic counts.

How these tasks are realized in detail depends on the simulation system at hand. Section 4

gives two examples.

3 Some background

First, a mathematical formulation of the calibration problem is given in Section 3.1. Second,

some implications and the current implementation of this formulation are outlined in Section

3.2.

3.1 What problem does Cadyts solve?

To begin with, the familiar problem of estimating path flows (i.e., trips) between a set ofN orig-

in/destination (OD) pairs from traffic counts is considered(Bell et al., 1996, 1997; Nie and Lee,

2002; Nieet al., 2005). The largest possible number of trips between OD pairn is denoted by

dn, the symbolCn represents the set of available routes that connect OD pairn, anddni is

the number of trips on routei ∈ Cn, wheredn =
∑

i∈Cn
dni. Variations in the total demand

levels can be enabled by adding one fictitious route to every OD pair that bypasses the physical

network.

The probability that a traveler in OD relationn chooses pathi is denoted byPn(i|d) whered =

(dni). This probability is in general a function of all demand levels d because in equilibrium

conditions the route choice of a traveler depends on the network conditions, which in turn

depend on the route choice of all travelers in the system. Mathematically, the problem of finding

path demand levels that are self-consistent in this regardscan be expressed as the problem of

maximizing the prior entropy

W (d) =
N
∏

n=1

dn!

∏

i∈Cn
(Pn(i|d))dni

∏

i∈Cn
dni!

, (1)

which represents the probability that, for a given route choice modelPn(i|d), a particular de-

mand patternd occurs in the system. Appendix A shows that the demand levelsthat maximize

W (d) solve the route assignment problemdni = Pn(i|d)dn for all n andi ∈ Cn.
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Given a sety of traffic counts that is observed on some or all links of the network, the calibration

adjusts all path flows in a way such that the counts are reproduced to a reasonable degree. For

this purpose, the posterior entropy

W (d|y) ∝ p(y|d)W (d) (2)

is maximized, where the likelihoodp(y|d) is the probability of observing the measurements

y for given demand levelsd. The posterior entropy models the probability distribution of a

certain demand patternd given both the route choice modelPn(i|d) and the measurementsy.

Appendix B shows thatW (d|y) is maximized by the posterior route choice probabilities

Pn(i|d,y) =
exp(Λni + Γni)Pn(i|d)

∑

j∈Cn
exp(Λnj + Γnj)Pn(j|d)

(3)

where

Λni =
∂ ln p(y|d)

∂dni

(4)

Γni =
N
∑

m=1

∑

j∈Cm

dmj

Pm(j|d)

∂Pm(j|d)

∂dni

. (5)

That is, a demand calibration in the maximum posterior entropy sense requires to scale the

choice probability of every routei of every OD pairn by exp(Λni +Γni) (and to re-normalize).

Λni captures the effect of the demanddni on the log-likelihood, i.e., on the measurement repro-

duction.Γni essentially describes how a change indni affects all demand levelsd (through the

network conditions).

Formally, this estimator can be immediately applied to calibrate the plan choice of a disaggre-

gate agent population in a fully dynamic setting by associating the indexn = 1 . . .N with the

agents andCn with the plan choice set of agentn. That is, the OD pairs are now replaced by

agents and the routes are replaced by plans.

Consistency with the large population assumption of the entropy maximization approach is

maintained by considering now a large number ofR iterations in the simulation. This implies

thatdn = R becomes the total number of plan choices made by agentn duringR iterations and

dni becomes the number of times agentn chooses plani ∈ Cn. That is,d represents as from

now the accumulated demand levels overR iterations. While this approach is intuitively fairly

straightforward, it requires some further considerations, which are outlined in the following

section.
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3.2 How does Cadyts solve the problem?

The previous section outlines the conceptual workings of the calibration as an intuitive gen-

eralization of a mathematical specification. This section discusses the major conceptual and

algorithmic implications of this approach.

The idea of re-establishing the large population property by observing the same agent during

many iterations of the simulation implies two assumptions:(i) The demand modelPn(i|d)

represents a stable average plan choice distribution of agent n over these iterations, and (ii) this

choice distribution is a function only of the average demandlevels. Assumption (i) is consistent

with the inertia of most (if not all) DTA simulators presented in the literature, which mirrors

the inertia of actual travelers’ decision making. Assumption (ii) implies an approximation: A

real traveler might very well evaluate distributional information about the network conditions

when selecting a plan. Average demand levels constitute only an imperfect proxy for this

information. Note, however, that these are only internal assumptions of the calibration and that

the simulation is not required to fully comply with them for apractical application.

An iterated microsimulation typically maintains some variability in the network conditions even

when the transients of the iterations have ceased. This variability results from the stochasticity

of both the supply and the demand simulator. For reasons of numerical stability, theΛ coeffi-

cients in (4) are calculated as average values in calibratedconditions. This constitutes a fixed

point problem in that theΛ coefficients depend on the demand levels, which in turn are affected

by the calibration and hence by theΛ coefficients. Technically, this is realized by running

a recursive regression concurrently with the simulation that tracks a linear model of the log-

likelihood given the demand levels (Flötteröd and Bierlaire, 2009, accepted for presentation).

The coefficients of this model serve as approximations of thederivatives in (4). Since the linear

model is updated in every single iteration, it implicitly captures all correlations in the network

conditions that result from variability in the demand. Thisis relevant because otherwise this

correlation would have to be additionally modeled in the likelihood, which is originally speci-

fied in (2) to depend on a single demand realizationd only.

The Γ coefficients in (5) require to calculate the sensitivities of all plan choice probabilities

with respect to all demand levels, where the coupling of these quantities is given through the

simulated network conditions. These sensitivities are hard to obtain for generic demand and

supply simulators, and therefore these coefficients are currently set to zero in the calibration.

Essentially, this simplification is as good (or as bad) as a “proportional assignment” in OD

matrix estimation, where fixed (i.e., insensitive) route choice behavior is assumed in every

single iteration of the calibration.

Once theΛ andΓ coefficients are available, the modified plan choice distribution (3) can be

enforced in various ways, depending on the simulation. If the simulator provides access to the
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uncalibrated choice probabilities, these probabilities can be explicitly adjusted before a choice

is made. If the demand model is utility-driven, the utilities of the plans can be modified such that

the desired posterior choice distribution results. If the demand simulation operates completely

as a black box in that only realized choicesi of any agentn can be observed, rejection sampling

is applicable with an acceptance probability that is proportional toexp(Γin+Λin) (Ross, 2006).

4 Applications

This section presents two applications of Cadyts. First, some technical preliminaries are given

in Subsection 4.1. Second, Subsection 4.2 describes how thecalibration is linked through

function calls with the MATSim microsimulator and presentsan exemplary result from a large

real-world case study. Third, Subsection 4.3 describes an application of the calibration in

conjunction with the SUMO microsimulator that relies on a file-based communication between

the programs. For the latter application, only some very preliminary results can be given.

4.1 Technical decoupling of calibration and simulation

Cadyts is implemented in Java (Sun Microsystems, accessed 2009). Java structures software

into packages, which essentially are name spaces that coincide with directories of the file sys-

tem. In order to customize the calibration for a particular simulation, some Java programming

is likely to become necessary, e.g., to account for the simulation-specific data and file formats.

However, the amount of programming is minimized through theprovision of various default

classes for different interaction modes.

A major issue with the maintenance of software that is used bydifferent groups is to ensure

stable interfaces to the users while enabling sufficient internal flexibility for future develop-

ments. Cadyts deals with this issue by assuming that a separate interface package is set up for

every linked simulator. This package (i) accesses and possibly extends the pre-fabricated fa-

cilities of the basic calibration code and (ii) constitutesan exclusive connection point between

calibration and simulation. Given that this package is added to the Cadyts software repository,

all internal modifications (“refactorings”, Fowler (1999)) of the calibration code can be applied

consistently to the interface package, while the logic according to which this package connects

to the simulation remains unchanged. In the language of design patterns, the interface package

implements a “facade” (Gammaet al., 1994).
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4.2 Calibration of MATSim

MATSim (“Multi-Agent Transport Simulation Toolkit”) is a truly disaggregate DTA microsim-

ulator in that it entirely discards the fairly typical OD matrix-based demand representation and

instead tracks the trip sequences of individual agents throughout the the entire modeling pro-

cess (MATSim, accessed 2009; Raney and Nagel, 2006). This feature allows to model how the

network conditions affect not only route choice but, at least in principle, arbitrary choice di-

mensions. The current implementation of MATSim equilibrates both route and departure time

choice based on an all-day utility function that accounts for the cost of travel and the benefits

of performing activities (Charypar and Nagel, 2005). A simple queuing model is implemented

in the supply simulation (Cetinet al., 2003).

Since both Cadyts and MATSim are implemented in Java, they can be linked through function

calls. For this purpose, a (pre-fabricated and not MATSim-specific) rejection sampling facility

of Cadyts is utilized: Whenever an agent chooses a plan, it proposes this plan to the calibration,

which either accepts or rejects the plan. If the plan is rejected, the agent draws again from

its plan choice distribution. Eventually, an accept occurs, which constitutes a draw from the

calibrated plan choice distribution. Essentially, the following three functions are called by

MATSim:

void addMeasurement(L link, int start_s, int end_s, double

value, double stddev, Measurement.TYPE type)

This function is called once for every measurement before the simulation starts. It registers

a measurement of a certaintype (currently, there are only traffic counts), which has been

observed on a certainlink betweenstart_s andend_s seconds of the day. The measured

value and its standard deviationstddev are also provided. The generic network link typeL

is in internally substituted by the MATSim link type.

boolean getSampler(Object agent).isAccepted(Plan<L> plan)

Whenever anagent chooses aplan, it asks the calibration through this function if the plan

is accepted or if another plan needs to be generated. The calibration guarantees that an accept

occurs after a pre-specified maximum number of rejections while at the same time making a

best effort to comply as far as possible with the calibrated choice distribution (3). In every

iteration, every agent makes as many function calls of this type as it is necessary to obtain an

accepted plan.
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Figure 1: Zurich network
The analysis zone of the MATSim test case comprises the majorroad network of the city of Zurich,
which is enlarged (Gretheret al., 2008).

void afterNetworkLoading(SimResults<L> simResults)

This function is called once after each network loading. It passes a container object to the

calibration that provides information about the results ofthe most recent network loading, in

particular about the simulated flows at the measurement locations. Although a pre-fabricated

implementation of theSimResults<L> interface is available, MATSim uses a proprietary

implementation for greater efficiency.

MATSim has by now been successfully calibrated in one large real-world scenario, where

both route and departure time choice are concurrently adjusted from time-dependent traffic

counts at 159 sensor locations for a population of 187 484 agents on a 60 492 link network

(Flötterödet al., 2009, accepted for presentation). For illustration, Figure 1 shows the network

of this application, and Figure 2 exemplifies how the log-likelihood of the sensor data changes

over the iterations. The calibrated simulation stabilizesafter a few hundred iterations, which is

in the same order of magnitude as a plain simulation that doesnot account for the sensor data.

Also, the duration of a single iteration is less than doubledby the calibration’s computational

overhead that mainly results from the rejection sampling.

The experiment starts from equilibrated network conditions such that all improvements in the
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Figure 2: MATSim results
Evolution of the log-likelihood (scaled by the number of measurements) over the iterations. The calibra-
tion starts from equilibrated network conditions such thatall improvements in the log-likelihood can be
assigned to the calibration. The jump-like stabilization after iteration 200 results from a switch in MAT-
Sim’s replanning logic, which excludes certain choice dimensions in order to improve the simulation’s
convergence.

log-likelihood can be assigned to the calibration. The initial log-likelihood (normalized by

the number of measurements) is -51.9 and its final value fluctuates between -11 and -10. It

would become zero if all measurements were perfectly reproduced. This shows that Cadyts

improves the measurement fit substantially, but it does not say anything about the extrapo-

lation quality beyond the sensor locations or about how the calibration can be used to iden-

tify the parameters of the plan choice model. These items arediscussed in Flötterödet al.

(2009, accepted for presentation).

4.3 Calibration of SUMO

SUMO (“Simulation of Urban Mobility”) is a trip-based DTA microsimulator (SUMO,

accessed 2009). It takes time-dependent OD matrices as inputs and disaggregates them into

individual vehicles before evaluating the network performance through a detailed traffic flow

microsimulator. The iterative feedback loop only adjusts route choice. Both the demand simu-

lator and the supply simulator of SUMO are implemented in C++. The iterative simulation is

enabled through a Python script that alternately call each model component. The data exchange

among the modules is realized through files.

Cadyts provides extensive facilities for the file-based interaction with a simulation. These

classes are configured with implementations of some interfaces for the reading and writing of

the SUMO file formats. An executable jar file is generated fromthis code, and the follow-
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ing three calls to the jar file are implemented in SUMO’s Python script (some command line

parameters are left out for clarity):

java -jar SumoController.jar INIT -measfile meas.xml

Everything before theINIT keyword is just a call to the pre-compiled java program.INIT

indicates that this call initializes the calibration. The-measfile keyword is followed by the

file in which the traffic counts are stored. This call is made once when the simulation is started.

java -jar SumoController.jar CHOICE -choicesetfile

choicesets.xml -choicefile choices.xml

TheCHOICE keyword indicates that the calibration is expected to generate calibrated choices

for every trip maker in the simulation and to write these choices in the file preceded by the

-choicefile keyword. For this, the calibration is provided with both thechoice sets and

the prior choice probabilities of all trip makers in the file following the-choicesetfile

keyword. This call is made once in every iteration of the simulation.

java -jar SumoController.jar UPDATE -netfile flows.xml

The UPDATE keyword tells the calibration that new simulated network conditions from the

most recent run of the traffic flow simulation are available inthe file following the-netfile

keyword. This call is made once in every iteration of the simulation.

Being limited to route choice based on OD matrices, SUMO can also be calibrated only in

these regards. The basic application of a mere route choice adjustment given fixed total demand

levels has by now successfully been tested. The joint calibration of OD flows and route choice

is currently being implemented, where a fixed maximum demandlevel per OD pair is assumed

and every trip-makers is provided with one additional routing alternative that (i) represents the

decision of not making a trip at all and (ii) has a prior choiceprobability that guarantees that

the number of a priori made trips is consistent with the uncalibrated OD matrix.

The calibration of SUMO is a recent venture, and only very preliminary results are available.

Figure 3 shows the simple test network that is used to validate the technical correctness of

the interactions between SUMO and Cadyts. Vehicles enter the network at D1 or D2, choose

one of the 4 possible routes through the network, and leave itat D3. Figure 4 gives some

exemplary log-likelihood trajectories that result when a single flow sensor is located on link

L9 and the standard deviation of the according measurement is varied. As the standard de-

viation decreases, the measurement fit improves. If nothingelse, this shows that simulation
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Figure 3: SUMO network
A synthetic network for testing purposes. Vehicles enter the system at D1 and D2, and they leave at D3.
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Figure 4: SUMO results
Some exemplary log-likelihood curves for a single sensor onlink L9 of the network shown in Figure 3.
The higher the belief in the measurement (lower standard deviation σ, in vehicles per hour), the better
its reproduction: A zero log-likelihood indicates a perfect reproduction of the measurement. For better
comparability, all curves are scaled to begin at the value minus one.

and calibration interact in a meaningful way. Computationally, the overhead introduced by the

calibration is very low because SUMO communicates its routechoice probabilities such that

no rejection sampling is necessary.
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5 Summary and outlook

This article demonstrates that it is possible to calibrate the demand of a DTA microsimulation

from traffic counts without resorting to the usual aggregations in terms of OD matrices or path

flows. The theoretical underpinnings of the proposed calibration approach are outlined, and

its implementation in the freely available software package Cadyts is described. The system’s

flexibility is demonstrated through exemplary applications to two different DTA microsimula-

tors.

Future work will cover both methodological and technical aspects of the calibration. Method-

ologically, a major and yet unresolved challenge is the mathematically consistent incorporation

of the equilibrium-related interactions of different agents’ plan choices (captured through the

Γ coefficients in (5), which are set to zero in the current implementation). Beyond this, some

means to calibrate a supply simulator jointly with the demand simulator would certainly im-

prove the overall calibration quality. Technically, thereis a vast number of thinkable add-ons

that would improve the convenience of using the tool. Finally, new challenges are likely to be

identified through new applications of Cadyts to further simulation systems.
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A Maximization of prior entropy

Denote bydn the total demand level of OD pairn and bydni the demand level of pathi ∈ Cn.

The prior entropy of the global demand patternd = (dni) is

W (d) =
N
∏

n=1

(

∑

i∈Cn

dni

)

!

∏

i∈Cn
(Pn(i|d))dni

∏

i∈Cn
dni!

. (6)
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Taking the logarithm and applying Stirling’s approximation (ln X! → X ln X − X for large

X),

lnW (d) =
N
∑

n=1

[

∑

i∈Cn

dni · ln
∑

i∈Cn

dni

+
∑

i∈Cn

dni ln Pn(i|d) −
∑

i∈Cn

dni ln dni

]

. (7)

The derivative ofW (d) with respect todmj (wherem is an OD pair andj ∈ Cm) is

∂ ln W (d)

∂dmj

= ln dm + ln
Pm(j|d)

dmj

+

N
∑

n=1

∑

i∈Cn

dni

Pn(i|d)

∂Pn(i|d)

∂dmj

. (8)

A substitution of the equilibrium flow patterndni = Pn(i|d)dn yields

∂ ln W (d)

∂dmj

= ln dm − ln dm +
N
∑

n=1

dn

∑

i∈Cn

∂Pn(i|d)

∂dmj

= 0, (9)

where the sum over all choice probability derivatives of anydemand segmentn is zero because

the probabilities themselves must sum up one.

B Maximization of posterior entropy

Before maximizing (the logarithm of) the posterior entropyfunction

W (d|y) ∝ p(y|d)W (d), (10)

the additional requirement of constant demand levelsdn per OD pairn is introduced in the

Lagrangian

L(d|y) = ln W (d|y) +

N
∑

n=1

un

(

∑

i∈Cn

dni − dn

)

. (11)

Using (8), the derivative ofL(d|y) with respect todmj (wherem is an OD pair andj ∈ Cm)

becomes

∂L(d|y)

∂dmj

=
∂ ln p(y|d)

∂dmj

+ ln dm + ln
Pm(j|d)

dmj

+

N
∑

n=1

∑

i∈Cn

dni

Pn(i|d)

∂Pn(i|d)

∂dmj

+ um. (12)
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Setting this to zero and solving fordmj yields

dmj = dm exp(um) exp(Λmj + Γmj)Pm(j|d) (13)

where

Λmj =
∂ ln p(y|d)

∂dmj

(14)

Γmj =

N
∑

n=1

∑

i∈Cs

dni

Pn(i|d)

∂Pn(i|d)

∂dmj

. (15)

The Lagrange multipliers result from a substitution of (13)in dm =
∑

i∈Cm
dmi such that

exp(um) =
1

∑

i∈Cm
exp(Λmi + Γmi)Pm(i|d)

. (16)

Inserting this in (13) finally results in the posterior choice probabilities

Pm(j|d,y) =
dmj

dm

=
exp(Λmj + Γmj)Pm(j|d)

∑

i∈Cm
exp(Λmi + Γmi)Pm(i|d)

. (17)

References

Antoniou, C. (2004) On-line calibration for dynamic trafficassignment, Ph.D. Thesis, Mas-

sachusetts Institute of Technology.

Ashok, K. (1996) Estimation and prediction of time-dependent origin-destination flows, Ph.D.

Thesis, Massachusetts Institute of Technology.

Bell, M., W. Lam and Y. Iida (1996) A time-dependent multi-class path flow estimator, paper

presented atProceedings of the 13th International Symposium on Transportation and Traffic

Theory, 173–193, Lyon, France, July 1996.

Bell, M., C. Shield, F. Busch and G. Kruse (1997) A stochasticuser equilibrium path flow

estimator,Transportation Research Part C, 5 (3/4) 197–210.

Bottom, J. (2000) Consistent anticipatory route guidance,Ph.D. Thesis, Massachusetts Institute

of Technology.

Bowman, J. and M. Ben-Akiva (1998) Activity based travel demand model systems, in P. Mar-

cotte and S. Nguyen (eds.)Equilibrium and advanced transportation modelling, 27–46,

Kluwer.

15



Cadyts (accessed 2009) Cadyts web site, http://transp-or2.epfl.ch/cadyts.

Cascetta, E. (1989) A stochastic process approach to the analysis of temporal dynamics in

transportation networks,Transportation Research Part B, 23 (1) 1–17.

Cetin, N., A. Burri and K. Nagel (2003) A large-scale agent-based traffic microsimulation

based on queue model, paper presented atProceedings of the 3rd Swiss Transport Research

Conference, Monte Verita/Ascona, March 2003.

Charypar, D. and K. Nagel (2005) Generating complete all-day activity plans with genetic

algorithms,Transportation, 32 (4) 369–397.

DRACULA (accessed 2009) DRACULA web site, http://www.its.leeds.ac.uk/software/dracula/index.html.

DynaMIT (accessed 2009) DynaMIT web site, http://web.mit.edu/its/dynamit.html.

Flötteröd, G. (2008) Traffic state estimation with multi-agent simulations, Ph.D. Thesis, Berlin

Institute of Technology, Berlin, Germany.

Flötteröd, G. and M. Bierlaire (2009, accepted for presentation) Improved estimation of travel

demand from traffic counts by a new linearization of the network loading map, paper pre-

sented atProceedings of the European Transport Conference, The Netherlands, October

2009, accepted for presentation.

Flötteröd, G., Y. Chen, M. Rieser and K. Nagel (2009, accepted for presentation) Behavioral

calibration of a large-scale travel behavior microsimulation, paper presented atProceedings

of 12th International Conference on Travel Behaviour Research, Jaipur, India, December

2009, accepted for presentation.

Fowler, M. (1999)Refactoring. Improving the Design of Existing Code, The Addison-Wesley

Object Technology Series, Addison-Wesley.

Gamma, E., R. Helm, R. Johnson and J. Vlissides (1994)Design Patterns, Addison–Wesley

Professional Computing Series, Addison–Wesley.

Grether, D., Y. Chen, M. Rieser, U. Beuck and K. Nagel (2008) Emergent effects in multi-

agent simulations of road pricing, paper presented atProceedings of the Annual Meeting of

the European Regional Science Association ERSA.

INRO (accessed 2009) Dynameq web site, http://www.inro.ca/en/products/dynameq/.

MATSim (accessed 2009) MATSim web site, http://www.matsim.org.

Nagel, K., M. Rickert, P. Simon and M. Pieck (1998) The dynamics of iterated transportation

simulations, paper presented atProceedings of the 3rd Triennial Symposium on Transporta-

tion Analysis, San Juan, Puerto Rico.

16



Nie, Y. and D.-H. Lee (2002) An uncoupled method for the equilibrium-based linear path flow

estimator for origin-destination trip matrices,Transportation Research Record, 1783, 72–79.

Nie, Y., H. Zhang and W. Recker (2005) Inferring origin-destination trip matrices with a de-

coupled GLS path flow estimator,Transportation Research Part B, 39 (6) 497–518.

Peeta, S. and A. Ziliaskopoulos (2001) Foundations of dynamic traffic assignment: the past,

the present and the future,Networks and Spatial Economics, 1 (3/4) 233–265.

Quadstone Paramics Ltd. (accessed 2009) Paramics web site,http://www.paramics-online.com.

Raney, B. and K. Nagel (2006) An improved framework for large-scale multi-agent simulations

of travel behavior, in P. Rietveld, B. Jourquin and K. Westin(eds.)Towards better performing

European Transportation Systems, 305–347, Routledge.

Ross, S. (2006)Simulation, fourth edn., Elsevier.

SUMO (accessed 2009) SUMO web site, http://sourceforge.net/projects/sumo.

Sun Microsystems (accessed 2009) Java web site, http://java.sun.com.

TSS Transport Simulation Systems (accessed 2009) AIMSUN web site,

http://www.aimsun.com.

Vovsha, P., M. Bradley and J. Bowman (2004) Activity-based travel forecasting models in the

United States: progress since 1995 and prospects for the future, paper presented atPro-

ceedings of the EIRASS Conference on Progress in Activity-Based Analysis, Maastricht, The

Netherlands, May 2004.

Zhou, X. (2004) Dynamic origin-destination demand estimation and prediction for off–line and

on–line dynamic traffic assignment operation, Ph.D. Thesis, University of Maryland, College

Park.

17


	Introduction
	Scope of the calibration
	Some background
	What problem does Cadyts solve?
	How does Cadyts solve the problem?

	Applications
	Technical decoupling of calibration and simulation
	Calibration of MATSim
	Calibration of SUMO

	Summary and outlook
	Acknowledgments
	Maximization of prior entropy
	Maximization of posterior entropy
	Bibliography

