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Abstract

Deriving optimal traffic management schemes for urban road networks typically relies
on the use of complex simulation tools, that capture in detail the behavior of drivers as
well as their interaction with the network infrastructure.The integration of these traffic
simulators within an optimization framework is an intricate task. Indeed, these simulators
can be seen as stochastic nonlinear functions that are expensive to evaluate.

Simulation-based network optimization should therefore start with an important modeling
effort, in order to exploit the structure of the problem at hand. In particular, we believe
that in order to perform both fast and reliable simulation-based optimization for congested
networks, information from the simulation tool should be combined with information
from a metamodel (surrogate) that captures at a lower degreeof detail the structure of the
underlying problem.

In this paper, we propose a surrogate that combines information from a calibrated micro-
scopic traffic simulation model with an analytical queueingnetwork model. We integrate
this surrogate within a derivative-free trust region optimization framework. We apply the
framework to solve a fixed-time traffic signal control problem for a subnetwork of the
Lausanne city center. We compare the performance of the derived signal plans with that
of an existing signal plan for the city of Lausanne.
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1 Introduction

Deriving optimal traffic management schemes for urban road networks typically relies

on the use of microscopic simulation tools that capture in detail the behavior of drivers

as well as their interaction with the network infrastructure. These simulation tools can

provide accurate network performance estimates in the context of scenario-based analysis

or sensitivity analysis. Nevertheless, their integrationwithin an optimization framework

remains an intricate process. A given traffic management scheme can be formulated as:

min
x,z∈Ω

E[f(x, z, p, ǫ)],

where the objective is to minimize the expected value of a suitable network performance

measuref . This performance measure is a function of a decision or control vectorx,

endogenous variablesz, exogenous parametersp and a random componentǫ. The feasible

spaceΩ consists of a set of constraints that linkx toz, p andf . For instance, a traffic signal

control problem can takef as the travel time andx as the green splits for the signalized

lanes. Elements such as the total demand or the network topology will be captured by

p, while the distribution of the demand (route choice decisions) and the capacities of the

signalized lanes will be captured byz. The random componentǫ describes the noise

associated with a given realization off .

The various traffic models embedded within the simulator make it a detailed and realistic

model, but lead to nonlinear objective functions with no available closed form, and con-

taining potentially several local minima. Since these are stochastic models, we can only

derive estimates ofE[f ]. Additionally, computing these estimates is computationally ex-

pensive, since they involve running numerous replications. As a nonlinear stochastic and

evaluation-expensive problem, it is complex to address. Inpractice, the aim of simulation

optimization (SO) problems is to identify improved settings, rather than seek or proove

optimality.

We believe that in order to perform both fast and reliable simulation optimization for

congested networks, information from the simulation tool should be combined with in-

formation from a surrogate network model that analyticallycaptures the structure of the

underlying problem. In this paper, we propose such a surrogate. First, we present a lit-

erature review of surrogate-based SO methods (Section 2). In Section 3 we present the

optimization framework and the surrogate model. We then show how this method applies

to a fixed-time traffic signal optimization problem (Section4). We comment on imple-

mentation issues (Section 5) and present empirical resultsin Section 6.
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2 Literature review

Barton and Meckesheimer (2006) provide a classification anda review of simulation-

optimization methods. Continuous SO problems fall into twocategories: direct gradient

and metamodel methods. Direct gradient methods estimate the gradient of the simula-

tion response, and then resort to stochastic gradient-based techniques such as stochastic

approximation (Spall, 2003). These methods do not attempt to fit a global approxima-

tion to the objective function. The simulation function’s gradient can be estimated with

direct methods (e.g. perturbation analysis), which require knowledge of the underlying

probabilistic process (e.g. input probability distributions). In particular, automatic differ-

entiation methods allow the exact evaluation of gradients but require the source code of

the simulation model to be available (see Connet al. (2000) and references herein). The

gradient can also be estimated with indirect methods, whichuse only function evalua-

tions (e.g. finite difference, simultaneous perturbation (Spall, 2003). Although there have

been significant advances and novel approaches for gradientestimation (Fuet al., 2005;

Fu, 2006), methods that rely on direct derivative information often require more function

evaluations, and their convergence is sensitive to the accuracy of the gradient estimation.

Metamodel methods use an indirect-gradient approach by computing the gradient of a

surrogate model (or metamodel), which is a deterministic function, instead of the gradient

of the simulation response. The main advantage of a metamodeling approach is that the

stochastic response of the simulation is replaced by a deterministic metamodel response

function, then deterministic optimization techniques canbe used. Metamodels are often

a linear combination of basis functions from a parametric family. The most common

approach is the use of low-order polynomials (e.g. linear orquadratic). Spline models

have also been used, although their use within an SO framework has focused on univariate

or bivariate functions, and as Barton and Meckesheimer (2006) mention: “unfortunately,

the most popular and effective multivariate spline methodsare based on interpolating

splines, which have little applicability for SO”. Radial basis functions have also been

proposed (Oeuvray and Bierlaire, 2009). The existing metamodel methods fix apriori a

functional form for the metamodel (e.g. quadratic). The functional forms considered are

general-purpose forms, that are chosen based on their analytical tractability, but do not

take into account any information with regards to the specific objective function, let alone

the structure of the underlying problem.

In this paper, we use a metamodel method to perform SO. The metamodel of interest

combines information from the simulator and from an analytical network model. For a

given problem, the analytical model will yield a different functional form for the objec-
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tive function. The metamodel proposed in this paper goes beyond existing metamodel

approaches since the functional form is problem specific. This comes at the cost of

deriving a framework that is particularly suited for network optimization but not intended

for arbitrary optimization problems.

In order to integrate the proposed metamodel into an existing optimization method, we

review the algorithms that allow for an arbitrary metamodel. These methods are called

multi-model or hybrid methods. They share a common motivation, which is to combine

the use of models with varying evaluation costs (low versus high-fidelity models, or coarse

versus fine models).

A trust-region optimization framework for unconstrained problems allowing for multiple

models was proposed by Carter (1986) (see references hereinfor previous multi-model

frameworks). His work analyses the theoretical propertiesand derives a global conver-

gence theory for several types of multi-model algorithms. It allows for nonquadratic

models as long as at least one model is a standard quadratic with uniformly bounded

curvature.

The Approximation and Model Management Optimization/Framework (AMMO or

AMMF) is a trust-region framework for generating and managing a sequence of meta-

models. There are several versions of the algorithm: for unconstrained problems

(Alexandrovet al., 1998), bound constrained (Alexandrovet al., 2000), inequality con-

strained (Alexandrovet al., 1999), generally constrained (Alexandrovet al., 2001). Al-

though no restrictions are imposed on the type of surrogatesallowed, it is a first-order

method that requires that the model and the objective function, as well as their first-order

derivatives, coincide at each major (or accepted) iterate.Thus the metamodel must al-

ways behave as a first-order Taylor series approximation. This is a strong restriction if the

function is noisy and expensive to evaluate.

The Surrogate-Management framework (SMF) proposed by Booker et al. (1999) is a

derivative-free method for bound constrained problems. Itis based on a direct search

technique called pattern search. Since direct search techniques typically require many

function evaluations, they use a surrogate model of the objective function to improve the

performance of the algorithm. The surrogate model used is aninterpolated kriging model.

Nevertheless, interpolation techniques are inappropriate for noisy responses.

The Space Mapping (SM) technique and its many versions (Bandler et al., 2006, 2004) is
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a simulation-based optimization technique that uses two metamodels: a fine and a coarse

model. Both models are often simulation-based. The coarse model is constructed based on

a transformation of the endogenous variables (“space mapping”) that minimizes the error

for a sampled set of high-fidelity response values. Nevertheless, SM relies on the assump-

tion that via a transformation of the endogenous variables the coarse model will exhibit

the physical/mathematical properties of the fine model (Alexandrov and Lewis, 2001) and

as Bandleret al. (2004) mention “the required interaction between coarse model, fine

model, and optimization tools makes SM difficult to automatewithin existing simula-

tors”. Alexandrov and Lewis (2001) give a comparison of the AMMO, the SMF and the

SM methods.

Connet al. (2009a) recently proposed a trust-region derivative-freeframework for

unconstrained problems. This framework allows for arbitrary metamodels and makes no

assumption on how these metamodels are fitted (interpolation or regression). To ensure

global convergence a model improvement algorithm guarantees that the models have a

uniform local behavior (i.e. satisfy Taylor-type bounds) in a finite number of steps.

Derivative-free (DF) methods do not require nor do they explicitly approximate deriva-

tives. Resorting to a DF algorithm, rather than to first or second order algorithms, is

therefore appropriate for noisy problems where the derivatives are difficult to obtain and

often unreliable. This is also the case when the evaluation of the objective function is com-

putationally expensive, or when the simulation source codeis unavailable, the simulator

must then be treated as a black box (Moré and Wild, 2009). In the field of transportation,

the simulators fall into all three of these categories. Thuswe will opt for a DF approach.

Among the two main strategies used to ensure global convergence, line search and trust re-

gion methods, the latter are more appropriate for our context since they “extend more nat-

urally than line search methods to models that are not quadratics with positive Hessians”

(Carter, 1986). Trust-region (TR) methods when both first and second-order derivatives

are unavailable is a relatively recent topic (see Connet al. (2009b) for references). Ad-

ditionally, the most common approach for fitting metamodelswithin a TR framework is

interpolation. Nevertheless, for noisy functions we believe that regression is more appro-

priate since it is less sensitive to the inaccuracy of the observations.

The framework proposed by Connet al. (2009a), as a derivative-free TR method that

allows for arbitrary models and does not impose interpolation, is therefore particularly

appealing. We will therefore integrate our metamodel within this framework.
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3 Method

In this section, we first describe the main ideas of the optimization algorithm that will be

used. We then present the metamodel.

3.1 Algorithmic franework

For an introduction to trust region (TR) methods, we refer the reader to Connet al.(2000).

They summarize the main steps of a TR method in theBasic trust region algorithm. The

method proposed by Connet al. (2009a) builds upon theBasic TR algorithmby adding

two additional steps: a model improvement step and a criticality step. We present the

main steps of the algorithm. For a detailed description see Connet al. (2009a). A given

iterationk of the algorithm considers a metamodelmk, an iteratexk and a TR radius∆k.

Each iteration consists of 5 steps:

• Criticality step. This step may modifymk and∆k if the measure of stationarity is

close to zero.

• Step calculation.Approximately solve the TR subproblem to yield a trial point.

• Acceptance of the trial point. The actual reduction of the objective function is

compared to the reduction predicted by the model, this determines whether the trial

point is accepted or rejected.

• Model improvement. Either certify thatmk is fully linear in the TR or carry out

improvement steps.

• TR radius update.

3.2 Metamodel

The metamodel combines information from two models: a simulation model and an ana-

lytical queueing model. We first present these two models, wethen describe how they are

combined.

Simulation model. We use a calibrated microscopic traffic simulation model of the Lau-

sanne city center. A detailed description of this model is given in Dumont and Bert

(2006). It is implemented with the AIMSUN simulator (TSS, 2008). It contains

a total of 652 roads and 231 intersections, 49 of which are signalized. For a
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given decision vectorx the simulator provides a realization of the random variable

f(x, z, p, ǫ).

Analytical queueing model. This model resorts tofinite capacity queueing theoryto

capture the key traffic dynamics and the underlying network structure, e.g. how

upstream and downstream queues interact, how this interaction is linked to network

congestion. The model consists of a system of nonlinear equations. It is formulated

based on a set of exogenous parametersθ that capture the network topology, the

total demand, as well as the turning probabilities. A set of endogenous variablesy

describe the traffic dynamics, e.g. spillback probabilities, the average rates at which

a spillback diffuses, queue length stationary distributions. For a given decision vec-

tor x the network model yields the objective functionT (x, y, θ).

A detailed description of the queueing model and a case studyillustrating how the

endogenous variables describe the formation and diffusionof congestion is given

in Osorio and Bierlaire (2009a). Its formulation for an urban road network appears

in Osorio and Bierlaire (2009b). It has been successfully used to solve a fixed-time

traffic signal control problem in Osorio and Bierlaire (2009b).

We recall here the notation that we have introduced so far:

x decision vector;

T estimate of the objective function derived by the queueing model;

f simulation response;

y endogenous queueing model variables;

θ exogenous queueing model parameters;

z endogenous simulation variables;

p exogenous simulation parameters;

ǫ random component of the simulation response.

We now describe howf andT are combined to derive the metamodelm. The functional

form of m is:

m(x, y, θ, α, β) = αT (x, y, θ) + φ(x, β),

whereφ is a quadratic polynomial,α andβ are parameters of the metamodel. The poly-

nomial φ is quadratic with diagonal second derivative matrix. This choice is based on

existing numerical experiments for derivative-free TR methods which show that they are

often more efficient than full quadratic models (Powell, 2003).
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φ(x, β) = β0 +
d∑

j=1

βjxj +
d∑

j=1

βp+jx
2
j ,

whered is the dimension ofx, andxj is thejth component ofx.

At a given iterationk of the algorithm (described in Section 3.1), the parametersβ andα

of the metamodel are fitted using the current sample by solving the least squares problem:

min
α,β

nk∑

i=1

(wki(f̂(xi, zi, p, ǫi) − m(xi, yi, θ, α, β)))2,

wherexi represents theith point in the sample, with the corresponding simulated obser-

vation f̂(xi, zi, p, ǫi), nk is the sample size andwki is the weight associated to theith

observation at iterationk.

The weights capture the importance of each point with regards to the current iterate. The

work of Atkesonet al. (1997) gives a survey of weight functions and analyzes theirthe-

oretical properties. We use what is known as theinverse distanceweight function, along

with the Euclidean distance, this leads to the following weight parameters:

wkj =
1

1 + ‖xk − xj‖2
2

The weight of a given point is therefore inversely proportional to its distance from the

current iterate. This will allow us to approximately have a Taylor-type behavior, where

local points have more weight.

The least squares problem is solved using the Matlab routinelsqnonlin(The Mathworks,

2008).

4 Optimization Problem

4.1 Traffic signal control

We illustrate the use of this framework with a signal controlproblem for a subnetwork

of the city of Lausanne. A review of the different formulations, as well as the definitions

of the traffic signal terms used hereafter, is given in Appendix A of Osorio and Bierlaire

(2009b). We consider a fixed-time signal control problem where the offsets, the cycle
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times and the all-red durations are fixed. The stage structure is also given. In other words,

the set of lanes associated with each stage as well as the sequence of stages are both

known. To formulate this problem we use the following notation:

bi available cycle ratio of intersectioni;

x(p) green split of phasep;

xL vector of minimal green splits for each phase;

I set of intersection indices;

PI(i) set of phase indices of intersectioni.

The problem is traditionally formulated as follows:

min
x,z

E[f(x, z, p, ǫ)] (1)

subject to

∑

p∈PI(i)

x(p) = bi, ∀i ∈ I (2)

x ≥ xL. (3)

In this problem the decision vectorx consists of the green splits for each phase. The

objective is to minimize the expected travel time (Equation(1)). The linear constraints (2)

link the green times of the phases with the available cycle time for each intersection. The

bounds (3) correspond to minimal green time values for each phase. These have been set

to 4 seconds according to the Swiss standard (VSS, 1992).

4.2 TR subproblem

At a given iterationk the TR subproblem includes three more constraints than the previous

problem. It is formulated as follows:
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min
x,y

mk(x, y, θ, αk, βk) (4)

subject to

∑

p∈PI(i)

x(p) = bi, ∀i ∈ I (5)

ℓ(x, y, θ) = 0 (6)

‖x − xk‖2 ≤ ∆k (7)

y ≥ 0 (8)

x ≥ xL, (9)

wherexk is the current iterate andℓ denotes the queueing model. Equation (6) consists

of the system of nonlinear equations that define the queueingmodel, the corresponding

endogenous variables are subject to positivity constraints (Equation (8)). This system

is given explicitly and detailed in Osorio and Bierlaire (2009b) (Equations (9), (10) and

(12) of that paper). The analytical form ofT is also detailed in Section 4 of that paper.

Constraint (7) is the TR constraint. It uses the Euclidean norm (Connet al., 2009a). Thus

the TR subproblem consists of a nonlinear objective function subject to nonlinear and

linear equalities, a nonlinear inequality and bound constraints. This problem is solved

with the Matlab routine for constrained nonlinear problems, fmincon, which resorts to a

sequential quadratic programming method (Coleman and Li, 1996, 1994).

5 Implementation notes

Constraints As described in Section 2, DF TR methods are a relatively recent topic

(Connet al., 2009b). The algorithms developed so far are derived based on sound

theoretical properties that lead to a solid global convergence theory, but they are

mostly formulated for unconstrained problems. Unfortunately, the optimization

problems encountered in practice are rarely unconstrained. Connet al. (2009b)

reviews constrained DF algorithms, and confirms that for constrained problems

“currently, there is no convergence theory developed for TRinterpolation-based

methods”, not to mention TR methods that allow for regression models. Connet al.

(1998) extends the use of a TR method for unconstrained problems to problems

with general constraints. The traffic management problems that we are interested
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in solving fall into the category of what they denote aseasyconstraints. These are

general constraints that are continuously differentiableand whos first order partial

derivatives can be computed relatively cheaply (with regards to the cost of eval-

uating the objective function). In their approach they include such constraints in

the TR subproblem, which ensures that all trial points are feasible. Connet al.

(2009b) mention that such an approach is often sufficient in practice. Here we use

the method proposed by Connet al.(2009a) for unconstrained methods, and extend

its use to constrained problems as Connet al. (1998) propose.

Limited computational budget The main motivation to go beyond a pure quadratic sur-

rogate is to improve the short term performance of a given DF algorithm, since

near convergence a quadratic will asymptotically provide an adequate approxima-

tion for a second-order Taylor series model. Recently, the importance of evaluating

the short-term behavior of DF algorithms has been emphasized by Moré and Wild

(2009) and Zhanget al. (2009). Furthermore, DF applications often involve a lim-

ited computational budget. In many practical situations animproved solution rather

than a local optimum may be all that is required or that can be computed for a given

budget (Zhanget al., 2009). We will therefore focus on the performance of this

approach given a fixed and tight computational budget.

Criticality step Since we are interested in the short term behavior of this approach, the

theoretical considerations needed to ensure global convergence are not our main fo-

cus. We assume that the limited resources are not sufficient to approach an optimal

point, i.e. the measure of stationarity will not go under a given threshold. Thus we

do not consider the criticality step of the original algorithm. We assume throughout

that the model is notcertifiably fully linear (which is required when approaching

a stationary point so that the stationary measure of the model can be trusted). If

at a given iteration, the measure of stationarity does go under this threshold then a

purely quadratic metamodel can be used (so that within a finite number of steps we

can ensure that it will satisfy Taylor-type bounds).

Model improvement step At each iteration we obtain one observation of the simulated

objective function (associated to the trial point), no further improvement steps are

carried out. In order to improve the performance of the algorithm, diversification

sampling should be carried out. Determining when and how this diversification

should take place is currently being studied.

TR radius update There are 2 cases where the TR radius is reduced in the algorithm:

(1) if it is known that the model isfully linear, but it has over-predicted the reduc-

tion in the objective function; (2) when approaching a stationary point (so that the

model becomes more accurate and the stationary measure can be trusted). Since
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we assume throughout that the model is notcertifiably fully linearand we focus on

the short-term performance of the algorithm, the TR radius is never reduced in this

implementation.

Initial sample Since our focus is on problems with a limited and tight computational

budget, we assume that there are no initial observations available. Although the

least squares routine used allows for underdetermined systems, which in our case

occur when the dimension of the sampled space is smaller thanthe number of pa-

rameters to estimate2d+2, we use augmented data to make the least-squares matrix

of full rank. These artificial observations are chosen so that the parameters are near

an initial value (chosen as zero) and are attributed a small weight (10−2).

Algorithmic parameters The following values are used for the parameters of the TR

algorithm: ∆0 = 103, ∆max = 1010, η1 = 10−3, γinc = 1.2. Typical values for

TR parameters are given in Carter (1986). For the algorithm used to solve the TR

subproblem we set the tolerance for relative change in the objective function to

10−3 and the constraint tolerance to10−2. We limit the computational budget to 50

iterations, and use a random feasible point as the initial point.

6 Empirical Analysis

We now evaluate the performance of the proposed method by considering a subnetwork

of the Lausanne city center. The subnetwork (Figure 1) contains 48 roads and 15 intersec-

tions. Nine intersections are signalized and control the flow of 30 roads. There are a total

of 51 phases that are considered variable. The intersections have a cycle time of either

90 or 100 seconds. The considered demand scenario consists of the evening peak period

(17h-18h). Within this time period congestion gradually increases.

The queueing model of this subnetwork consists of 102 queues. The TR subproblem con-

sists of 621 endogenous variables with their correspondinglower bound constraints, 408

nonlinear equality constraints, 171 linear equality constraints and 1 nonlinear inequality

constraint.

For a given computational budget, our method yields an ’optimal’ signal plan for the

subnetwork. We then use the simulation model to evaluate theeffect of this signal plan

upon the entire Lausanne network. We run 100 replications toevaluate the performance

of these ’optimal’ plans. Each replication is preceded by a 15 minute warm-up period.

We compare the performance of the plans derived by this method with that of an existing

12



A simulation optimization framework for the management of congested urban road networks September 2009

Figure 1: Subnetwork of the Lausanne city center

signal plan for the city of Lausanne. For more information concerning this existing control

plan we refer the reader to Dumont and Bert (2006). It is quitea challenge to compare

to this existing plan, since its a coordinated plan (i.e. green waves exist on the main

arterials).

Figure 2 displays the empirical cumulative distribution function (cdf) of the average travel

times across the 100 replications for four signal plans. Thetwo thin solid lines correspond

to the ‘optimal’ plans derived by the proposed method, the thick solid line corresponds

to the existing plan, and the two dotted lines correspond to the random initial plans. The

plans derived based on the first initial plan are labeled on the figure asx1. The labeled

cdf’s show that starting off from a poorly performing initial point, our model leads to a

plan with very good performance. The other initial point hasa performance similar to

that of the existing plan. Our method still yields a minor improvement. By comparing the

performance of the plans derived by the proposed method to that of the existing plan, these

preliminary results illustrate the added value of our approach. With no initial sample, and

a tight computational budget, our method is able to identifysignal plans that improve the

distribution of the average travel time.

We have also run the algorithm using a purely quadratic metamodel. Nevertheless, as

mentioned in Section 5 the algorithm is initialized with no initial sample and a diversifi-

cation strategy has not yet been integrated. Thus the methodbased on a purely quadratic

model does not search at all the feasible space, and yields as‘optimal’ points the ini-

tial random points. Without a diversification strategy comparing these two metamodel

methods directly is of little interest.
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Figure 2: Empirical cumulative distribution function of the average travel time

7 Conclusion

This paper presents an simulation optimization framework for the management of con-

gested networks. It proposes a metamodel that combines information from a traffic sim-

ulation tool and an analytical network model. The frameworkis illustrated by solving

a fixed-time signal control problem for a subnetwork of the Lausanne city center. The

performance of the derived plans is compared to that of an existing plan for the city of

Lausanne. Although the method is run with no initial sample and a tight computational

budget, it derives well performing signal plans.

These are preliminary results, but they indicate that this approach may be suitable for

high dimensional problems (more than 100 variables) that would otherwise require a large

sample size to initially fit the metamodel of interest. Efficiently tackling constrained high

dimensional problems is one of the main limitations of existing DF methods. The main

component of this methodology that we are currently workingon, is the definition of a

diversification sampling strategy, that would refine the model improvement step of the

algorithm. Furthermore, the sensitivity of the method to the numerous algorithmic pa-

rameters needs to be evaluated.
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