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Abstract

In this paper we present methodologies for improving the demand-responsiveness of air trans-
portation systems. The main ingredients are the flexibilityin transportation capacity provided
by an innovative aircraft and an integrated model where supply-demand interactions are explic-
itly formulated. The integrated model benefits from the simultaneous schedule planning and
revenue management decisions. The schedule planning consists of schedule design and fleet
assignment models. Revenue management decisions are integrated with an itinerary choice
model which gives the market shares of the available itineraries in the market according to
their price, travel time, number of stops and departure timeof the day. The integrated model
also includes spill and recapture effects based on the demand model. Furthermore, the demand
model is developed for economy and business classes and the seat allocation for these classes is
determined by the integrated model. The resulting model is amixed integer nonlinear problem
and we propose a heuristic to tackle with the complexity of the problem.

Keywords
Fleet assignment, supply-demand interactions, integrated schedule planning, discrete choice

modeling, itinerary choice, revenue management, spill andrecapture, mixed integer nonlinear

problem
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1 Introduction and Motivation

The increase in air travel demand in the last decades resultswith frequent delays and cancel-

lations of flights. In such an environment it is difficult to bedemand responsive for airlines.

We believe that to tackle with the shortcomings of the current air transportation system actions

need to be taken from both supply and demand sides. In this study we address improvements

in both dimensions. We study the supply side by developing appropriate models for an inno-

vative flexible aircraft. When it comes to modeling demand, weintegrate an itinerary choice

model into the scheduling model in order to define supply-demand interactions. The objective

of this study is to identify the challenges in integrating demand and supply models and develop

appropriate methodologies.

A new flexible air transportation concept, called Clip-Air, is developed at EPFL. Clip-Air’s

flexibility is mainly provided by the detachable load units,capsules. The capsules can be

detached from the carrying unit,wing. This decoupling brings in many advantages in terms

of airline and airport operations. In terms of modeling, Clip-Air necessitates two level of

fleet assignments for the decoupled units. Therefore we adapt our fleet assignment model to

appropriately represent the flexibility of Clip-Air. In order to quantify the potential advantages

of Clip-Air we build models for both standard planes and Clip-Air capsules and wings. We refer

to Atasoyet al. (2011) for a preliminary analysis on the potential performance of Clip-Air in

comparison to the existing aircraft.

The focus of this paper is the integrated schedule planning and revenue management model.

The schedule planning model is an integrated schedule design and fleet assignment model.

Schedule design decision is included with the existence of an optional set of flights that can be

canceled. The revenue management decision includes the decisions on the pricing, spill and

recapture as well as the seat allocation for economy and business classes. Revenue management

is based on an itinerary choice model. The itinerary choice is modeled as a logit formulation

using a joint revealed preferences (RP) and stated preferences(SP) data. RP data is a booking

data provided by a major European airline. RP data has low variability due to the absence

of non-chosen alternatives. Therefore we use the SP data to benefit from its elasticity that is

ensured by the design. At the end we use the model for RP data in the optimization. The logit

model includes the variables of price and time interacted with the number of stops; and the

departure time of the day.

The added-value of the integrated model is illustrated witha set of experiments. However, the

integrated model is a mixed integer nonlinear problem wherethe convexity is not guaranteed.

Therefore, we are able to solve medium sized instances with available solvers in reasonable

time. In order to overcome these limitations, we propose an heuristic which works on a sim-

plified model and explores the feasible region with price sampling and variable neighborhood
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search techniques. We provide results on the performance ofthe heuristic and discuss potential

improvements based on Lagrangian relaxation and subgradient optimization.

2 Related literature and the contributions of the paper

In this section we focus on the closely related literature interms of the demand modeling,

integrated schedule planning, revenue management and solution methodologies.

Itinerary choice models have been studied in the literature, with an increasing interest in the last

decade, as a more appropriate tool for demand forecasting compared to the classical models.

We refer to Garrow (2010) where the motivation for the usage of discrete choice methodology

in air travel demand is presented together with several casestudies. Various specifications are

provided such as logit and nested logit models.

The schedule planning model we consider in this study is inspired by the work of

Lohatepanont and Barnhart (2004). They present an integrated schedule design and fleet as-

signment model where they include spill and recapture effects based on the Quality Service

Index (QSI). They take the price and demand values as inputs to the model. We refer to this

model asprice-inelastic schedule planning model. The integrated model presented in this pa-

per considers explicit supply-demand interaction due to the integration of the demand model.

Therefore the integrated model is elastic to the price and other attributes of the itineraries in

the market. In section 5 we compare the integrated model to the price-inelastic schedule plan-

ning model, in order to show the impacts of the integration ofthe demand model. Since we

do not have access to the parameters of the recapture ratios that Lohatepanont and Barnhart

(2004) use, we utilize our demand model to estimate the recapture ratios between itineraries.

Sheraliet al. (2010) also present an integrated schedule design and fleet assignment model

where they work with itinerary-based demands for multiple fare classes. They optimize the

allocation of seats for each fare class as we do in our integrated model. However they do not

include supply-demand interactions in the model.

In terms of the integration of discrete choice models in revenue management, we refer to the

work of Talluri and van Ryzin (2004a) who introduce a revenue management model based on a

discrete choice methodology. They decide on the subset of fare products to offer at each point

in time according to the discrete choice model. They consider single-leg, multiple-fare-class

products. Schön (2008) presents an integrated schedule design, fleet assignment and pricing

model which is similar to our idea. She provides different specifications of the demand model

as logit and nested logit where the only explanatory variable is the price. However, she does

not consider spill and recapture effects and she provides results based on a synthetic data.

In classical revenue management models the capacity is considered as a fixed input which is
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assumed to be obtained by the schedule plan (Talluri and van Ryzin, 2004b). We refer to this

common practice assequential approach. Our integrated model decides on the capacity and

the demand sides simultaneously. In order to see the impact of this simultaneous optimization,

we compare our model with the sequential approach in section5

The presented model in this paper is a mixed integer nonlinear problem (MINLP) where we

can not guarantee the convexity. For the difficulties in MINLP and the review of available

methodologies we refer to D’Ambrosio and Lodi (2011).

3 Demand model

We develop an itinerary choice model in order to explicitly integrate supply-demand interac-

tions in the schedule planning model.Itinerary is referred as each available product, which

may include more than one flight leg, for a market segment. Themarket segments ,s ∈ Sh, are

defined by the origin and destination (OD) pairs whereh represents the cabin class: economy

and business. The choice situation is defined for each segment s with a choice set of all the al-

ternative itineraries in the segment represented byIs. The indexi for each alternative itinerary

in segmentIs carries the information of the cabin class of the itinerary due to the definition of

the segments. In order to better represent the reality, we includeno-revenue options(I
′

s ⊂ Is),

which represent the itineraries offered by competitive airlines.

The utility of each alternative itineraryi, including the no-revenue options, is represented by

Vi and the specification is provided in Table 1. The alternativespecific constants,ASCi, are

included for each itinerary in each segment except one of them which is normalized to 0 for

identification purposes. Other parameters are representedby β for each of the explanatory

variables. We have different models for economy and business classes. The superscriptE

indicates the model for economy itineraries and the parameters withB represent the model for

business itineraries. The superscriptsNS andS are used to indicate whether the itinerary is a

non-stop or a one-stop itinerary. The explanatory variables are described as follows:

• pi is the price of itineraryi in e, which is normalized by 100 for scaling purposes,

• timei is the elapsed time for itineraryi in hours,

• non-stopi is a dummy variable which is 1 if itineraryi is a non-stop itinerary, 0 otherwise,

• stopi is a dummy variable which is 1 if itineraryi is a one-stop itinerary, 0 otherwise,

• economyi is a dummy variable which is 1 if itineraryi is an economy itinerary, 0 other-

wise,

• businessi is a dummy variable which is 1 if itineraryi is a business itinerary, 0 otherwise,

• morningi is a dummy variable which is 1 if itineraryi is a morning itinerary departing

between 07:00-11:00, 0 otherwise. The time slot is inspiredby the studies in literature
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that show that the individuals have higher utility for the departures in this slot(Garrow,

2010).

Table 1: Specification table of the utilities

Parameters Explanatory variables

constants
ASCE

i 1× economyi
ASCB

i 1× businessi

price

βE,NS
p ln(pi/100)× non-stopi × economyi

βB,NS
p ln(pi/100)× non-stopi × businessi
βE,S

p ln(pi/100)× stopi × economyi
βB,S

p ln(pi/100)× stopi × businessi

time

βE,NS
time timei × non-stopi × economyi

βB,NS
time timei × non-stopi × businessi
βE,S

time timei × stopi × economyi
βB,S

time timei × stopi × businessi

time-of-day
βE

morning morningi × economyi
βB

morning morningi × businessi

As seen in Table 1, the time and price variables are interacted with the number of stops, i.e. the

dummies ofnon-stopandstop, The motivation behind this interaction is that there are strong

correlations between the number of stops and both the time and price of the itinerary. The

one-stop itineraries have longer travel time and usually more expensive compared to non-stop

itineraries. We specify the price variable as a log formulation since it improves the model

significantly. The idea behind is that, the effect of the increase in price is not linear for a low

price itinerary and a high price itinerary.

The explanatory variables include the price,pi, as a policy variable which can be controlled by

the integrated model in order to increase the profit. The other explanatory variables are context

variables which we denote by the vectorzi. These context variables provide information for

the demand and improves the estimation of the market shares but can not be modified by the

integrated model. In order to explicitly represent these variables we refer to the utilitiesVi as

Vi(pi, zi; β).

The resulting logit model gives the choice probability for each itineraryi in segments and

when multiplied with the total expected demand of the segment, Ds, it provides the estimated

demand of each itinerary as represented by equation 1.

d̃i = Ds

exp (Vi(pi, zi; β))∑

j∈Is

exp (Vj(pj, zj ; β))
∀h ∈ H, s ∈ Sh, i ∈ Is (1)
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The logit model is also used to model the spill and recapture effects. Passengers, who can

not fly on their desired itineraries, may accept to fly on otheravailable itineraries in the same

market segment in case of such shortages. Airlines can take advantage of this knowledge when

planning for the schedule and the design of fleet capacity. They can keep their capacity at prof-

itable levels by taking into account the possibility of redirecting passengers to the alternative

itineraries. We assume that the spilled passengers are recaptured by the other itineraries with a

recapture ratio based on the logit formulation. Therefore the recapture ratio is represented by

equation (2).

bi,j =
exp (Vj(pj, zj ; β))∑

k∈Is\{i}

exp (Vk(pk, zk; β))
∀h ∈ H, s ∈ Sh, i ∈ (Is \ I

′

s), j ∈ Is. (2)

The recapture ratiosbi,j represent the proportion of recaptured passengers by itineraryj among

ti,j number of spilled passengers from itineraryi. The recapture ratio is calculated for the

itineraries that are in the same market segment where the desired itineraryi is excluded from

the choice set. Therefore lost passengers may be recapturedby the remaining alternatives of

the company or by the no-revenue options.

For the estimation of the demand model we use an RP data provided in the context of ROADEF

Challenge 20091. This is a booking data from a major European airline which provides the

set of airports, flights, aircraft and itineraries. The information provided for the itineraries

includes the corresponding flight legs therefore we can deduce the information on the departure

and arrival time of itinerary, the trip length and the numberof stops. Additionally, we have

information on the demand and average price (e) for each cabin class. Since the RP data does

not include non-chosen alternative we have lack of variability in some attributes. This results

with statistically insignificant estimation of key parameters of the choice models. Therefore,

in this study we combine the RP data with an SP data, where the variability is obtained by

design. This SP data is based on an Internet choice survey collected in 2004 in the US. The

Internet survey was organized to understand the sensitivity of air passengers to the attributes of

an airline itinerary such as fare, travel time, number of stops, legroom, and aircraft. By design,

the data has enough variability in terms of price and other variables. For the estimation, the

parameters of the logit model corresponding to the RP data areconstrained to be the same as

those of the SP data. The estimation of the two logit models for the two data sets is carried out

simultaneously. For the details on the SP model and the simultaneous estimation we refer to

Atasoy and Bierlaire (2012).

The estimation of the parameters is done with a maximum likelihood estimation using the

software BIOGEME (Bierlaire and Fetiarison, 2009). The resulting parameters can be seen

1http://challenge.roadef.org/2009/en
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Table 2: Estimated parameters for the model with joint RP and SP data

βp βtime

non-stop stop non-stop stop βmorning

economy -2.23 -2.17 -0.102 -0.0762 0.0283
business -1.97 -1.96 -0.104 -0.0821 0.0790

in Table 2. The cost and time parameters have negative signs as expected since the increase

in the price or the time of an itinerary decreases its utility. They also indicate that, economy

demand is more sensitive to price and less sensitive to time compared to business demand as

expected (Belobabaet al., 2009). Departure time of the day parameter,βmorning, is higher for

business demand compared to the economy demand, which meansthat business passengers

have a higher tendency to chose morning itineraries.

The details on the demand model and results on the demand indicators such as the price and

time elasticities as well as the willingness to pay are provided in Atasoy and Bierlaire (2012).

In order to illustrate the application of the demand model together with the spill and recapture

effects we choose an arbitrary OD pair A-B. There are two alternatives of economy itineraries

which are both nonstop itineraries with the same travel time. We include the no-revenue

itinerary A-B
′

. The values of attributes can be seen in Table 3. According tothe attributes

the resulting choice probability, which is referred as themarket share, is presented in the last

column. The itinerary 2 has the lowest price and is a morning itinerary. Therefore it attracts the

biggest number of passengers.

With the same example we illustrate the spill and recapture effects. The resulting ratios accord-

ing to the given attributes are presented in Table 4. For example, in case of capacity shortage

for itinerary 1, at most 55% of spilled passengers will be recaptured by itinerary 2 and 45%

will be lost to the itineraries offered by competitive airlines. Since the price of itinerary 2 is

lower than the price of competitors, the probability to be recaptured by itinerary 2 is higher.

Table 3: Attributes of the itineraries and the resulting market shares

OD price morning market share

A-B1 225 0 0.26

A-B2 203 1 0.44

A-B
′

220 0 0.30

Table 4: Resulting recapture ratios

A-B1 A-B2 A-B
′

A-B1 0 0.552 0.448
A-B2 0.487 0 0.513
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4 Integrated schedule planning and revenue management

model

We present an integrated schedule planning and revenue management model for a single airline.

The schedule is based on a time-space network. The parameters of the model is provided in

Table 5 and the decision variables of the model are presentedin Table 6. We indicate the

decision variables as schedule planning and revenue management variables for the ease of

explanation. The mathematical formulation of the integrated model is given in Figure 1.

Table 5: Parameters of the integrated model

Set Definition
F the set of flight legs indexed byf
FM the set of mandatory flight legs
FO the set of optional flight legs
CT the set of flights flying at count time
A the set of airports indexed bya
K the set of fleet types indexed byk
T the set of time of the events in the network indexed byt

N(k, a, t) the set of the nodes in the time-line network
for fleet typek, airporta and timet

In(k, a, t) set of inbound flight legs for node (k,a,t)
Out(k, a, t) set of outbound flight legs for node (k,a,t)
H set of cabin classes indexed byh
Sh the set of market segments indexed bys, for cabin classh
Is the set of itineraries in segments, indexed byi
I

′

s the set of no-revenue itineraries,I
′

s ∈ Is
Parameter Definition
Ck,f operating cost for flightf when operated by fleet typek
Rk available number of planes for typek
Qk the capacity of fleet typek in number of seats
minE−

a the time just before the first event at airporta

maxE+
a the time just after the last event at airporta

δi,f 1 if itinerary i uses flight legf , 0 otherwise
UBi the upper bound on the price of the itineraryi

Vi the utility of itineraryi
zi the vector of explanatory variables for itineraryi
β the vector of parameters of the logit model

Objective function(3) maximizes the profit calculated by revenue minus operating costs. Firstly,

we have the fleet assignment constraints. Constraints (4) ensure the coverage of mandatory

flights which must be served according to the schedule development. Constraints (5) are for

the optional flights that have the possibility to be canceled. Constraints (6) maintain the flow

conservation of fleet. Constraints (7) ensure that the usage of each plane type is consistent with

the number of available planes. It is assumed that the network configuration at the beginning
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Table 6: Decision variables of the integrated model

Variable Definition
Schedule planning

xk,f 1 if fleet typek is assigned to flightf , 0 otherwise
yk,a,t− the number of typek planes at airporta just before timet
yk,a,t+ the number of typek planes at airporta just after timet

Revenue management
d̃i demand of itineraryi based on the logit model
di realized demand of itineraryi
pi price of itinearyi
ti,j redirected passengers from itineraryi to itineraryj
bi,j recapture ratio for the passengers spilled from itineraryi

and redirected to itineraryj
πh
k,f assigned seats for flightf in a typek plane for cabin classh

and at the end of the period, which is one day, is the same in terms of the number of planes at

each airport (8).

The relation between the supply capacity and the actual demand should be maintained. There-

fore we have the constraints (9) which maintain that the assigned capacity for a flight should

satisfy the demand for the corresponding itineraries. The actual demand is composed of the

original demand of the itinerary minus the spilled passengers plus the recaptured passengers

from other itineraries. The same constraints ensure that the itineraries do not realize any de-

mand if any of the corresponding flight legs is canceled. We let the allocation of business and

economy seats to be decided by the model as a revenue management decision. Therefore, we

need to make sure that the total allocated seats does not exceed the capacity (10).

Demand related constraints include the constraints (11) which maintain that the total redirected

passengers from itineraryi to all other itineraries including the no-revenue options do not ex-

ceed its realized demand. Finally, we have the nonnegativity constraints and upper bounds

(14)-(20) for the decision variables.

5 Results on the added value of the integrated model

The mixed integer nonlinear problem is formulated in AMPL and BONMIN2 is used to ob-

tain feasible solutions. Since we cannot guarantee the convexity of the problem, BONMIN

serves an an approximation method. In order to see the added value of the integration of the

demand model we need to support our observations with a set ofexperiments. For that purpose

we identified 18 data instances with different characteristics that are listed in Table 7. For the
2https://projects.coin-or.org/Bonmin
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max
∑

h∈H

∑

s∈Sh

∑

i∈(Is\I
′

s
)

(di −
∑

j∈Is

ti,j +
∑

j∈(Is\I
′

s
)

tj,ibj,i)pi

−
∑

k∈K
f∈F

Ck,fxk,f (3)

s.t.
∑

k∈K

xk,f = 1 ∀f ∈ FM (4)

∑

k∈K

xk,f ≤ 1 ∀f ∈ FO (5)

yk,a,t− +
∑

f∈In(k,a,t)

xk,f = yk,a,t+ +
∑

f∈Out(k,a,t)

xk,f ∀[k, a, t] ∈ N (6)

∑

a∈A

yk,a,minE−

a
+

∑

f∈CT

xk,f ≤ Rk ∀k ∈ K (7)

yk,a,minE−

a
= yk,a,maxE+a

∀k ∈ K, a ∈ A (8)
∑

s∈Sh

∑

i∈(Is\I
′

s
)

δi,fdi −
∑

j∈Is

δi,f ti,j +
∑

j∈(Is\I
′

s
)

δi,f tj,ibj,i

≤
∑

k∈K

πh
k,f ∀h ∈ H, f ∈ F (9)

∑

h∈H

πh
k,f ≤ Qkxk,f ∀f ∈ F, k ∈ K (10)

∑

j∈Is

ti,j ≤ di ∀h ∈ H, s ∈ Sh, i ∈ Is (11)

d̃i = Ds

exp (Vi(pi, zi;β))∑

j∈Is

exp (Vj(pj , zj ;β))
∀h ∈ H, s ∈ Sh, i ∈ Is (12)

bi,j =
exp (Vj(pj , zj ;β))∑

k∈Is\{i}

exp (Vk(pk, zk;β))
∀h ∈ H, s ∈ Sh, i ∈ (Is \ I

′

s), j ∈ Is (13)

xk,f ∈ {0, 1} ∀k ∈ K, f ∈ F (14)

yk,a,t ≥ 0 ∀[k, a, t] ∈ N (15)

πh
k,f ≥ 0 ∀h ∈ H, k ∈ K, f ∈ F (16)

0 ≤ di ≤ d̃i ∀h ∈ H, s ∈ Sh, i ∈ Is (17)

0 ≤ pi ≤ UBi ∀h ∈ H, s ∈ Sh, i ∈ Is (18)

ti,j ≥ 0 ∀h ∈ H, s ∈ Sh, i ∈ (Is \ I
′

s), j ∈ Is (19)

bi,j ≥ 0 ∀h ∈ H, s ∈ Sh, i ∈ (Is \ I
′

s), j ∈ Is (20)

Figure 1: Integrated schedule planning and revenue management model

experiments, we present the number of airports and the number of flights in the network. More-

over, the flight density stands for the average number of flights per route. The average demand

gives the average number of passengers per flight according to demand forecast. The fleet com-

position provides information on the number of different plane types in the fleet together with

the seat capacity for each type.
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Table 7: The experiments

No
Airports Flights

Flight

density

Average

demand
Fleet composition

1 3 10 1.67 51.9 2 50-37 seats

2 3 11 2.75 83.1 2 117-50 seats

3 3 12 2 113.8 2 164-100 seats

4 3 26 4.33 56.1 3 100-50-37 seats

5 3 19 3.17 96.7 3 164-117-72 seats

6 3 12 3 193.4 3 293-195-164 seats

7 3 33 8.25 71.9 3 117-70-37 seats

8 3 32 5.33 100.5 3 164-117-85 seats

9 2 11 5.5 173.7 3 293-164-127 seats

10 4 39 4.88 64.5 4 117-85-50-37 seats

11 4 23 3.83 86.1 4 117-85-70-50 seats

12 4 19 3.17 101.4 4 134-117-100-85 seats

13 4 15 1.88 58.1 5 117-85-70-50-37 seats

14 4 14 2.33 87.6 5 134-117-85-70-50 seats

15 4 13 2.6 100.1 5 164-134-117-100-85 seats

16 8 77 2.08 67.84 4 117-85-50-37 seats

17 7 56 2.33 87.84 4 164-117-85-50 seats

18 8 97 3.46 90.84 5 164-117-100-85-50 seats

For the considered data instances, we compared our integrated model with the price-inelastic

schedule planning model and the sequential approach. The comparative results are presented in

Table 8. In the table, price-inelastic schedule planning model is represented byPISP; sequential

approach is represented bySAand the integrated model is represented byIM. Let us note that

for the first 15 experiments BONMIN reports 0% duality gap for the integrated model although

we cannot guarantee optimality. For the last three experiments the solution has a duality gap

which results with lower profit compared to the sequential approach.

It is observed that the price-inelastic schedule planning model is outperformed by the two other

models for all the experiments. The flexibility obtained by the control on the demand and

price results with superior decisions. The analysis of the comparison between the sequential

approach and out integrated model is more interesting because they both have the flexibility

on the demand side however our integrated model decides on the schedule planning simul-

taneously with the revenue management. This simultaneous optimization provides superior

decisions on the schedule planning. In Table 9, we report theimprovement of the integrated

model over the sequential approach, for the experiments with an improvement. It is observed

that for 7 of these 15 instances there is an improvement with the integrated model in terms of

the profit and transported number of passengers. These are the cases where the simultaneous

11
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optimization of the schedule planning and revenue management lead to different scheduling

decisions such as the operated number of flights or the numberof allocated capacity.

Table 9: The advantage of the integrated model over the sequential approach

Experiments Profit Transported pax.

2 5.55% 33.50%

4 1.43% 14.18%

6 0.30% -

9 0.43% 5.83%

10 0.83% 4.94%

11 3.36% 1.40%

14 1.45% 16.69%

When we analyze the instances where there is an improvement, we observe that the improve-

ment is higher when the demand levels for the flights has high variation but there is a few num-

ber of plane types. In those cases, the integrated model is able to adjust the capacity according

to the demand and has significant improvement over the sequential approach. Experiment 2 is a

good example for this phenomenon. There are 2 different fleettypes with 50 and 117 seats. The

sequential approach does not use the larger aircraft which is costlier to fly. On the other hand

the integrated model uses this large aircraft thanks to its flexibility in controlling the demand

by pricing decisions. As a result, there is a 5.55% increase in profit and 33.5% more passengers

are transported. Similarly, for the experiments 4, 6, 9, 10,and 11 the integrated model decides

to use more capacity with the knowledge on the demand behavior. In addition to the decision

on the allocated capacity, the integrated model may decide to operate more flights by changing

the attractiveness of the corresponding itineraries. For example, for experiment 14, the inte-

grated model operates 2 more flights with the same overall capacity compared to the sequential

approach. We observe a similar increase in the number of flights in experiment 4.

6 Heuristic approach

We are limited by the complexity of the mixed integer nonlinear problem. When we go beyond

the presented instances in section 5 we are not able to obtainfeasible solutions in reasonable

computational time with BONMIN. Therefore we propose a heuristic in order to be able to test

the integrated model for larger instances which represent the reality better.

The heuristic method is based on two simplified versions of the model that is presented in Figure

1. The first model, which is referred as FAMLS enables us to explore new fleet assignment

solutions based on alocal searchmechanism. The local search is developed by combining a

12
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price samplingand avariable neighborhoodprocedure. The price sampling is done such that

a random price is drawn for each itinerary and according to this price the demand values and

recapture ratios are fixed based on the equations 12 and 13. Variable neighborhood procedure is

designed by fixing a subset of fleet assignments (Hansen and Mladenovíc, 2001). The number

of fixed assignment is represented bynfixed and varied according to the quality of the solution.

When the solution is improved anintensificationis applied by increasingnfixed. On the other

hand when there is not an improvement for a number iterationsa diversificationis utilized by

fixing less assignments. The local search mechanism therefore enables us to visit better fleet

assignment solutions. The set of fixed assignments is represented byL. Each fixed assignment

l indicates a fleet typekfixed
l and a flightf fixed

l . We add this constraint to the model as given

by equation 21. Therefore the FAMLS has the objective function (3) subject to the constraints

(4)-(11), (14)-(17), (19), and the new defined constraint (21). Let us note that the variables̃d,

p, b are parameters for the model due to the price sampling.

x
k
fixed
l

,f
fixed
l

= 1 ∀l ∈ L (21)

The second model is referred as REVLS which optimizes the revenue for the fleet assignment

solutions explored by solving the FAMLS model at each iteration of the local search. Therefore

this model has the fleet assignment model variables ofx andy as parameters. The objective

can be reformulated as in equation 22 and maximized subject to the constraints (9)-(13) and

(16)-(20).

max
∑

h∈H

∑

s∈Sh

∑

i∈(Is\I
′

s)

(di −
∑

j∈Is

ti,j +
∑

j∈(Is\I
′

s)

tj,ibj,i)pi (22)

The heuristic procedure consists of iteration each of whichsolves FAMLS and REVLS models

subsequently until the maximum number of iterations,kmax, is reached. When the solution of

BONMIN is available we terminate the iterations if the deviation from this solution, referred

aszopt is smaller thanǫ. This procedure is presented by Algorithm 1 wherenmin andnmax

are defined as the minimum and maximum number of fixed assignments according to the data

instance.

6.1 Performance of the heuristic

For testing the performance of the heuristic we use the same set of instances provided in Table

7. The results of the heuristic compared to BONMIN is presented in Table 10. The time limit

set for BONMIN is 12 hours, on the other hand maximum computational time allowed for the

13
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Algorithm 1 Heuristic procedure

Require: x̄0, ȳ0, d̄0, p̄0, t̄0, b̄0, π̄0, z∗, zopt, kmax, ǫ, nmin, nmax

k := 0, nfixed := nmin

repeat
p̄k := Price sampling
{d̄k, b̄k} := Demand model(̄pk)
{x̄k, ȳk, π̄k, t̄k} := solvezFAMLS(d̄k, b̄k, nfixed)
{p̄k, d̄k, b̄k, π̄k, t̄k} := solvezREVLS(x̄k, ȳk)
if improvement(zREVLS) then

Updatez∗

Intensification:nfixed := nfixed + 1 whennfixed < nmax

else
Diversification:nfixed := nfixed − 1 whennfixed > nmin

end if
k := k + 1

until ||zopt − z∗||2 ≤ ǫ or k ≥ kmax

heuristic is 1 hour. For both of them we report the time when the best solution is found. For the

experiments 1-3 and 12-15 the heuristic is able to find the best solution of BONMIN in a few

seconds. For other experiments we have 10 replications and we report the minimum, average

and the maximum deviation from the best solution. Similarly, we report the minimum, average

and maximum computational time needed.

In the majority of the instances the heuristic has a considerable reduction in computational

time. When we analyze the quality of the solutions, the deviation from the best solution is on

the average 2.3 % for the first 15 experiments. Let us note thatthe last three experiments were

the ones where BONMIN reported a duality gap. These are instances with higher complexity

due to increased number of flights. It is seen that the heuristic is outperforming BONMIN

for experiment 16 with a higher profit and using significantlyless computational time. For this

particular experiment the maximum profit attained is 204,906 which is still inferior to the result

of the sequential approach (see Table 8).

14
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Table 10: Performance of the heuristic versus BONMIN

Best solution reported

by BONMIN

Heuristic

% deviation Time(sec)

Experiments Profit Time (sec) min avg. max min avg. max

1 15,091 11 - 0.00% - - 1 -

2 37,335 27 - 0.00% - - 2 -

3 50,149 56 - 0.00% - - 33 -

4 70,904 2,479 1.32% 1.77% 2.06% 288 1,510 3,129

5 82,311 1,493 0.00% 0.13% 0.22% 18 900 3,092

6 906,791 12,964 7.37% 7.37% 7.37% 25 279 1,434

7 135,656 23,662 13.88% 16.36% 18.84% 74 1,714 3,534

8 115,983 209 0.00% 0.01% 0.12% 643 1,955 3,432

9 858,544 7,343 3.42% 4.79% 6.92% 1 762 3,322

10 138,575 37,177 2.76% 3.94% 4.98% 929 1,775 2,891

11 96,486 17,142 0.00% 0.16% 0.90% 236 1,625 3,574

12 49,448 32 - 0.00% - - 1 -

13 27,076 36 - 0.00% - - 5 -

14 53,128 141 - 0.00% - - 2 -

15 26,486 14 - 0.00% - - 4 -

16 194,598 42,360 -5.89% -4.04% -2.41% 293 1,652 2,990

17 191,091 39,447 0.48% 2.13% 4.46% 32 1,646 3,305

18 351,655 17,424 4.91% 7.94% 11.22% 840 2099 3331

6.2 Future work on the heuristic method

We believe that the performance of the heuristic can be improved when considered in a La-

grangian relaxation framework. If we relax the constraint (10) of the integrated model presented

in Figure 1 and introduce Lagrangian multipliers,λk,f , for each flightf and fleet typek we can

decompose the problem into two subproblems. The first problem is a revenue maximization

model which optimizes the pricing and seat allocation decisions. The objective function of this

subproblem can then be formulated as in equation 23 where we have the Lagrangian multipli-

ers. The related constraints for the revenue subproblem are(9)-(13) and (16)-(20).

max
∑

h∈H

∑

s∈Sh

∑

i∈(Is\I
′

s)

(di −
∑

j∈Is

ti,j +
∑

j∈(Is\I
′

s)

tj,ibj,i)pi +
∑

k∈Kf∈F

λk,f

∑

h∈H

πh
k,f (23)
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The second subproblem on the other hand is a fleet assignment problem where Lagrangian

multipliers serves as a penalty on the allocation of the capacity. The objective function can be

formulated as in equation 24. The related constraints are (4)-(8) and (14)-(15).

min
∑

k∈Kf∈F

(Ck,fxk,f − λk,fQkxk,f ) (24)

These two subproblems can be integrated in a subgradient optimization framework which will

provide an upperbound to the problem. This is important for the large instances where we do

not have solutions from the BONMIN solver. This work on the Lagrangian relaxation is a work

in progress.

7 Conclusions and Future Research

In this paper an integrated schedule planning and revenue management model is presented. The

added value of the integration is evaluated in comparison tothe models which mimic the state-

of-the-art models. It is observed that the explicit representation of supply-demand interactions

lead to superior schedule planning decisions.

As a solution method for the MINLP a simple heuristic method is proposed based on a local

search procedure. The results on the heuristic are promising in terms of the reduction in the

computational time and the quality of the solutions. The future work regarding the heuristic

is the utilization of a Lagrangian relaxation based methodology. The heuristic then needs to

be tested for larger instances to see the limit of our methodology. For the simplification of the

model a piecewise linear approximation of the logit model can be considered.

The demand model included in the integrated model has only the price variable as a policy

variable. The other attributes of the itineraries cannot becontrolled by the integrated model.

Therefore a future direction is the extension of the model where the flights can be rescheduled

based on the demand model.
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Table 8: The comparative results of the experiments

Experiments Models Profit Transported pax. Flights Allocated seats
1 PISP 11,559 281 8 124

SA 15,091 284 8 124
IM 15,091 284 8 124

2 PISP 27,872 400 8 150
SA 35,372 400 8 150
IM 37,335 534 8 217

3 PISP 41,997 884 10 300
SA 50,149 859 10 300
IM 50,149 859 10 300

4 PISP 53,604 943 22 274
SA 69,901 931 22 274
IM 70,904 1,063 24 324

5 PISP 66,129 1,186 16 333
SA 82,311 1,145 16 333
IM 82,311 1,145 16 333

6 PISP 763,321 1,466 10 1,148
SA 904,054 1,448 10 1,148
IM 906,791 1,448 10 1,312

7 PISP 102,756 1,800 32 498
SA 135,656 1,814 32 498
IM 135,656 1,814 32 498

8 PISP 82,253 2,207 26 691
SA 115,983 2,236 26 691
IM 115,983 2,236 26 691

9 PISP 687,314 1,270 10 1,016
SA 854,902 1,270 10 1,016
IM 858,544 1,344 10 1,090

10 PISP 110,055 1,474 34 391
SA 137,428 1,517 34 391
IM 138,575 1,592 34 476

11 PISP 78,527 1,143 20 387
SA 93,347 1,144 20 387
IM 96,486 1,160 20 457

12 PISP 38,104 982 12 370
SA 49,448 1,050 12 370
IM 49,448 1,050 12 370

13 PISP 22,356 446 10 207
SA 27,076 448 10 207
IM 27,076 448 10 207

14 PISP 44,499 605 10 267
SA 52,369 599 10 267
IM 53,128 699 12 267

15 PISP 19,625 479 6 185
SA 26,486 504 6 185
IM 26,486 504 6 185

16 PISP 173,513 2,676 62 958
SA 208,561 2,678 62 958
IM 194,598 2,664 59 873

17 PISP 162,601 2,717 46 1,044
SA 196,434 2,742 46 1,044
IM 191,091 2,929 48 1,161

18 PISP 292,956 5,362 75 1,784
SA 365,753 5,388 75 1,784
IM 351,655 5,295 73 1,667
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