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Abstract

The Discrete Split Delivery Vehicle Routing Problem with Time Windows (DSDVRPTW) con-
sists of designing the optimal set of routes to serve, at least cost, a given set of customers while
respecting constraints on vehicles’ capacity and customertime windows. The delivery request
of a customer consists of several discrete items which cannot be split further. The problem be-
longs to the class of split delivery problems since each customer’s demand can be split in orders,
i.e. feasible combinations of items, and each customer can be visited by more than one vehicle.
In this work, we model the DSDVRPTW as a mixed integer linear program, assuming that all
feasible orders are known in advance and that each vehicle can serve at most one order per cus-
tomer. Remarkably, service time at customer’s location depends on the serviced combination of
items, which is a modeling feature rarely found in literature. We present a branch-and-price al-
gorithm, analyzing the implications of the classical Dantzig-Wolfe reformulation. Preliminary
computational results on instances based on Solomon’s dataset are discussed.

Keywords
vehicle routing, discrete split delivery, Dantzig-Wolfe decomposition, column generation,

branch-and-price
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1 Introduction

The capacitated Vehicle Routing Problem (VRP) consists of designing the optimal routes for

a set of vehicles with given capacity in order to serve a set ofcustomers. Customer’s demand

must be delivered by exactly one vehicle, while respecting vehicles’ capacity.

The Split Delivery Vehicle Routing Problem (SDVRP) is a relaxed version of the classical

capacitated VRP in which the number of visits to customer locations is no longer constrained

to be at most one. In the SDVRP each customer can be visited by more than one vehicle

which serves a fraction of its demand. It has been shown that this relaxation could yield to

substantial savings on the total traveled distance, up to 50% in some instances (Archettiet al.,

2006a, 2008a).

The problem and some properties have been introduced by Drorand Trudeau (1989) with a

local search heuristic. Next, Droret al. (1994) introduce a mathematical formulation based on

integer programming and solved through a cutting plane approach. Lower bounds have been

studied by Belengueret al. (2000). Exact methods (Gueguen, 1999; Jinet al., 2007) as well as

heuristic algorithms (Archettiet al., 2006b; Chenet al., 2007; Jinet al., 2008; Archettiet al.,

2008b) have been proposed to solve the SDVRP. Gendreauet al. (2006) and Desaulniers (2008)

address the problem with time windows and present exact approaches based on column gen-

eration and branch-and-bound techniques. Lower bounds have been studied by Ceselliet al.

(2009b) and a tabu search algorithm has been proposed by (Ho and Haugland, 2004).

In the Discrete Split Delivery Vehicle Routing Problem (DSDVRP) the demand of a customer

is discretized and consists of several items which cannot besplit further. The problem belongs

to the class of split delivery problems since each customer’s demand can be fractionated and

each customer can be visited by more than one vehicle.

Nakao and Nagamochi (2007) present the problem and propose adynamic programming based

heuristic. The algorithm is compared to other existing heuristics for the VRP and computational

results on real-world instances are provided. Ceselliet al. (2009a) present an exact approach to

a real-world VRP in which customers’ orders can be split among several vehicles in a discrete

fashion. The authors propose a three level order aggregation which ends up, at the last level, in

considering any possible combination of items. The VRP withsplittable and discrete demand

arises in some practical applications, such as the routing of helicopters for crew exchanges on

off-shore locations (Sierksma and Tijssen, 1998) and the so-called Field Technician Scheduling

Problem (Xu and Chiu, 2001); however, authors do not specifically relate their problems to the

DSDVRP.

In the reminder of the paper we study the Discrete Split Delivery Vehicle Routing Problem

with Time Windows (DSDVRPTW). We assume that demand can be split in orders, i.e. fea-
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sible combinations of items, that each vehicle can serve at most one order per customer and

that service time at customer’s location depends on the delivered combination of items. Re-

markably, this is a modeling feature rarely found in literature, where service times are usually

assumed to be independent of the delivered quantities. Section 2 provides an arc-flow for-

mulation for the DSDVRPTW. In Section 3 we reformulate the problem using Dantzig-Wolfe

decomposition and we illustrate the column generation scheme. Implementation issues are dis-

cussed in Section 4 and preliminary computational results are presented in Section 5. Finally,

conclusions and future research perspectives are discussed in Section 6.

2 The model

In this section we present a mixed integer linear program forthe DSDVRPTW based on an

arc-flow formulation.

Let G(V, E) be a complete graph withV = {0} ∪ N , where vertex{0} represents the depot

andN = {1, ..., n} is the set of customers to be served. Each arc(i, j) ∈ E has a costcij and

a travel timetij . K denotes the set of available vehicles with identical capacity Q. The set of

itemsR is defined asR =
⋃

i∈N Ri, whereRi represents the set of items to be delivered to

customeri ∈ N . Furthermore,Ri ∩ Rj = ∅ ∀i 6= j, i, j ∈ N , meaning that any itemr ∈ R is

univocally associated to a customeri ∈ N . Each itemr ∈ R has a sizeqr and a service time

tr. Items are delivered in orders, i.e. combinations of items.The set of ordersC is defined as

C =
⋃

i∈N Ci, whereCi represents the set of feasible orders for customeri ∈ N . Furthermore,

Ci ∩ Cj = ∅ ∀i 6= j, i, j ∈ N , meaning that any orderc ∈ C is univocally associated to a

customeri ∈ N . Each combinationc ∈ C has a sizeqc =
∑

r∈R er
cq

r and a service timetc such

that:

max
r∈R

er
ct

r ≤ tc ≤
∑

r∈R

er
ct

r (1)

whereer
c is a binary parameter equal 1 if itemr ∈ R is delivered in orderc ∈ C and 0 otherwise.

Interval[ai, bi] denotes the time window for customeri ∈ N .

We define the following decision variables:

xk
ij binary, equal to 1 if arc(i, j) ∈ E is used by vehiclek ∈ K;

yk
c binary, equal to 1 if vehiclek ∈ K delivers orderc ∈ C;

T k
i ≥ 0, represents the arrival time of vehiclek ∈ K at location of customeri ∈ N .
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The discrete split delivery vehicle routing problem with time windows can be formulated as

follows:

z∗IP = min
∑

k∈K

∑

(i,j)∈E

cijx
k
ij (2)

∑

j∈V

xk
0j = 1 ∀k ∈ K, (3)

∑

j∈V

xk
ij −

∑

j∈V

xk
ji = 0 ∀k ∈ K, ∀i ∈ V, (4)

∑

j∈V

xk
ij =

∑

c∈Ci

yk
c ∀k ∈ K, ∀i ∈ N, (5)

∑

k∈K

∑

c∈C

er
cy

k
c = 1 ∀r ∈ R, (6)

∑

c∈Ci

yk
c ≤ 1 ∀k ∈ K, ∀i ∈ N, (7)

T k
i +

∑

c∈Ci

tcy
k
c + tij − T k

j ≤ (1 − xk
ij)M ∀k ∈ K, ∀i ∈ N, ∀j ∈ V, (8)

T k
i − t0i ≥ (1 − xk

0i)M ∀k ∈ K, ∀i ∈ N, (9)

T k
i ≥ ai

∑

j∈V

xk
ij ∀k ∈ K, ∀i ∈ N, (10)

T k
i +

∑

c∈Ci

tcy
k
c ≤ bi

∑

j∈V

xk
ij ∀k ∈ K, ∀i ∈ N, (11)

∑

c∈C

qcy
k
c ≤ Q ∀k ∈ K, (12)

xk
ij ∈ {0, 1} ∀k ∈ K, ∀(i, j) ∈ E, (13)

yk
c ∈ {0, 1} ∀k ∈ K, ∀c ∈ C, (14)

T k
i ≥ 0 ∀k ∈ K, ∀i ∈ N. (15)

whereM is a sufficiently large constant. The objective function (2)minimizes the total trav-

eling costs. Flow conservation is ensured by constraints (3)–(4), while constraints (5) link

variablesx andy. Demand satisfaction is ensured by constraints (6): all items must be de-

livered (but not all combinations). Constraints (7) ensurethat every vehicle delivers at most

one order per customer. Precedence, time windows and capacity constraints are ensured by

constraints (8)–(9), (10)–(11) and (12). Finally, the domain of variables is defined by (13), (14)

and (15).

Remarkably, the service time at customer location depends on the selected order. This feature

is modeled by the term
∑

c∈Ci
tcy

k
c in constraints (8): it increases the complexity of the model,

with respect to the same type of precedence constraints in classical VRP formulations with

time windows. In particular, Gendreauet al. (2006) and Desaulniers (2008) assume that service

times are independent on the quantities delivered.
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3 Column generation

In this section we reformulate the DSDVRPTW model (2)–(15) via Dantzig-Wolfe decomposi-

tion (Dantzig and Wolfe, 1960) and provide the formulationsof the master problem and pricing

subproblem. The master problem is solved by means of column generation.

3.1 Master problem

Let (3)-(5) and (7)-(15) be the constraints that define the subproblem and letDk =

conv{(xk, yk, T k) | (xk, yk, T k) satisfies (3)− (5); (7) − (15) fork} be the feasible bounded

domain of the subproblem associated to vehiclek ∈ K. Let P k be the set of extreme points

of Dk. Each extreme pointdp = (xk
p, y

k
p , T

k
p ), p ∈ P k represents a feasible route for vehiclek

with respect to vehicle’s capacity and customers’ time windows, delivering a unique order to

every customer visited by the tour.

Since vehicles present identical restrictions (i.e. same capacity), all subproblems can be aggre-

gated into a single subproblem. We denote asD = conv{(x, y, T ) | (x, y, T ) satisfies (3)−

(5); (7) − (15)} the feasible domain of the subproblem andP the set of extreme points ofD.

Each extreme pointdp = (xp, yp, Tp), p ∈ P represents now a feasible route that can be covered

by any vehicle among the|K| available.

The definition of the master problem requires the following additional notation:

cp cost of pathp ∈ P : cp :=
∑

(i,j)∈p cij;

αi
p binary parameter equal to 1 if pathp ∈ P visits i ∈ N ;

βr
pc binary parameter equal to 1 if pathp ∈ P delivers itemr ∈ R in orderc ∈ C;

γr
p binary parameter equal to 1 if pathp ∈ P delivers itemr ∈ R: γr

p :=
∑

c∈C βr
pc.

After some standard adjustments and aggregation, the master problem can be formulated as

follows:

min
∑

p∈P

cpλp (16)

∑

p∈P

γr
pλp = 1 ∀r ∈ R (πr) (17)

0 ≤
∑

p∈P

λp ≤ |K| (π0) (18)

0 ≤
∑

p∈P

αi
pλp ≤ |K| ∀i ∈ N (µi) (19)

λp ≥ 0 ∀p ∈ P. (20)
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whereλp are the decision variables associated to pathsp ∈ P , πr are the dual variables associ-

ated to constraints (17),π0 is the dual variable associated to constraint (18) andµi are the dual

variables associated to constraints (19).

The objective function (16) minimizes the total traveling costs. Constraints (17) ensure that all

items are delivered to customers, while constraint (18) ensures that the number of chosen routes

does not exceed the number of available vehicles. Constraints (19) are redundant, since they

ensure that the number of chosen routes visiting a given customer does not exceed, again, the

number of available vehicles. However, they are needed to implement the branching scheme in

the solution algorithm (see Section 4).

We remark that constraints (17) need to be modeled as partitioning constraints in the DSD-

VRPTW, unlike common reformulations for routing problems that generally make use of cov-

ering constraints. This is due to the fact that, for every customeri ∈ N , the set of ordersCi

does not necessarily contain all subsets of itemsr ∈ Ri, but only the subsets that are consid-

ered feasible with respect to the problem definition (incompatibilities between specific items,

restrictions on the order size, etc.).

3.2 Pricing subproblem

The reduced cost of a routep ∈ P is defined as:

c̃p := cp −
∑

r∈R

πrγ
r
p − π0 −

∑

i∈N

µiα
i
p (21)

In a column generation scheme, given a dual solution of the (restricted) master problem, the

pricing subproblem identifies the route (column)p∗ with the minimum reduced cost:

p∗ = arg min
p∈P

{c̃p} = arg min
p∈P

{cp −
∑

r∈R

πrγ
r
p − π0 −

∑

i∈N

µiα
i
p} (22)

If c̃p∗ < 0, the column is added to the (restricted) master problem and the procedure is iterated;

otherwise, the current primal solution is proven to be optimal for the master problem and the

procedure terminates.

The subproblem formulation relies on variablesx, y andT defined in Section 2 (without index

k, since we have aggregated the subproblems) and can be written as follows:
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min
∑

(i,j)∈E

cijxij −
∑

r∈R

πr(
∑

c∈C

yce
r
c) − π0 −

∑

i∈N

µi(
∑

j∈N∪{0}

xij) (23)

∑

j∈V

x0j = 1 (24)

∑

j∈V

xij −
∑

j∈V

xji = 0 ∀i ∈ V, (25)

∑

j∈V

xij =
∑

c∈Ci

yc ∀i ∈ N, (26)

∑

c∈Ci

yc ≤ 1 ∀i ∈ N, (27)

Ti +
∑

c∈Ci

tcyc + tij − Tj ≤ (1 − xij)M ∀i ∈ N, ∀j ∈ V, (28)

Ti − t0i ≥ (1 − x0i)M ∀i ∈ N, (29)

Ti ≥ ai

∑

j∈V

xij ∀i ∈ N, (30)

Ti +
∑

c∈Ci

tcyc ≤ bi

∑

j∈V

xij ∀i ∈ N, (31)

∑

c∈C

qcyc ≤ Q (32)

xij ∈ {0, 1} ∀(i, j) ∈ E, (33)

yc ∈ {0, 1} ∀c ∈ C, (34)

Ti ≥ 0 ∀i ∈ N. (35)

Analyzing the objective function, we can observe that two major decisions are made in the

subproblem:

a) the sequence of customersi ∈ N visited in the route (cost componentcij);

b) for each customer in the route, the orderc ∈ C to be delivered, and therefore the subset

of itemsr ∈ R delivered by the route (cost componenter
c).

The pricing problem (23)–(35) is an Elementary Shortest Path Problem with Resource Con-

straints (ESPPRC) defined on a network which has one node for every orderc ∈ C and whose

arcs have transit time equals to(tij + tc). In particular, the choice on the orders to be delivered

by the route has impact on the complexity of the subproblem.
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4 Implementation

For solving the DSDVRPTW we have implemented a branch-and-price algorithm

(Barnhartet al., 1998; Lübbecke and Desrosiers, 2005) which relies on the master problem and

the pricing subproblem introduced in Section 3.

The implementation is standard. The pricing problem is solved using bounded bi-directional

dynamic programming (Righini and Salani, 2006) with decremental state space relaxation

(Righini and Salani, 2008). The algorithm is initialized bya preprocessing phase, used to iden-

tify and remove trivially dominated combinations, and by a simple greedy algorithm used to

find a feasible solution to the problem. Such solution allowsto compute an upper bound to the

cost of the solution and to the number of vehicles.

4.1 Branching scheme

In the search tree, branching is required when the optimal solution of the master problem ob-

tained via column generation is not integer. We have implemented a branching scheme which

consists of three hierarchical levels:

1. if the total number of vehicles̃K =
∑

p∈P λp is fractional, branching is performed on

constraint (18) by enforcing
∑

p∈P λp ≤ ⌊K̃⌋ on the first child node and⌈K̃⌉ ≤
∑

p∈P λp

on the second child node;

2. if the number of vehicles visiting a customerK̃i =
∑

p∈P αi
pλp, i ∈ N is fractional,

branching is performed on constraint (19) by enforcing
∑

p∈P αi
pλp ≤ ⌊K̃i⌋ on the first

child node and⌈K̃i⌉ ≤
∑

p∈P αi
pλp on the second child node;

3. finally, if there is an arc(i, j) ∈ E visited a fractional number of times, branching is

performed by enforcingxij = 1 on the first child node andxij = 0 on the second child

node. This additional constraint is handled by modifying the network of the pricing

subproblem.

5 Computational experiments

Algorithms are coded in ANSI C, compiled with gcc 4.1.2 and computational experience is run

under a linux operating system on a 2Ghz Intel processor equipped with 2GB of RAM. All

restricted master problems are solved using GLPK version 4.39.
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5.1 Instances

To the best of our knowledge there is no standard dataset usedin the literature for the DSD-

VRPTW. The most related contribution is that of Nakao and Nagamochi (2007) for which the

instances are not available.

We generated our test bed from the well-known Solomon’s dataset (Solomon, 1983).

Solomon’s instances are divided in classes. In class R1 customer locations are randomly gen-

erated by a random uniform distribution, while in class C1 customers are placed in clusters.

Class RC1 contains a mix of random and clustered locations.

For every instance of classes R1 (12 instances), C1 (9 instances) and RC1 (8 instances) we

considered the firstn = 25, 50 customers and we discretized the demand of each customer in

12 items (|Ri| = 12 ∀i ∈ N). For each customer, we generated 7 orders as follows:

• 1 full order (containing 12 items);

• 2 complementary orders 50%-50% (containing 6 items each, partitioned);

• 2 complementary orders 75%-25% (containing 9 and 3 items respectively, partitioned);

• 2 complementary 90%-10% orders (containing 11 and 1 items respectively, partitioned);

and we considered 3 possible scenarios:

A: full order + 50-50% orders (|Ci| = 3);

B: full order + 50-50% orders + 75-25% orders (|Ci| = 5);

C: full order + 50-50% orders + 75-25% orders + 90-10% orders (|Ci| = 7).

The full order has been always included in order to allow the comparison of the DSDVRPTW

with the classical VRP with Time Windows (VRPTW). The unsplittable case, which is trivially

composed of the full order only (|Ci| = 1), is denoted as scenario O.

In order to enhance splitting, we considered more restrictive capacities than Solomon’s, as

already suggested by Gendreauet al. (2006). Instances have been tested withQ = 30, 50 and

100.

From the 29 original Solomon’s instances (12 for class R1, 9 for class C1 and 8 for class RC1),

we derived 174 instances:29 × 2 (customers)× 3 (capacities) . Each instance has been tested

under the three DSDVRPTW scenarios A, B, C and compared to theVRPTW scenario O.
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A B C
n class nb_inst Q nb_solved t nb_solved t nb_solved t

25 R1 12 30 12 87 10 694 6 1554
50 11 342 6 463 5 522
100 9 16 10 129 9 551

25 C1 9 50 9 273 0 x 0 x
100 3 947 0 x 0 x

25 RC1 8 30 8 317 0 x 0 x
100 8 222 2 1542 0 x

50 R1 12 30 1 3011 0 x 0 x
50 1 1527 0 x 0 x
100 2 120 2 509 1 93

50 RC1 8 50 7 723 0 x 0 x
100 1 1953 0 x 0 x

Table 1: Summary of the branch-and-price results.

5.2 Preliminary results

Table 1 presents a summary of the instances solved by the branch-and-price within 1 hour of

computational time. Instances are grouped by the number of customers (n) and the capacity

(Q). The number of instances of each class is also provided (nb_inst). For each group, the table

provides the number of instances solved at optimality (nb_solved) and the average computa-

tional time in seconds (t) for each DSDVRPTW scenario.

We were able to solve 72, 30 and 21 out of 174 instances for scenarios A, B and C, respectively.

The difficulty of solving the instances increases with the size of |C|: 75, 125 and 175 orders

with 25 customers and 150, 250, and 350 orders with 50 customers for scenarios A, B and C,

respectively. This difficulty also increases with the number of customers: we were able to solve

69% (A), 32% (B) and 23% (C) of instances withn = 25, whereas only 14% (A), 2% (B) and

1% (C) of instances withn = 50 were solved at optimality. The average computational time is

also affected by the size of|C| and the number of customers.

Instances of class C1 are the most difficult to solve; on the contrary, instances of class R1 are

the easiest to solve. For 25 customers, there are 32 (A), 26 (B) and 20 (C) solved instances

out of 36 for class R1; 12 solved instances out of 27 for scenario A in class C1; 16 (A) and

2 (B) solved instances out of 24 for class RC1. On average, 72%of instances were solved in

class R1, 25% in class RC1 and only 15% in class C1. For 50 customers, class RC1 seems

slightly easier to solve than class R1 (on average, 11% versus 6% of solved instances), while

10



The Vehicle Routing Problem with Discrete Split Delivery and Time Windows September 2009

O A B C
n Q id zIP veh t zIP veh t zIP veh t zIP veh t

25 30 R101 795.6 13 0 795.1 13 2 x x
R102 789.1 13 0 772.3 13 29 x 761.2 12 797
R103 759.6 12 0 759.6 12 73 751.7 12 882 745.3 12 1644
R104 759.6 12 0 759.6 12 218 747.0 12 990 745.3 12 2593
R105 775.7 12 0 775.3 13 4 773.2 12 82 773.2 12 1581
R106 772.6 13 0 763.7 12 29 756.6 12 294 753.4 12 1019
R107 748.5 12 0 748.5 12 80 744.1 12 1056 x
R108 748.5 12 0 748.5 12 326 744.1 12 1388 x
R109 754.6 12 0 754.6 12 12 750.2 12 109 750.2 12 1690
R110 748.5 12 0 748.5 12 43 744.1 12 240 x
R111 754.6 12 0 754.6 12 63 750.2 12 786 x
R112 748.5 12 0 748.5 12 171 744.1 12 1117 x

25 50 R101 635.0 9 0 631.5 8 0 631.5 8 0 631.5 8 1
R102 580.7 8 0 580.7 8 8 580.7 8 1973 580.7 8 644
R103 534.3 7 0 534.3 7 11 x 534.3 7 1852
R104 527.3 7 0 527.3 7 17 x x
R105 596.1 8 0 588.9 8 1 585.4 8 5 585.4 8 23
R106 543.3 7 0 542.5 7 9 542.3 7 273 x
R107 527.7 7 3 527.7 7 2348 x x
R109 524.6 7 0 524.6 7 3 524.6 7 60 524.6 7 91
R110 536.7 7 0 529.1 7 446 x x
R111 521.6 7 2 521.6 7 889 x x
R112 515.8 7 0 515.8 7 28 515.8 7 470 x

25 100 R101 617.1 8 0 617.1 8 0 617.1 8 0 617.1 8 1
R102 547.1 7 0 x 547.1 7 10 x
R103 454.6 5 0 454.6 5 4 454.6 5 22 454.6 5 82
R104 416.9 4 0 416.9 4 24 416.9 4 135 416.9 4 430
R105 530.5 6 0 530.5 6 1 530.5 6 4 530.5 6 12
R106 465.4 5 1 465.4 5 9 465.4 5 184 465.4 5 1394
R107 428.4 4 1 428.4 4 36 428.4 4 306 428.4 4 1058
R109 441.3 5 0 441.3 5 5 441.3 5 26 441.3 5 92
R110 444.1 5 1 444.1 5 45 444.1 5 394 444.1 5 1344
R111 428.8 4 1 428.8 4 23 428.8 4 215 428.8 4 547

Table 2: Optimal solutions for class R1,n = 25 customers.

no instances in class C1 were solved.

Optimal solutions are detailed in tables 2, 3, 4, 5 and 6. For each instance, we provide the

value of the optimal integer solution (zIP ), the number of vehicles (veh) and the computational

time in seconds (t). The three DSDVRPTW scenarios A, B, C and compared to the unsplittable

VRPTW scenario O: figures highlighted in bold denote savingsdue to split deliveries. Instances
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O A B C
n Q id zIP veh t zIP veh t zIP veh t zIP veh t

25 50 C101 516.9 10 0 516.8 10 4 x x
C102 516.6 10 0 516.5 10 157 x x
C103 516.6 10 1 516.5 10 725 x x
C104 516.8 10 2 516.4 10 1223 x x
C105 516.9 10 0 516.8 10 33 x x
C106 516.9 10 0 516.8 10 11 x x
C107 516.9 10 0 516.8 10 50 x x
C108 516.8 10 0 516.7 10 102 x x
C109 516.8 10 0 515.9 10 153 x x

25 100 C101 291.9 5 0 291.9 5 336 x x
C105 291.9 5 1 291.9 5 1321 x x
C106 291.9 5 1 291.9 5 1183 x x

Table 3: Optimal solutions for class C1,n = 25 customers.

that are not feasible for the unsplittable case because of insufficient capacity are denoted by

"Q < demand". Instances not solved at optimality within 1 hour of computational time are

denoted by"x".

We can observe that split deliveries are more frequent for instances with smallQ values, al-

though they also occur for certain instances withQ = 100. In a few cases, split deliveries not

only decrease the total traveling costs but also allow to save one vehicle.

6 Conclusions

Analyzing the results, we can conclude that obtaining optimal solutions is difficult, even with

a small number of orders per customer. Furthermore, only a limited number of instances with

50 customers could be solved.

We guess that the bottleneck is in the pricing problem. Indeed, the underlying ESPPRC network

is huge, since, in the worst case scenario, for every customer i ∈ N we have that setCi

corresponds to the set of all subsets ofRi and therefore its size grows exponentially with the

number of items. Computational results show that solving the ESPPRC on such a network may

be impractical. Therefore, more efficient solution techniques need to be investigated.
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O A B C
n Q id zIP veh t zIP veh t zIP veh t zIP veh t

25 30 RC101 Q < demand 1438.0 18 75 x x
RC102 Q < demand 1438.0 18 172 x x
RC103 Q < demand 1438.0 18 342 x x
RC104 Q < demand 1438.0 18 525 x x
RC105 Q < demand 1438.0 18 165 x x
RC106 Q < demand 1438.0 18 208 x x
RC107 Q < demand 1438.0 18 373 x x
RC108 Q < demand 1438.0 18 674 x x

25 100 RC101 534.3 6 0 534.3 6 9 534.3 6 265 x
RC102 523.7 6 1 523.7 6 111 x x
RC103 514.7 6 1 513.7 6 293 x x
RC104 506.7 6 3 506.7 6 496 x x
RC105 527.5 6 0 527.5 6 37 x x
RC106 515.6 6 0 515.6 6 27 515.6 6 2819 x
RC107 505.7 6 1 505.7 6 255 x x
RC108 505.7 6 4 505.7 6 544 x x

Table 4: Optimal solutions for class RC1,n = 25 customers.

O A B C
n Q id zIP veh t zIP veh t zIP veh t zIP veh t

50 30 R101 Q < demand 1664.6 26 3011 x x

50 50 R101 1222.0 16 1 1211.1 16 1527 x x

50 100 R101 1044.0 12 0 1044.0 12 11 1040.6 12 20 1040.6 12 93
R102 913.2 11 1 913.2 11 230 911.9 11 998 x

Table 5: Optimal solutions for class R1,n = 50 customers.

O A B C
n Q id zIP veh t zIP veh t zIP veh t zIP veh t

50 50 RC101 1713.2 20 1 1708.9 20 100 x x
RC102 1706.5 20 2 1701.5 20 570 x x
RC103 1703.4 20 2 1696.8 20 501 x x
RC104 1702.2 20 5 1696.7 20 1695 x x
RC105 1703.9 20 1 1700.1 20 330 x x
RC106 1705.7 20 1 1699.0 20 304 x x
RC108 1702.2 20 6 1696.7 20 1561 x x

50 100 RC101 994.6 10 3 993.8 10 1953 x x

Table 6: Optimal solutions for class RC1,n = 50 customers.
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