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Abstract

It has been recently shown that a macroscopic fundamental diagram (MFD) linking space-mean
flow, density and speed exists in the urban transportation networks under some conditions. An
MFD is further well defined if the network is homogeneous with links of similar properties.
However many real urban transportation networks are heterogeneous with different levels of
congestion. The objective of this paper is to study the existence of MFD and the feasibility of
simple control strategies to alleviate the congestion in the heterogeneous networks, which can
be partitioned into homogeneous components. To achieve these goals, this paper focuses on
the clustering of transportation networks based on the spatial and temporal features of conges-
tion. A partitioning mechanism, which consists of three consecutive algorithms, is designed
to minimize the variance of link densities while maintaining the spatial compactness of the
clusters. Small variance of link densities within a cluster increases the aggregated flow for
the same average density and spatial compactness makes feasible the application of perimeter
control strategies. Firstly, Normalized Cut is applied to over segment the network into sev-
eral clusters and a new metric is introduced to evaluate the partitioning results. Secondly, a
merging algorithm is developed to improve the metric and total variance of link densities, and
the optimal number of clusters is estimated and determined. Finally, a boundary adjustment
algorithm is designed to further improve the metric and decrease the variances of the clusters
while keeping the compactness of the shapes. Both the objectives of smaller variances and
spatial compactness can be achieved after this partitioning mechanism. The simulation further
demonstrates the superiority of our method in both effectiveness and robustness compared with
other clustering algorithms.
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1 Introduction

Analysis of traffic flow theory and modeling of vehicular congestion has mainly relied on fun-
damental laws, inspired from physics using analogies with fluid mechanics, many particles sys-
tems and the like. One main difference of physical systems and vehicular traffic is that humans
make choices in terms of routes, destinations and driving behavior, which creates additional
complexity to the system. While most of the traffic science theories make a clear distinction
between free-flow and congested traffic states, empirical analysis of spatio-temporal congestion
patterns has revealed additional complexity of traffic states and non-steady state conditions (see
for example Mun̈oz and Daganzo (2003); Helbing et al. (2009)). Thus, the known fundamental
diagram (initially observed for a stretch of highway and provide a steady-state relationship be-
tween speed, density and flow) is not sufficient to describe the additional complexity of traffic
systems and it also contains significant experimental errors in the congested regime (see for
example Kerner and Rehborn (1996) for a highway stretch or Geroliminis and Daganzo (2008)
for a city street).

Nevertheless, it was recently observed from empirical data in Downtown Yokohama Geroli-
minis and Daganzo (2008) that by aggregating the highly scattered plots of flow vs. density
from individual loop detectors, the scatter almost disappeared and a well-defined Macroscopic
fundamental Diagram exists between space-mean flow and density.

The idea of an MFD with an optimum accumulation belongs to Godfrey (1969) but the verifi-
cation of its existence with dynamic features is recent Geroliminis and Daganzo (2007, 2008).
These papers showed, using a micro-simulation and a field experiment in downtown Yoko-
hama, (i) that urban neighborhoods approximately exhibit a “Macroscopic Fundamental Di-
agram”(MFD) relating the number of vehicles to space-mean speed (or flow), (ii) there is a
robust linear relation between the neighborhood’s average flow and its total outflow (rate vehi-
cles reach their destinations) and (iii) the MFD is a property of the network infrastructure and
control and not of the demand, i.e. space-mean flow is maximum for the same value of ve-
hicle density independently of time-dependent origin-destination tables. References Daganzo
(2007); Geroliminis and Daganzo (2007) introduced simple control strategies to improve mo-
bility in homogeneous city centers building on the concept of an MFD. The main logic of the
strategies is that they try to decrease the inflow in regions with points in the decreased part of
an MFD.

Despite these recent findings for the existence of MFDs with low scatter, these curves should
not be a universal recipe. In particular, networks with an uneven and inconsistent distribution
of congestion may exhibit traffic states that are well below the upper bound of an MFD and
much too scattered to line along an MFD. By analyzing real data from a medium-size French
city Buisson and Ladier (2009) showed that heterogeneity has a strong impact on the shape/s-
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catter of an MFD. Recent findings from empirical and simulated data Geroliminis and Sun
(2010); Mazloumian et al. (2010) have identified the spatial distribution of vehicle density in
the network as one of the key components that affect the scatter of an MFD and its shape.
They observed well defined relations between flow and density when link density variance is
constant. In other words, the average network flow is consistently higher when link density
variance is low, for the same network density.

These findings are of great importance because the concept of an MFD can be applied for het-
erogeneously loaded cities with multiple centers of congestion, if these cities can be partitioned
in a small number of homogeneous clusters. The work presented in this paper creates cluster-
ing algorithms for heterogeneous transportation networks. Our goal is to partition a network
into regions with small variances of link densities. This condition is also needed when simple
perimeter control strategies are applied and each cluster is considered as a reservoir. If a cluster
contains subregions with significantly different levels of congestion, the control strategies will
be inefficient.

There has been a huge number of literatures on studying clustering algorithms and they gen-
erally fall into two large categories: hierarchical and partitional Jain (2010); Bishop (2007).
Hierarchical approaches cluster data either in an agglomerative way in which each individual
data point is an initial cluster or divisive way in which the whole data set is an initial one. For
example, single linkage is a simple agglomerative algorithm which repeatedly merges the most
similar pair of clusters until it reaches the desired result Day and Edelsbrunner (1984). Parti-
tional approaches usually group the data points into a predetermined number of clusters based
on an objective function. K-means is a such kind of algorithm which minimizes intra-cluster
variance but can not guarantee a global optimal solution. A more complete and recent survey
can be found in Jain (2010). Due to these efforts, clustering algorithms have been successfully
applied in diverse fields such as data mining Han and Kamber (2006), image segmentation Shi
and Malik (2000) and information retrieval Carmel et al. (2009).

However transportation networks have unique features and potential control strategies to allevi-
ate traffic congestion will be designed based on the clustering results. Therefore an immediate
application of an arbitrary clustering algorithm may not produce a desired solution. Here are
several criteria that the developed clustering algorithms need to satisfy in transportation net-
works: (1) small variance of density values within each cluster, which is meant to guarantee a
well defined MFD; (2) a small number of clusters, which can help design simple control strate-
gies without a need for detailed origin-destination tables and route choice information; and (3)
spatially near compact shapes of clusters, which can ease the design and deployment of effec-
tive controls. However these criteria can be conflicting for a real urban transportation network.
For example, the first objective leads to a partitioning of maximum number of clusters, in which
each link is a cluster itself and all the variances reach 0. The first one also conflicts with the

3



Spatial and Temporal Analysis of Congestion in Urban Transportation Networks August 2010

third one as the objective of small variance is only for the density values (similar as intensity
in image) while that of compact shapes is a spatial requirement. The region with even a small
amount of noise in density values makes the two criteria incompatible. Designing a clustering
mechanism that can achieve a good trade-off among these goals is our foremost task.

The remainder of this paper is organized as follows. Firstly, Normalized Cut algorithm is de-
scribed which serves as the foundation of the partitioning for urban transportation networks.
Secondly, the partitioning mechanism consisting of three consecutive steps of initial segment-
ing, merging and boundary adjustment is designed and explained in detail. Metrics are also
introduced to evaluate the partitioning results and estimate the optimal number of clusters.
Finally, simulation is conducted in a real network and comparisons are made with other algo-
rithms to show both the effectiveness and robustness of the partitioning mechanism.

2 Normalized Cut Algorithm

Normalized Cut (Ncut) is a graph-based partitioning algorithm for image segmentation Shi
and Malik (2000). Instead of focusing on local features or details, Ncut extracts the global
impression of an image. Its principle is that “image partitioning is to be done from the big
picture downward, rather like a painter first marking out the major areas and then filling in the
details”, while most of the previous works are based on local properties of the graph. In order
to realize perceptual grouping, Ncut introduces the partitioning criterion and minimizes it by
solving a generalized eigenvalue problem. The solved eigenvectors are then used to partition
the image from global extractions to further details.

Suppose the node set V in a graph G = (V,E) can be partitioned into two parts A and B. The
total similarity between A and B can be expressed as cut(A,B) =

∑
u∈A,v∈B w(u, v), where

w(u, v) denotes the similarity between two nodes u and v. The optimal partitioning objective is
to minimize the value of cut(A,B). However, this minimum criterion tends to cut a very small
number of isolated nodes out of the graph. To avoid this biased partitioning, Ncut introduces the
normalized criteria that are based on both the total dissimilarity between the different groups
and the total similarity within the groups. The total disassociation (Ncut) between two groups
and association (Nassoc) within each group are defined as follows:

Ncut(A,B) =
cut(A,B)

cut(A, V )
+

cut(A,B)

cut(B, V )
(1)

Nassoc(A,B) =
cut(A,A)

cut(A, V )
+

cut(B,B)

cut(B, V )
(2)
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With the two unbiased cutting criteria, the partitioning with small number of isolated nodes
will no longer be of minimum value. The two objectives of minimizing Ncut(A,B) and max-
imizing Nassoc(A,B) can be reached simultaneously since they simply keep the following
relation:

Ncut(A,B) = 2−Nassoc(A,B) (3)

Minimizing Ncut value exactly is NP-complete, however the discrete solution can be approxi-
mated efficiently by solving an eigenvalue system in the real value domain. Let xi = 1 if x ∈ A

and xi = −1 if x ∈ B. Then the problem of minimizing Ncut value can be expressed in an
exactly equivalent form:

min
x

Ncut(x) = min
y

yT (D −W )y

yTDy
(4)

under the conditions that y(i) ∈ {1,−b} and yTD1 = 0, where y = (1 + x)− b(1− x), D is a
N × N diagonal matrix with d(i) =

∑
j w(i, j) on its diagonal and W (i, j) = wij . Solving a

standard eigenvalue system takes O(n3) operations where n = |V |. With special properties of
the graph partitioning problem, it usually can be decreased to O(n3/2) for an image.

However, this may not be the ultimate solution of the original problem when y is allowed to
have only discrete values. So the real value solution is transformed to a discrete one by checking
the splitting points in the solution vectors and the one that gives the best Ncut Value is chosen.
This method of splitting points is higly reliable.

The Ncut partitioning process is briefly outlined below:

1. Given a graph, set the weight on the edge connecting two nodes to be a measure of the
similarity between the two nodes.

2. Solve the equivalent eigenvalue system and get the smallest eigenvalues.
3. Pick up the eigenvector with the second smallest eigenvalue, discreticize it by checking

splitting points and bipartition the graph.
4. Continue to partition each subgraph if needed.

Since Ncut is a graph based partitioning algorithm, it could be directly applied to the trans-
portation network which can be modeled as a graph. We model each street as a node and build
their neighboring relationships based on their spatial connections. The density of each street is
similar as the intensity value in an image. The reasons that Ncut algorithm is considered in the
transportation network are: (1) Ncut is a graph based segmentation algorithm; (2) Ncut avoids
biased partitioning which cuts out isolated nodes and produces a balanced results; (3) Ncut
realizes perceptual grouping and extracts global impressions (major or obvious parts) from the
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graph or image, which is the most important characteristic of this algorithm; (4) it can pro-
duce spatially compact clusters with proper control of parameters; and (5) it is computationally
efficient.

These unique features of Ncut comply very well with the second and third requirements in our
aforementioned partitioning criteria. Our simulation results in the San Francisco transportation
network show that Ncut algorithm can always produce near compact clusters either when we
set a higher weight to the spatial distance than density difference or set a low threshold value
to the spatial distance measure in similarity function.

Although Ncut algorithm cuts the major components with compact shapes out of the graph as
expected, its partitioning result may not be able to satisfy our first objective of minimizing the
variance of density values within each cluster. As we have discussed before, the first criterion
conflicts with the other two. A restatement of our criteria is that we want to achieve the small-
est possible variance within all the compact clusters, given that the second and third criteria
are satisfied. Therefore, Ncut can provide us with a good initial partitioning, but it does not
necessarily produce the desired optimal results. Furthermore, as pointed out by Timothee in
Cour et al. (2005), Ncut tends to cut a large uniform region into two if the spatial distance
threshold is too low. However, higher spatial threshold value is very likely to produce uncom-
pact clusters. These problems make the Ncut algorithm insufficient and ineffective based on
our criteria when it is applied to the transportation network, and therefore further modifications
and refinements are needed.

3 Methodology

Our main objective is to partition a transportation network into homogeneous components
based on the properties of a well-defined MFD. More specifically, we seek to develop a mech-
anism of partitioning which can achieve the following goals: (1) minimize the variance of link
densities in each cluster to guarantee a well-defined MFD; (2) extracts a small number of main
components from the network at a global level ignoring details and local features; (3) produce
clusters that are spatially near compact without weird shapes to facilitate effective traffic man-
agement strategies. Alternatively, our partitioning criterion is to minimize the variance of link
densities within each cluster under the constraints that the number of final clusters is small and
they are spatially compact.

Based on these goals we design a partitioning mechanism which consists of three consecutive
algorithms. This mechanism can not only solve the problem of Ncut cutting uniform regions,
produce spatially compact clusters, but also reach the minimum variances of density values
within each compact cluster. Firstly, Ncut provides an over segmenting of the transportation
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network. This step can help to extract the major components from the network and guarantee
spatially compact shapes under a low threshold value for spatial distance measure. Besides, a
metric is defined to evaluate the partitioning result in this step. Secondly, we recursively merge
a pair of closest clusters simply based on the mean values of their densities until a desired
number of clusters is reached. This step solves the problem of Ncut cutting large uniform
regions by small threshold values and hence improves the metric value defined in the first
step. After these two steps, a partitioning of the network with spatially compact shapes and
optimal number of clusters is produced. Finally, we minimize the variance within each cluster
by repeatedly adjusting the boundaries between each pair of clusters. The last step seeks to
minimize the within cluster density variance. However, the final objective should be achieved
while keeping the spatial compactness of the shapes of the clusters provided by the previous
two steps. Each step is explained in detail as follows.

3.1 Initial Segmenting and Evaluation

In the first step, we apply Ncut algorithm in the transportation network to produce several initial
partitioning solutions with different numbers of clusters. We build the transportation network
as an undirected graph G. Each node i in G represents a link in the network and has a density
value d(i) of the link at a certain time during a day (time t is omitted from the equation). The
spatial distance between two links is denoted by the length of the shortest path r(i, j) between
node i and j in G. In order to obtain spatially compact clusters, we set the spatial distance
threshold value to be 1 and define the similarity function between link i and j as follows:

w(i, j) =

{
exp(−(d(i, j))2), r(i, j) = 1

0, r(i, j) > 1.
(5)

Based on this definition, each cluster will always have a group of spatially connected links.

In order to estimate the optimal number of clusters and evaluate a given partitioning with k

clusters, a metric ‘NcutSilhouette’ (NS) is defined as follows:

NSk(A,B) =

∑
i∈A
∑

j∈B (di − dj)
2

NA ∗NB

, (6)

where k is the number of clusters and NA is the total number of links in cluster A. Since Ncut
always meet our criterion of spatially compact shapes and the ultimate goal is to minimize the
variance of the density values, NSk does not contain any spatial information and only measures
the average density distance between cluster A and B. Furthermore, we can evaluate whether
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the links of a cluster A are properly grouped by the following metric:

NSk(A) =
NSk(A,A)

NSk(A,B)
,where NSk(A,B) = min{NSk(A,K)|K ∈ Neighbor(A)}. (7)

In this metric, NSk(A,A) measures the intra-cluster similarity of densities while NSk(A,B)

measures the inter-cluster similarity. If two clusters are not spatially connected, it can also
be a good partitioning even if their link densities are the same. Therefore, we only measure
the inter-cluster similarity of cluster A with its neighbors Neighbor(A). Since A may have
several neighbors, it is proper to use the one that is most similar with A (i.e., in the worst case)
to evaluate the inter-cluster similarity, as defined in Eq. (7). Therefore cluster A is properly
partitioned if NSk(A) < 1. The overall partitioning can be evaluated by the average NSk value
of all the clusters in a given partitioning:

NSk =

∑
A∈C NSk(A)

k
, (8)

where C is the set of clusters and k is the total number of clusters.

The NS value of a partitioning should be the smaller one which satisfies the spatial con-
straints. For example, suppose there are three links i, j and l with neighboring relations
r(i, j) = r(j, l) = 1 and r(i, l) = 0, and densities d(i) = d(l) = 1 and d(j) = 0. The
optimal NS value will be obtained if A = {i, l} and B = {j}. However, this is not a feasible
solution since link i and l are not connected.

The NS metric can be equivalently expressed by the variances and means of the link densities
in the clusters as follows:

NSk(A,B) = V ar(A) + V ar(B) + (uA − uB)
2, (9)

where V ar(A) and uA are the variance and mean of the link densities in cluster A. The proof
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is straightforward.

NSk(A,B) =

∑
i∈A
∑

j∈B (di − dj)
2

NANB

=

∑
j∈B
∑

i∈A d2i +
∑

i∈A
∑

j∈B d2j − 2
∑

i∈A
∑

j∈B didj

NANB

=
NB

∑
i∈A d2i +NA

∑
j∈B d2j − 2NANBuAuB

NANB

=
NANB(

∑
i∈A d2i
NA

− u2
A
) +NANB(

∑
j∈B d2j
NB

− u2
B)− 2NANBuAuB +NANB(u

2
A + u2

B)

NANB

=
NANBV ar(A) +NANBV ar(B)− 2NANBuAuB +NANB(u

2
A + u2

B)

NANB

= V ar(A) + V ar(B) + (uA − uB)
2.

(10)

Hence we get:

NSk(A) =
NSk(A,A)

NSk(A,B)
=

2V ar(A)

V ar(A) + V ar(B) + (uA − uB)
2 . (11)

Based on Eq. (11), we observe that when the difference of means is large and the variances
are relatively small, NS value will be small which means a well partitioned cluster A. When
both the difference of means and the variances are small which implies two similar clusters,
the NS value will be close to 1. More generally, for a cluster A with small variance, it is
properly partitioned since V ar(A) < V ar(B) ⇒ NS(A) < 1. For a cluster A with larger
variance, partitioning is not optimal, which means that further partitioning or merging with
other clusters is needed, unless the difference of means with its most similar neighbor is big
enough to compensate for the the difference of their variances. This implies (uA − uB)

2 >

V ar(A) − V ar(B). However, due to the fact that a cluster with smaller variance and NS

value is probably accompanied by a neighbor cluster of larger variance and NS, the overall
partitioning is evaluated by the average NS value of all the clusters. Therefore, even if there
are a few clusters with NS values larger than 1, we can still get a proper partitioning if there
are many well partitioned clusters with small NS values.

3.2 Merging

After completing the first step, we have several initial partitioning with different numbers of
clusters. We also evaluate the clustering results based on the NS metric and get the optimal
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number of clusters generated by Ncut. However, the initial partitioning by Ncut is not necessar-
ily an optimal solution, since Ncut tends to cut uniform region into two if the spatial distance
threshold is too low. Therefore, in the second step, we use a merging algorithm to form a
series of new clusters based on the initial clusters given by Ncut. The merging algorithm is
straightforward. Each time, we merge two clusters with the closest means of density values,
until we reach only one cluster. Then we use NS to estimate the optimal number of clusters
after merging.

The merging algorithm is similar as the agglomerative clustering algorithm. However, this
merging process based on Ncut has two significant improvements from directly applying an
agglomerative algorithm to the original graph. Firstly, the computation is more efficient. The
merging algorithm costs O(k3) where k is the initial number of over segmented clusters by
Ncut. Since usually k � n where n is the total number of nodes in the graph, the overall
computational cost is simply O(n

3
2 ) from Ncut. As for the agglomerative algorithm, it costs

O(n3). Secondly, this Ncut-based merging process can still produce near compact clusters
when only density values are taken into account, while it will be complicated and hard for the
agglomerative clustering algorithm to achieve this even if both spatial and density information
is used.

We compare the NS values of these new clusters after merging with those of the original ones
given by Ncut. The total variance of the clusters for each partitioning is also calculated and
compared as follows:

Total variance =
∑

A∈C
NA ∗ V ar(A). (12)

The experiments show that the merging algorithm improves both NS and total variance. How-
ever, note that the NS value is used as a metric to estimate the optimal number of clusters
while the total variance can not since the latter one prefers large number of clusters and does
not consider the inter-class similarity at all.

3.3 Boundary Adjustment

By Ncut and merging, the major components (or global perceptual grouping) have been ob-
tained from the network with spatially near compact shapes, which means that our second and
third criteria of partitioning the transportation network have been satisfied. Besides, it is obvi-
ous that both Ncut and merging are also aiming at decreasing the variance of the density values
within each cluster while producing the partitioning. Based on the NS metric, we can choose
the optimal number of clusters after the second step of merging. However, the criterion of small
variances of link densities can be further reached if we apply boundary adjustment. This step
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is similar as refining the edges of a rough sketch to make it more distinct and clearer.

There are mainly two reasons of applying the boundary adjustment algorithm. Firstly, the links
on the boundaries of the two clusters are most likely unstable, which means that by changing
their belongings to a neighboring cluster, the objective values of the partitioning may not be
significantly affected. Secondly, the Ncut algorithm favors balanced partitioning, instead of
minimum variance within each cluster. Therefore, adjusting the links on the boundaries can
possibly improve the first objective of small variances in density values. Furthermore, since we
do not have a strictly quantitative constraint for balancing or compactness, a proper boundary
adjustment algorithm can help us further decrease the variances of densities without violating
the other two criteria.

We now introduce a straightforward boundary adjustment algorithm. Firstly, we identify all the
boundary links i ∈ Boun. Suppose i ∈ B and i ∈ Boun(A,B). Secondly, we move each link
i independently from its current cluster B to its neighbor cluster A and calculate the change of
the variance of link densities in cluster A and B. Finally, we choose the link i that decreases
both the variances in A and B to the most extent, and update the clusters. The whole process is
repeated until no link on boundaries can decrease both variances. The criterion of decreasing
both density variances of clusters A and B are met when:

(di − uA)
2

V ar(A)
<

NA + 1

NA

(di − uB−i)
2

V ar(B − i)
>

NB

NB − 1

, (13)

where B − i denotes the set of all the other links from B except i. When the number of links
in a cluster is large enough, the right side of the inequality is close to 1, which implies that if
the distance from link i to the center of cluster A is smaller than the average distance of links
within A to the center, adding link i to the cluster A will decrease the variance of A. A more
general result and the proof for adjusting a group of links on the boundaries are provided later.

The criteria of choosing a link in the boundary adjustment algorithm can be different. Prefer-
ably, we choose the one that decreases the total variance as a whole, although it may decrease
the variance on one side and increase it on the other side. However, if only one link is adjusted
each time, the final spatial shapes of the clusters will become uncompact and links in the same
clusters are very likely to be disconnected. Therefore, we propose to adjust a group of spatially

consecutive links on the boundaries to keep the compactness of the cluster shapes. Suppose we
move a group of links Y from cluster B to A where Y ⊂ B, Y ⊂ Boun(A,B) and yi ∈ Y , the
variances of link densities in both A and B will be decreased if the following two conditions in
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(14) hold:
(uA − uY )

2

var(A)− var(Y )
<

NA +NY

NA

(uB−Y − uY )
2

var(B − Y )− var(Y )
>

NB−Y +NY

NB−Y

. (14)

The proof is straightforward.

V ar(A)− V ar(A′)

=

[∑
xi∈A x2

i

NA

−
(∑

xi∈A xi

NA

)2
]
−

[∑
xi∈A x2

i +
∑

yi∈Y y2i

NA +NY

−
(∑

xi∈A xi +
∑

yi∈Y yi

NA +NY

)2
]
.

(15)

After some manipulations we obtain:

V ar(A)− V ar(A′)

=
NANY [V ar(A)− V ar(Y )] +N2

Y [V ar(A)− V ar(Y )]−NANY (uA − uY )
2

(NA +NY )
2 .

(16)

Let the numerator > 0, so we easily get (uA − uY )
2/[V ar(A) − V ar(Y )] < (NA +NY )/NA.

The condition of variance decrease for cluster B is obtained similarly.

In the end we summarize our boundary adjustment algorithm as follows:

1. For each cluster, find all the links on the boundaries and build a sequence for each bound-
ary based on their spatial neighboring relations.

2. For each boundary sequence, find a subgroup of consecutive links that decreases the total
variance most after moving them to the neighboring cluster, under the constraints of an
upper bound and lower bound for the length of the subgroup. If no such subgroup is
found, the algorithm stops.

3. Choose the subgroup that decreases the total variance most among all the boundary se-
quences, and move it to the new cluster and finally update the partitioning.

4. Continue to step 1.

The computational cost of the boundary adjustment algorithm mainly comes from the second
step of finding the optimal subgroup of consecutive links that can decrease the total variance
most. With both an upper bound and lower bound constraints on the length of the subgroups,
it takes O(s2) to test all the possible subgroups, where s is the number of links on the bound-
ary. However, if the boundary is long which means s is not significantly smaller than n, the
computational cost of the boundary adjustment algorithm will be O(n3) (variance calculation
costs O(n)). Improving the efficiency of this algorithm is one of our future tasks. Note that the
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second step will cost O(s) if there is only an upper bound, and O(s logL) if there is only lower
bound where L is the lower bound of the length Lin et al. (2002).

4 Simulation

In this section, we further demonstrate the effectiveness of our partitioning mechanism by sim-
ulation. We show how the optimal NS metric and total variance improve in each step of the
partitioning for a real transportation network. Results in different time periods during a day are
given and discussed. Furthermore, we compare with k-means clustering algorithm and show
the superiority of our method in both effectiveness and robustness.

4.1 Network Description

This test site is a 2.5 square mile area of Downtown San Francisco (Financial District and South
Of Market Area), including about 100 intersections with link lengths varying from 400 to 1300
feet. The number of lanes for through traffic varies from 2 to 5 lanes and the free flow speed is
30 miles per hour. Traffic signals are all multiphase fixed-time operating on a common cycle
length of 100 seconds for the west boundary of the area (The Embarcadero) and 60 seconds for
the rest.

4.2 Partitioning Results

We discuss the partitioning results for typical time periods during a day with different con-
gestion levels. We mainly analyze the effectiveness of our mechanism for a semi-congested
network at time t = 70 when a group of congested links has formed but the network flow is
still high. The original network with link density values at time t = 70 is shown in gray-scale
level in Figure 1.1, where light color means low density link while dark is a jammed link. Fig-
ures 1.2-1.8 are the partitioning results by Ncut with number of clusters from 2 to 8. Figure 1.3.
is the optimal one determined by NS. In the second step, Figures 1.9-1.14 show the merging
process from 8 to 2 clusters and the optimal one is Figure 1.13. After the first two steps, we get
an optimal partitioning with three spatially compact clusters of the network in Figure 1.13. In
order to further improve NS metric and total variance of link densities, boundary adjustment
is implemented in the last step and the final partitioning is shown in Figure 1.15.

Accordingly, Table 1 explains the metric values. Table 1.1 shows NS values defined in Eq.
(8) by Ncut partitioning with different numbers of clusters. The optimal number of clusters
estimated by NS is 3. Table 1.2 shows the NS values after merging from 8 initial clusters by
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Figure 1: Partitioning at t = 70 by Ncut (1.2-1.8), merging (1.9-1.14) and boundary adjust-
ment(1.15)

Ncut. The optimal number of clusters 3 is still obtained, but the NS value is smaller than the
optimal one by Ncut.

Next we explain how the partitioning improves by comparing the NS metric, cluster variance
and mean difference in each step (the units for variance and mean are (veh/m)2 × 10−3 and
veh/m). Table 1.3 shows the NS value and total variance by Eq. (12) of the optimal partition-
ing produced in each step. Both of the two metrics for merging and finally boundary adjustment
decrease when compared with Ncut. Since the variance of the original network with one clus-
ter is 0.1348, the total variance decreases by around 20% in the end. Table 1.4 examines the
variance and NS for each cluster in more detail. The variance of the red cluster is increased
by 13% from Ncut to the final result; green decreased by 35%; and the blue decreased by 63%.
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Table 1: NS metric, variance and mean

TABLE 1.1 Average NS by Ncut at t = 70
# of clusters 2 3 4 5 6 7 8
Average NS 0.8117 0.7442 0.7718 0.8715 0.8363 1.0167 0.9373

TABLE 1.2 Average NS after merging at t = 70
# of clusters 8 7 6 5 4 3 2
Average NS 0.9373 0.9390 0.9124 0.9578 0.7802 0.6865 0.7301

TABLE 1.3 Total variance of link densities and average NS at t = 70
Ncut Merging Bo. Adj.

Total variance 0.1249 0.1212 0.1069
Average NS 0.7442 0.6865 0.5402

TABLE 1.4 Variance and NS within each cluster at t = 70
Variance/NS Red Green Blue

Ncut 0.4091/1.0022 0.4147/0.9885 0.0766/0.2419
Merging 0.4451/1.0790 0.3303/0.8007 0.0696/0.1799
Bo. Adj. 0.4623/0.9876 0.2696/0.5759 0.0284/0.0572

TABLE 1.5 Mean of link densities within each cluster at t = 70
Mean / # of links Red Green Blue

Ncut 0.0217 / 156 0.0197 / 133 0.0078 / 77
Merging 0.0236 / 175 0.0166 / 115 0.0075 / 76
Bo. Adj. 0.0286 / 139 0.0143 / 150 0.0062 / 77

TABLE 1.6 Average mean difference of each partitioning at t = 70
Ncut Merging Bo. Adj.

Ave. mean difference 0.00795 0.01155 0.01835

As for the NS metric, it decreases in all cases. To further show the improvement, Table 1.5
gives the mean of link densities and number of links in each cluster, and Table 1.6 calculates
the average mean difference of the neighboring clusters in each partitioning as follows:∑∑

A⊂C,B⊂C |Mean(A)−Mean(B)| ∗D(A,B)∑
A⊂C,B⊂C D(A,B)

, (17)

where C is the set of clusters, Mean(A) is the mean of link densities in cluster A and
D(A,B) = 1 if cluster A and B are neighbors (D(A,B) = 0, otherwise). The mean difference
is increased by a large degree from the original Ncut to the final partitioning after boundary
adjustment.

Finally we present the histograms of the frequency of link densities in each cluster in Figure
2 (x-density, y-frequency). Figure 2.1-2.3 show the histogram of frequency of link densities
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Figure 2: Histograms of link densities at t = 70 (2.1-2.3 by Ncut, 2.4-2.6 after merging, 2.7-2.9
after boundary adjustment)

in each cluster by Ncut (e.g., Figure 2.1 describes the frequency of link densities in the red
cluster). Similarly, Figure 2.4-2.6 show the histograms after merging and Figure 2.7-2.9 after
boundary adjustment. Note that after Boundary Adjustment, the red cluster (with the maximum
mean value among the three clusters) contains fewer low-density but more high-density links by
comparing Ncut in Figure 2.1 with boundary adjustment in Figure 2.7. The other two clusters
are similarly analyzed. However since the spatial information is not included in the histograms,
it is very unlikely to obtain completely separate distributions of link densities.

The above analysis demonstrates a significant improvement of the partitioning mechanism
compared to the original Ncut in urban transportation networks based on our criteria.

The time periods around t = 70 have very similar pattern. We now take a look at some other
periods of a day when different patterns may occur at t = 40, t = 75, t = 80.

The network density At t = 80 (more congested network) is shown in Figure 3.1 and the
optimal number of clusters estimated by NS is still three for both original Ncut in Figure 3.2
and merging in Figure 3.3, and the final boundary adjustment is in Figure 3.4. Main metrics
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Figure 3: Network density and partitioning at t = 80 (3.1-3.4); density at t = 40 (3.5); density
and partitioning at t = 75 (3.6-3.10); and k-means clustering at t = 70 (3.11-3.15)

are given in Table 2.1. The total variance of the original network at t = 80 is 0.1988 and
decreases by 20% after partitioning. From the geographical presentations of the clustering
at t = 70 and t = 80, the congestion propagation can be easily and clearly identified by
comparing Figure 1.15 and 3.4. The network density at t = 75 is shown in Figure 3.6, and two
different partitioning with 2 (merging in Figure 3.7 and boundary adjustment in Figure 3.8)
and 3 clusters (Figure 3.9 and Figure 3.10) are given. Table 2.2 compares the metrics, and it
is shown that the NS value of 3 clusters is worse than the one of 2 custers after merging, but
significantly better after boundary adjustment. This observation demonstrates the effectiveness
of the boundary adjustment algorithm, but also suggests more consideration on the merging
algorithm, which is currently simple but highly efficient. Improving the merging process based
on both spatial and temporal features is one of our future tasks. Lastly, the network density
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Table 2: NS metric and variance

TABLE 2.1 Total variance and average NS at t = 80
Ncut Merging Bo. Adj.

Total var. 0.1926 0.1892 0.1587
Average NS 0.9010 0.8629 0.5130

TABLE 2.2 Total variance and average NS at t = 75
2 clusters Ncut Merging Bo. Adj. 3 cluster Ncut Merging Bo. Adj.
Total var. 0.1634 0.1567 0.1553 0.1587 0.1551 0.1185
Ave. NS 0.8378 0.6519 0.6283 0.7773 0.7019 0.3633

TABLE 2.3 Total variance and average NS by k-means at t = 70
k-means Fig. 2.11 Fig. 2.12 Fig. 2.13 Fig. 2.14 Fig. 2.15
Total var. 0.0073 0.0530 0.1339 0.1287 0.1284
Ave. NS 0.0977 0.6208 1.0295 1.0218 0.8278

at t = 40 is given by Figure 3.5, which shows a uniformly uncongested network with similar
link densities. We observe that after the network is partitioned into several components with
spatially compact shapes, the total variance is not decreased significantly, which implies the
homogeneity of the link densities. Therefore we conclude that the network at this time period
does not need partitioning.

4.3 Comparison with k-means

In previous section, we show the improvement of the partitioning mechanism from original
Ncut. Now we examine the superiority of this mechanism by comparing with the clustering
algorithm of k-means widely used in the field. In order to show the difference, we analyze a
partitionable network at time t = 70.

K-means algorithm randomly chooses k samples from the set to be clustered as the initial
centers and assigns each of the samples to its nearest center. Then it recalculates the center of
each cluster (usually by mean value) and repeats the assigning process until the assignment do
not change (i.e., the clusters are stable). In k-means algorithm, feature vector is used to measure
the similarity and make clusters. Therefore we include both spatial (as x − y coordinates)
and density information of the links in the vector as (x, y, d)T with d denoting the density
value, and assign different weights ws and wd to them by (ws ∗ x,ws ∗ y, wd ∗ d)T . Figure
3.11∼3.15 show different partitioning results by k-means with k = 3 and Table 2.3 gives the
corresponding metric values for each partitioning. For instance, Figure 3.11 is a partitioning
with ws/wd = 1. In this case, the NS metric and total variance are very low. However, this
partitioning is meaningless since there is no spatial compactness at all, which also explains
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the high conflicts between spatial and density criteria. Figure 3.12 is the case when ws/wd =

4. Spatial compactness exists to some extent but some links are still highly disconnected.
Figure 3.13∼3.15 show three different partitioning when ws/wd = 9. When the spatial feature
receives higher weight, compactness can usually but not always be guaranteed by k-means.
However, the partitioning is very unstable due to the local optimality. In addition, even if when
k-means can generate spatially compact clusters, our partitioning method still outweighs k-
means in both NS metric measuring the partitioning quality and the total variance measuring
the closeness to the ultimate goal, as compared from Table 2.3 and Table 1.3.

K-means is not suitable in partitioning the transportation network for two main reasons. Firstly,
the clustering result depends on the choice of the initial k centers. Therefore it is unstable and
often reaches the local optimality. Secondly, k-means algorithm is based on cluster centers
(means), which can not be easily or appropriately realized in a graph-based network. In simi-
larity function, we measure the spatial distance of two links by the length of their shortest path
instead of Euclidean distance, and do not calculate the center of a cluster. However in k-means,
we have to build a feature vector for each of the link. Spatial coordinates are often used as two
features but can not guarantee the connectivity of links in the final clusters. In addition, the
links in transportation networks should be grouped based on their neighborhood and connec-
tivity, instead of their physical distance or lengths of links. If we still want to apply the same
graph-based distance in k-means algorithm, it will be very hard to build the feature vectors and
calculate the center of a cluster.

5 Conclusions and Future Work

Traffic congestion is increasing in urban cities. Improving traffic mobility and congestion has
always been on the top agenda in both academics and industries. In this paper, in order to
further study the existence of MFD and traffic control from a macroscopic level, a partitioning
mechanism based on the criteria of a well defined MFD in the urban transportation networks
is designed, which consists of three consecutive algorithms: initial segmenting, merging and
boundary adjustment. This mechanism can produce a partitioning with an optimal number
of clusters that have both minimum variances and spatially compact shapes. Furthermore,
by comparing with Ncut and k-means clustering algorithms by simulation, our mechanism
demonstrates the superiority of both effectiveness and robustness in partitioning a real urban
transportation network. Our work in this paper has laid a solid foundation for the future research
on designing practical control policies to realize effective congestion alleviation in the urban
transportation systems. In the future work, we will continue to study the traffic propagation by
exploring the spatial and temporal features of congestion and their correlations. Based on these
findings, we will design control strategies for the heterogeneous network with different levels
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of congestion.

References

Bishop, C. M. (2007) Pattern Recognition and Machine Learning, Springer.

Buisson, C. and C. Ladier (2009) Exploring the impact of homogeneity of traffic measurements
on the existence of macroscopic fundamental diagrams, Transportation Research Record,
2124, 127–136.

Carmel, D., H. Roitman and N. Zwerdling (2009) Enhancing cluster labeling using wikipedia,
paper presented at SIGIR ’09, 139–146, Boston, USA.

Cour, T., F. Benezit and J. Shi (2005) Spectral segmentation with multiscale graph decompo-
sition, paper presented at IEEE International Conference on Computer Vision and Pattern

Recognition (CVPR), vol. 2, 1124–1131, San Diego, CA, USA.

Daganzo, C. F. (2007) Urban gridlock: Macroscopic modeling and mitigation approaches,
Transportation Research part B, 41 (1) 49–62.

Day, W. H. E. and H. Edelsbrunner (1984) Efficient algorithms for agglomerative hierarchical
clustering methods, Journal of Classification, 1, 1–24.

Geroliminis, N. and C. F. Daganzo (2007) Macroscopic modeling of traffic in cities, paper
presented at 86th Annual Meeting of the Transportation Research Board, Washington, DC.
Paper No. 07-0413.

Geroliminis, N. and C. F. Daganzo (2008) Existence of urban-scale macroscopic fundamental
diagrams: Some experimental findings, Transportation Research Part B-Methodological,
42 (9) 759–770.

Geroliminis, N. and J. Sun (2010) Properties of a well-defined macroscopic fundamental dia-
gram, paper presented at Transportation Research Board 89th Annual Meeting, Washington,
DC. Paper No. 10-3521.

Godfrey, J. W. (1969) The mechanism of a road network, Traffic Engineering and Control,
11 (7) 323–327.

Han, J. and M. Kamber (2006) Data Mining: Concepts and Techniques, Morgan Kaufmann.

Helbing, D., M. Treiber, A. Kesting and M. Schönhof (2009) Theoretical vs. empirical clas-
sification and prediction of congested traffic states, European Physical Journal B, 69 (4)
583–598.

20



Spatial and Temporal Analysis of Congestion in Urban Transportation Networks August 2010

Jain, A. K. (2010) Data clustering: 50 years beyond k-means, paper presented at 19th Interna-

tional Conference in Pattern Recognition (ICPR), vol. 31, 651–666, Tampa, Florida, USA.

Kerner, B. S. and H. Rehborn (1996) Experimental properties of complexity in traffic flow,
Physical Review E, 53 (5) 4275–R4278.

Lin, Y. L., T. Jiang and K. M. Chao (2002) Efficient algorithms for locating the length-
constrained heaviest segments, with applications to biomolecular sequence analysis, Journal

of Computer and System Sciences, 65 (3) 570–586.

Mazloumian, A., N. Geroliminis and D. Helbing (2010) The spatial variability of vehicle den-
sities as determinant of urban network capacity, Philosophical Transactions of Royal Society

A. in press.

Mun̈oz, J. C. and C. F. Daganzo (2003) Structure of the transition zone behind freeway queues,
Transportation Science, 37 (3) 312–329.

Shi, J. and J. Malik (2000) Normalized cuts and image segmentation, IEEE Transactions on

Pattern Analysis and Machine Intelligence, 22 (8) 888–905.

21


	Introduction
	Normalized Cut Algorithm
	Methodology
	Initial Segmenting and Evaluation
	Merging
	Boundary Adjustment

	Simulation
	Network Description
	Partitioning Results
	Comparison with k-means

	Conclusions and Future Work
	Bibliography

