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Abstract

The Discrete Split Delivery Vehicle Routing Problem witlmi@ Windows (DSDVRPTW) con-
sists of designing the optimal set of routes to serve, at t&es, a given set of customers while
respecting constraints on vehicles’ capacity and custaimerwindows. The delivery request
of a customer consists of several discrete items which ddysplit further. The problem be-
longs to the class of split delivery problems since eachotast’'s demand can be splitin orders,
i.e. feasible combinations of items, and each customer easisiied by more than one vehicle.
In this work, we model the DSDVRPTW as a mixed integer lineaigpam, assuming that all
feasible orders are known in advance and that each vehiclgerae at most one order per cus-
tomer. Remarkably, service time at customer’s locatioreddp on the serviced combination of
items, which is a modeling feature rarely found in literatVe present a branch-and-price al-
gorithm, analyzing the implications of the classical Day#/olfe reformulation. Preliminary
computational results on instances based on Solomon'sdatae discussed.

Keywords
vehicle routing, discrete split delivery, Dantzig-Wolfembmposition, column generation,
branch-and-price
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1 Introduction

The capacitated Vehicle Routing Problem (VRP) consistsesighing the optimal routes for
a set of vehicles with given capacity in order to serve a seusfomers. Customer’'s demand
must be delivered by exactly one vehicle, while respectetyales’ capacity.

The Split Delivery Vehicle Routing Problem (SDVRP) is a wd version of the classical
capacitated VRP in which the number of visits to customeations is no longer constrained
to be at most one. In the SDVRP each customer can be visiteddog than one vehicle
which serves a fraction of its demand. It has been shown kistélaxation could yield to
substantial savings on the total traveled distance, up % iBOsome instances (Arched al.,
2006a| 2008a).

The problem and some properties have been introduced byanirudeau (1989) with a
local search heuristic. Next, Dret al. (1994) introduce a mathematical formulation based on
integer programming and solved through a cutting planeagmbr. Lower bounds have been
studied by Belenguest al. (2000). Exact methods (Gueguen, 1999;dlial/,'2007) as well as
heuristic algorithms_(Archetst al., 2006b; Cheret all, [2007; Jinet al., [2008;/ Archettiet al .,
2008b) have been proposed to solve the SDVRP. Gendteh (2006) and Desaulniers (2008)
address the problem with time windows and present exacbappes based on column gen-
eration and branch-and-bound techniques. Lower bounds Ibeen studied by Cesedial.
(2009b) and a tabu search algorithm has been proposed bynHdaugland, 2004).

In the Discrete Split Delivery Vehicle Routing Problem (D@&RP) the demand of a customer
is discretized and consists of several items which cannephbiefurther. The problem belongs

to the class of split delivery problems since each cust@waimand can be fractionated and
each customer can be visited by more than one vehicle.

Nakao and Nagamochi (2007) present the problem and promhssamic programming based
heuristic. The algorithm is compared to other existing Istigs for the VRP and computational
results on real-world instances are provided. Cesedli. (2009a) present an exact approach to
a real-world VRP in which customers’ orders can be split agnegveral vehicles in a discrete
fashion. The authors propose a three level order aggrepatiach ends up, at the last level, in
considering any possible combination of items. The VRP wjglittable and discrete demand
arises in some practical applications, such as the roufihglaopters for crew exchanges on
off-shore locations (Sierksma and Tijssen, 1998) and thma#led Field Technician Scheduling
Problem |(Xu and Chiu, 2001); however, authors do not spedificelate their problems to the
DSDVRP.

In the reminder of the paper we study the Discrete Split e}iwehicle Routing Problem
with Time Windows (DSDVRPTW). We assume that demand can beisprders, i.e. fea-
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sible combinations of items, that each vehicle can serveast wne order per customer and
that service time at customer’s location depends on theeatelil combination of items. Re-
markably, this is a modeling feature rarely found in literat where service times are usually
assumed to be independent of the delivered quantities.ioBé&tprovides an arc-flow for-
mulation for the DSDVRPTW. In Sectidd 3 we reformulate thelpem using Dantzig-Wolfe
decomposition and we illustrate the column generationmeehémplementation issues are dis-
cussed in Sectidn 4 and preliminary computational resuétpeesented in Sectidn 5. Finally,
conclusions and future research perspectives are digtisSection 6.

2 Themodd

In this section we present a mixed integer linear prograntferDSDVRPTW based on an
arc-flow formulation.

Let G(V, E) be a complete graph with = {0} U N, where verteX0} represents the depot
andN = {1,...,n} is the set of customers to be served. Each(arf) € E has a cost;; and
a travel timet,;. K denotes the set of available vehicles with identical capagi The set of
items R is defined ask = |J,.y R, whereR; represents the set of items to be delivered to
customeri € N. FurthermoreR;, N R; = 0 Vi # j, i,j € N, meaning that any iteme R is
univocally associated to a customieg N. Each itemr € R has a sizg” and a service time
t". Items are delivered in orders, i.e. combinations of iteiiifee set of orderg¢’ is defined as
C = U;en Cir WhereC; represents the set of feasible orders for custangefV. Furthermore,
CinC; =0Vi+#3j, i,j € N, meaning that any order € C'is univocally associated to a
customet € N. Each combination € C' has asizg. = ) _,el.q" and a service time. such
that:

max egt” < f, < ; et (1)
wheree!, is a binary parameter equal 1 if iteme R is delivered in ordetr € C' and O otherwise.
Interval[a;, b;] denotes the time window for customes N.

We define the following decision variables:

binary, equal to 1 if ar¢i, j) € E is used by vehiclé € K;
¥ Dbinary, equal to 1 if vehiclé € K delivers order € C;
TF >0, represents the arrival time of vehidlec K at location of customerc N.

)

k
k
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The discrete split delivery vehicle routing problem witimé& windows can be formulated as

follows:
27p = min Z Z cl-jxfj (2)
keK (i,j)€E
d af;=1 VkeK, (3)
JEV
doaf =Y ali=0 VkeK,VieV, (4)
JjeVv JjeVv
doak=>"yf VkeK,VieN, (5)
JjEV ceC;
Z Z eyt =1 VYreR, (6)
keK ceC
d yb<1 VkeK,VieN, 7)
ceC;
TF+ > tyf+t, - TP <(1—af)M  Vke K, Vie NVjeV, (8)
ceC;
TF —te; > (1 —ak)M  Vk e K, Vie N, (9)
TF>a;) af, VkeK VieN, (10)
JeV
TF+Y tyf <b Y a2l Vke K VieN, (11)
ceCy JjeVv
b <Q  VkeK, (12)
ceC
xf; €{0,1}  Vk e K,V(i,j) € E, (13)
y"€{0,1} VkeK,VeceC, (14)
TF>0 VkeK,ViecN. (15)

whereM is a sufficiently large constant. The objective functioh rflihimizes the total trav-
eling costs. Flow conservation is ensured by constraifts(43 while constraints (5) link
variablesx andy. Demand satisfaction is ensured by constraints (6): athstenust be de-
livered (but not all combinations). Constraints (7) endinag every vehicle delivers at most
one order per customer. Precedence, time windows and tagacistraints are ensured by
constraints[(8)+£(9)[ (10)=(IL1) arid {12). Finally, the donwd variables is defined by (13), (14)

and [15).

Remarkably, the service time at customer location dependbeoselected order. This feature
is modeled by the ter@ceci t.y* in constraints[(B): it increases the complexity of the model
with respect to the same type of precedence constraintagsical VRP formulations with
time windows. In particular, Gendrea&tial | (2006) and Desaulniers (2008) assume that service
times are independent on the quantities delivered.
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3 Column generation

In this section we reformulate the DSDVRPTW modél (2)4(1i8)@antzig-Wolfe decomposi-
tion (Dantzig and Wolie, 1960) and provide the formulatiohthe master problem and pricing
subproblem. The master problem is solved by means of colenargtion.

3.1 Master problem

Let (3)-(8) and [(V){(Ib) be the constraints that define thbpeablem and letD* =

conv{(z®, y*, T*) | (z*, y*, T*) satisfies[(B)- (B); (@) — (I5) fork} be the feasible bounded
domain of the subproblem associated to vehicle K. Let P* be the set of extreme points
of D*. Each extreme point, = (z£, 4", T¥), p € P* represents a feasible route for vehitle
with respect to vehicle’s capacity and customers’ time wuas, delivering a unique order to

every customer visited by the tour.

Since vehicles present identical restrictions (i.e. saapacity), all subproblems can be aggre-
gated into a single subproblem. We denote’as= conv{(z,y,T)| (z,y,T) satisfies[(B)-

@®); (@) — (A9)} the feasible domain of the subproblem aRdhe set of extreme points db.
Each extreme point, = (z,, y,,1,), p € P represents now a feasible route that can be covered
by any vehicle among thig(| available.

The definition of the master problem requires the followidgiional notation:

¢y costofpattp € Pic, =37, o, cijs
a;; binary parameter equal to 1 if pgthe P visitsi € N;
B, binary parameter equal to 1 if pathe P delivers itemr € R in orderc € C;

7, binary parameter equal to 1 if pgthe P deliversitemr € R: v} := > . 5],

After some standard adjustments and aggregation, the n@ast@lem can be formulated as
follows:

min Z CpAp (16)
peP
=1 VreR (m) (17)
peP
0< Y A <K (70) (18)
peP
0<> al\, < |K| VieN (1) (19)
peP
A\ >0 VpeP. (20)
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where), are the decision variables associated to patasP, w, are the dual variables associ-
ated to constraint§ (17, is the dual variable associated to constrdint (18) anate the dual
variables associated to constraits (19).

The objective functior (16) minimizes the total travelirgsts. Constraint$ (17) ensure that all
items are delivered to customers, while constraint (18yesssthat the number of chosen routes
does not exceed the number of available vehicles. Constr@lifl) are redundant, since they
ensure that the number of chosen routes visiting a giveromestdoes not exceed, again, the
number of available vehicles. However, they are needed péeiment the branching scheme in

the solution algorithm (see Sectibh 4).

We remark that constraints (17) need to be modeled as paititj constraints in the DSD-
VRPTW, unlike common reformulations for routing problerhattgenerally make use of cov-
ering constraints. This is due to the fact that, for everyauer: € N, the set of orderg’;
does not necessarily contain all subsets of itenas R;, but only the subsets that are consid-
ered feasible with respect to the problem definition (incatigilities between specific items,
restrictions on the order size, etc.).

3.2 Pricing subproblem

The reduced cost of a roupec P is defined as:

Cpi=Cp— Z Y, — Mo — Z uia; (21)
reR 1EN
In a column generation scheme, given a dual solution of tb&tricted) master problem, the
pricing subproblem identifies the route (columriwith the minimum reduced cost:

p* = argmin{e,} = argmin{e, — > may — o — > e} (22)
reR 1EN
If ¢,- < 0, the column is added to the (restricted) master problemlaagriocedure is iterated;
otherwise, the current primal solution is proven to be optifor the master problem and the
procedure terminates.

The subproblem formulation relies on variableg andT defined in Sectiohl2 (without index
k, since we have aggregated the subproblems) and can bewvasttellows:
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min Z CijTij — Zﬂr(z Z/c€£) — To — Zuz( Z ll?ij) (23)

(4,4)€E reR ceC ieN JjENU{0}
Z.Z’Oj =1 (24)
JeEV
dwy=Y xi=0 Vi€V, (25)
JjeVv JEV

> wy=> y VieNl, (26)

JjeVv ceC}
Yy <1 VieN, 27)

ceC;
T+ teyet+ty—Ty < (L—zy)M  Vie NVjeV, (28)
ceC;

T —toi > (1 —20))M Vi€ N, (29)
T,>a; ) xy Vi€ N, (30)

JEV
ﬂﬂLZtcychz’szj Vie N, (31)

ceC} Jjev
D . <Q (32)

ceC

Ty € {07 1} V(Z,j> S E7 (33)
y.€{0,1} VeeC, (34)
T,>0 VieN. (35)

Analyzing the objective function, we can observe that twgamdecisions are made in the
subproblem:

a) the sequence of customers N visited in the route (cost componeny);

b) for each customer in the route, the ordef C to be delivered, and therefore the subset
of itemsr € R delivered by the route (cost componejk

The pricing problem[(23)E£(35) is an Elementary Shortesh Paibblem with Resource Con-
straints (ESPPRC) defined on a network which has one nodedoy erderc € C' and whose
arcs have transit time equals(tg; + ¢.). In particular, the choice on the orders to be delivered
by the route has impact on the complexity of the subproblem.
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4 Implementation

For solving the DSDVRPTW we have implemented a branch-armdpalgorithm
(Barnhartet al.,11998; Libbecke and Desrosiers, 2005) which relies on tletenproblem and
the pricing subproblem introduced in Sectign 3.

The implementation is standard. The pricing problem isewlusing bounded bi-directional
dynamic programmingl (Righini and Salani, 2006) with deaatal state space relaxation
(Righini and Salani, 2008). The algorithm is initializeddypreprocessing phase, used to iden-
tify and remove trivially dominated combinations, and byim@e greedy algorithm used to
find a feasible solution to the problem. Such solution alltovsompute an upper bound to the
cost of the solution and to the number of vehicles.

4.1 Branching scheme

In the search tree, branching is required when the optinmatiea of the master problem ob-
tained via column generation is not integer. We have impieetea branching scheme which
consists of three hierarchical levels:

1. if the total number of vehicle& = >_pep Ay is fractional, branching is performed on
constraint[(IB) by enforcin}_ _, A, < [ K] onthe firstchild node antk] < 3>, ),
on the second child node;

2. if the number of vehicles visiting a custom&}, = > per WA @ € N is fractional,
branching is performed on constraint{19) by enforcjng. A, < | K;| on the first

child node and K] < > pcp @y ON the second child node;

3. finally, if there is an ardi, j) € E visited a fractional number of times, branching is
performed by enforcing;; = 1 on the first child node ang,; = 0 on the second child
node. This additional constraint is handled by modifying tretwork of the pricing
subproblem.

5 Computational experiments

Algorithms are coded in ANSI C, compiled with gcc 4.1.2 anthpaitational experience is run
under a linux operating system on a 2Ghz Intel processompegdi with 2GB of RAM. All
restricted master problems are solved using GLPK versig®9. 4.
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5.1 Instances

To the best of our knowledge there is no standard datasetingbd literature for the DSD-
VRPTW. The most related contribution is that of Nakao andaagchi (2007) for which the
instances are not available.

We generated our test bed from the well-known Solomon’s da&ta (Solomaon, 1983).
Solomon’s instances are divided in classes. In class Rbrstlocations are randomly gen-
erated by a random uniform distribution, while in class C&tomers are placed in clusters.
Class RC1 contains a mix of random and clustered locations.

For every instance of classes R1 (12 instances), C1 (9 icssqrand RC1 (8 instances) we
considered the first = 25, 50 customers and we discretized the demand of each customer in
12 items (R;| = 12 Vi € N). For each customer, we generated 7 orders as follows:

1 full order (containing 12 items);

2 complementary orders 50%-50% (containing 6 items eactifipaed);

2 complementary orders 75%-25% (containing 9 and 3 itenpetively, partitioned);
2 complementary 90%-10% orders (containing 11 and 1 itesygectively, partitioned);

and we considered 3 possible scenarios:

A: full order + 50-50% orders|(;| = 3);
B: full order + 50-50% orders + 75-25% ordef€’{(| = 5);
C: full order + 50-50% orders + 75-25% orders + 90-10% ordgrg & 7).

The full order has been always included in order to allow thvgarison of the DSDVRPTW
with the classical VRP with Time Windows (VRPTW). The unplble case, which is trivially
composed of the full order only;| = 1), is denoted as scenario O.

In order to enhance splitting, we considered more restaatapacities than Solomon’s, as
already suggested by Gendresi@al. (2006). Instances have been tested wjtk- 30, 50 and
100.

From the 29 original Solomon’s instances (12 for class Rby @lass C1 and 8 for class RC1),
we derived 174 instance89 x 2 (customers)x 3 (capacities) . Each instance has been tested
under the three DSDVRPTW scenarios A, B, C and compared tdRET'W scenario O.
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A B C
n class nb_inst Q | nb_solved t | nb_solved t | nb_solved t
25 R1 12 30 12 87 10 694 6 1554
50 11 342 6 463 5 522
100 9 16 10 129 9 551
25 C1 9 50 9 273 0 X 0 X
100 3 947 0 X 0 X
25 RC1 8 30 8 317 0 X 0 X
100 8 222 2 1542 0 X
50 R1 12 30 1 3011 0 X 0 X
50 1 1527 0 X 0 X
100 2 120 2 509 1 93
50 RC1 8 50 7 723 0 X 0 X
100 1 1953 0 X 0 X

Table 1. Summary of the branch-and-price results.
5.2 Preliminary results

Table[1l presents a summary of the instances solved by theteard-price within 1 hour of
computational time. Instances are grouped by the numbeusibmers /) and the capacity
(Q). The number of instances of each class is also providledrgst). For each group, the table
provides the number of instances solved at optimatity ¢olved) and the average computa-
tional time in secondg) for each DSDVRPTW scenario.

We were able to solve 72, 30 and 21 out of 174 instances foasiosm, B and C, respectively.
The difficulty of solving the instances increases with theesif |C|: 75, 125 and 175 orders
with 25 customers and 150, 250, and 350 orders with 50 custofoescenarios A, B and C,
respectively. This difficulty also increases with the numiifecustomers: we were able to solve
69% (A), 32% (B) and 23% (C) of instances with= 25, whereas only 14% (A), 2% (B) and
1% (C) of instances with = 50 were solved at optimality. The average computational tisne i
also affected by the size ¢f'| and the number of customers.

Instances of class C1 are the most difficult to solve; on timtraoy, instances of class R1 are
the easiest to solve. For 25 customers, there are 32 (A), p&n(@ 20 (C) solved instances
out of 36 for class R1; 12 solved instances out of 27 for s¢erfain class C1; 16 (A) and

2 (B) solved instances out of 24 for class RC1. On average, gl2#stances were solved in
class R1, 25% in class RC1 and only 15% in class C1. For 50 mest) class RC1 seems
slightly easier to solve than class R1 (on average, 11% s&%uof solved instances), while

10
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O A B C
n Q id ZIp veh t ZIp veh t ZIp veh t ZIp veh t
25 30 R101| 795.6 13 795.1 13 2 X X
R102| 789.1 13 7723 13 29 X 7612 12 797

R103| 759.6 12
R104| 759.6 12
R105| 775.7 12
R106| 772.6 13
R107| 7485 12
R108| 7485 12
R109| 754.6 12
R110| 7485 12
R111| 754.6 12
R112| 7485 12

759.6 12 73| 7517 12 882| 7453 12 1644
759.6 12 218 7470 12 990| 7453 12 2593
7753 13 417732 12 82| 7732 12 1581
763.7 12 29| 756.6 12 294| 7534 12 1019
748.5 12 80 7441 12 1056 X
7485 12 326 7441 12 1388 X
7546 12 12/ 750.2 12 109| 7502 12 1690
748.5 12 43/ 7441 12 240 X
7546 12 63 7502 12 786 X
748.5 12 171 7441 12 1117 X

QOO0 0O OO0 OO0O0O0Oo

25 50 RI101| 635.0 9 06315 8 0| 6315 8 0| 6315 8 1
R102| 580.7 8 0| 580.7 8 8| 580.7 8 1973 580.7 8 644
R103| 534.3 7 0] 534.3 7 11 X 534.3 7 1852
R104| 527.3 7 0] 527.3 7 17 X X
R105| 596.1 8 0| 5889 8 1| 5854 8 5| 5854 8 23
R106| 543.3 7 0] 542.5 7 9| 5423 7 273 X
R107| 527.7 7 3| 527.7 7 2348 X X
R109| 524.6 7 0| 524.6 7 3| 524.6 7 60| 524.6 7 91
R110| 536.7 7 0] 5291 7 446 X X
R111| 521.6 7 2|521.6 7 889 X X
R112| 515.8 7 0] 515.8 7 28| 515.8 7 470 X

25 100 R101 617.1 8 0/617.1 8 0| 617.1 8 0| 617.1 8 1
R102| 547.1 7 0 X 947.1 7 10 X
R103| 454.6 5 0| 454.6 5 4| 454.6 5 22| 454.6 5 82
R104| 416.9 4 0] 416.9 4 24| 416.9 4 135 416.9 4 430
R105| 530.5 6 0] 530.5 6 1| 530.5 6 4| 530.5 6 12
R106| 465.4 5 14654 5 9| 465.4 5 184| 465.4 5 1394
R107| 428.4 4 1|428.4 4 36| 428.4 4 306 428.4 4 1058
R109| 441.3 5 04413 5 5| 441.3 5 26| 441.3 5 92
R110| 444.1 5 1/4441 5 45| 4441 5 394| 4441 5 1344
R111| 428.8 4 1| 428.8 4 23| 428.8 4 215 428.8 4 547

Table 2: Optimal solutions for class R1~= 25 customers.

no instances in class C1 were solved.

Optimal solutions are detailed in tablgs[2[ B[4, 5 @hd 6. kRehenstance, we provide the
value of the optimal integer solution;), the number of vehicleséh) and the computational
time in secondst]. The three DSDVRPTW scenarios A, B, C and compared to theltable
VRPTW scenario O: figures highlighted in bold denote savihgsto split deliveries. Instances

11
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O A B C
n Q id ZIp veh t ZIp veh t| z/p veh t ZIp veh t
25 50 Ci101] 5169 10 0] 5168 10 4 X X
C102| 516.6 10 O} 5165 10 157, x X
C103| 516.6 10 15165 10 725, X X
C104| 516.8 10 25164 10 1223} x X
C105| 516.9 10 O] 516.8 10 33| X X
C106| 516.9 10 O] 516.8 10 11| x X
C107| 516.9 10 O] 516.8 10 50| X X
C108| 516.8 10 O} 516.7 10 102, «x X
C109| 516.8 10 0O} 5159 10 153 «x X
25 100 C101 291.9 5 0] 291.9 5 336 x X
C105]| 291.9 5 1] 291.9 5 1321 x X
C106| 291.9 5 1| 291.9 5 1183 x X

Table 3: Optimal solutions for class C1~= 25 customers.

that are not feasible for the unsplittable case becausesaffioient capacity are denoted by
"() < demand". Instances not solved at optimality within 1 hour of compiotzal time are
denoted by'x".

We can observe that split deliveries are more frequent feaimces with small) values, al-
though they also occur for certain instances with= 100. In a few cases, split deliveries not
only decrease the total traveling costs but also allow te sane vehicle.

6 Conclusions

Analyzing the results, we can conclude that obtaining oglisolutions is difficult, even with
a small number of orders per customer. Furthermore, oniyédd number of instances with
50 customers could be solved.

We guess that the bottleneck is in the pricing problem. Idgde underlying ESPPRC network
is huge, since, in the worst case scenario, for every customee N we have that set’;
corresponds to the set of all subsetsifand therefore its size grows exponentially with the
number of items. Computational results show that solviegd8PPRC on such a network may
be impractical. Therefore, more efficient solution tecleisjneed to be investigated.

12
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O A B C
n Q id ZIp veh t ZIp veh t ZIp veh t| z7p veh t
25 30 RC101] Q<demand | 1438.0 18 75 X X
RC102| Q<demand | 1438.0 18 172 X X
RC103| Q<demand | 1438.0 18 342 X X
RC104| Q<demand | 1438.0 18 525 X X
RC105| Q<demand | 1438.0 18 165 X X
RC106| Q<demand | 1438.0 18 208 X X
RC107| Q<demand | 1438.0 18 373 X X
RC108| Q<demand | 1438.0 18 674 X X
25 100 RC101 534.3 6 0| 534.3 6 9| 534.3 6 265 X
RC102| 523.7 6 1| 523.7 6 111 X X
RC103| 514.7 6 1| 5137 6 293 X X
RC104| 506.7 6 3| 506.7 6 496 X X
RC105| 527.5 6 0| 527.5 6 37 X X
RC106| 515.6 6 0| 515.6 6 27| 515.6 6 2819 x
RC107| 505.7 6 1| 505.7 6 255 X X
RC108| 505.7 6 4| 505.7 6 544 X X
Table 4: Optimal solutions for class RG1 = 25 customers.
@] A B C
n Q id ZIp veh t ZIp veh t ZIp veh t ZIp veh t
50 30 R101] Q<demand | 1664.6 26 3011 X X
50 50 R101| 1222.0 16 1] 12111 16 1527 X X
50 100 R101] 1044.0 12 0} 1044.0 12 11 10406 12 20| 10406 12 93
R102| 913.2 11 1, 913.2 11 230 9119 11 998 X
Table 5: Optimal solutions for class R1~= 50 customers.
@] A B C
n Q id ZIp veh t ZIp veh t| zrp veh t ZIp veh t
50 50 RC101j1713.2 20 1 17089 20 100| x X
RC102| 1706.5 20 2/ 17015 20 570| x X
RC103|1703.4 20 2/ 16968 20 501 x X
RC104| 1702.2 20 5] 1696.7 20 1695 x X
RC105|1703.9 20 1/ 1700.1 20 330 x X
RC106| 1705.7 20 1/ 16990 20 304 x X
RC108| 1702.2 20 6| 1696.7 20 1561 x X
50 100 RC101 994.6 10 3| 9938 10 1953| x X

Table 6: Optimal solutions for class RG1~= 50 customers.

13
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