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Abstract: In this paper, the macroscopic traffic control of a large-scale mixed transportation
network consisting of freeway and urban network is tackled. The urban network is partitioned
in two regions, each one with a well-defined macroscopic fundamental diagram (MFD), i.e. a
unimodal and low-scatter relationship between network density and outflow. The freeway is
regarded as one alternative commuting route which has one on-ramp and one off-ramp within
each urban region. The urban and freeway flow dynamics are formulated with the tool of MFD
and asymmetric cell transmission models, respectively. Four controllers are considered to control
the flow distribution between urban regions and freeway: (i) two on the border of urban regions
operating to manipulate the perimeter interflow rates between the two regions, and (ii) two
other controllers on the on-ramps for ramp metering to control the flow rates from urban roads
to the freeway. The optimal traffic control problem for the mixed network is solved by a receding
horizon approach in order to maximize the number of trips that reach their destinations. The
results of this paper can be extended to develop efficient control strategies for large-scale mixed
traffic networks.

Keywords: Traffic control, Optimal control, Model-based control, Optimization problems,
State feedback, Dynamic models.

1. INTRODUCTION

Metropolitan transportation networks have a hierarchical
structure which essentially comprise of freeways and urban
roads providing the interrelated infrastructure for mobility
and accessibility. The freeway and the urban network are
inherently coupled yet have dissimilar traffic flow dynamics
which challenge the traffic control problem for mixed
networks.

Traffic networks in large cities are a mixture of two traffic
control entities: urban network and freeways. Integrat-
ing the two entities during heavy congestion conditions
through efficient mixed control policy will provide efficient
performances compared with separate control policies. An
efficient control policy would control and manage the flow
distribution between the urban network and the freeway,
e.g. drivers can travel from the periphery to the city
center by choosing between two routes: either traveling
through the freeway or the urban network. The mixed
control policy can affect the route choice, thereby the flow
distribution, to optimize the whole traffic network.

Ramp metering is the most commonly used controller
in freeways. The ramp metering controller manipulates
the flow rate entering the freeway from the urban roads
surrounding it. Local and coordinated control strategies
were proposed and implemented for ramp metering. In
local control strategies, the control policy for an on-ramp
is determined according to the traffic condition in the sur-
rounding region including the downstream of the freeway

and the upstream of the on-ramp. ALINEA controller,
proposed in Papageorgiou et al. (1991), is an example of
local feedback control. It is a P-controller where the inflow
rate to the freeway is determined corresponding to the
“error” which is the difference between the downstream
density and the reference or the desired density (defined
in advance). In coordinated strategies, the control policy
for multiple on-ramps are determined according to the
traffic conditions in multiple regions including number
of on-ramps and areas in the freeway. The coordinated
ramp metering is in fact a multi-regulator controller as
all on-ramps metering attempt to operate the freeway
traffic conditions near the desired densities. Overviews
of local and coordinated ramp metering control are pre-
sented in Papageorgiou and Kotsialos (2002); Lipp et al.
(1991); Geroliminis et al. (2011). Ramp metering might
not efficiently operate in case of downstream bottleneck
restrictions, for example a high demand off-ramp queue
spillbacks in the freeway and blocks a mainline line. Also,
in case a freeway ends inside a congested city center,
ramp metering might not be able to increase the outflow.
In these cases arterial and freeway networks should be
controlled in an integrated matter.

In urban networks, the macroscopic fundamental diagram
(MFD) aims to simplify the micro-modeling task of the
urban network where the collective traffic flow dynamics
of subnetworks capture the main characteristics of traffic
congestion, such as the evolution of space-mean flows and
densities in different regions of the city. The MFD of urban



traffic provides for different network regions a unimodal,
low-scatter relationship between network vehicle density
[veh/km] and network space-mean flow or outflow [veh/hr]
if congestion is roughly homogeneous in the region. Al-
ternatively, the MFD links accumulation, defined as the
number of vehicles in the region, and trip completion flow,
defined as the output flow of the region. Network flow or
trip completion flow increases with accumulation up to
a critical point, while additional vehicles in the network
cause strong reductions in the flow. The physical model
of MFD was initially proposed by Godfrey (1969) and ob-
served with dynamic features in congested urban networks
in Yokohama by Geroliminis and Daganzo (2008), and
investigated using empirical or simulated data by Buisson
and Ladier (2009); Ji et al. (2010); Mazloumian et al.
(2010); Daganzo et al. (2011) and others. A solution for
heterogeneous networks is that they can be partitioned to
a number of homogeneous regions with small variances of
link densities so that region will have a well-defined MFD,
see Ji and Geroliminis (2011).

Recently, Haddad et al. (2012) utilized the MFD to in-
troduce elegant perimeter control to improve mobility and
decrease delays in large urban networks.

The results encourage us to utilize the MFD and its
perimeter controls for the mixed urban and freeway net-
work. In this paper, the MFD is used to model the urban
network and the perimeter controllers are integrated with
the ramp metering controllers. The urban network is as-
sumed to be partitioned into two urban regions having
their own MFDs, while the freeway passes through both
urban regions having one on-ramp and one off-ramp within
each region. The traffic dynamics of the freeway are mod-
eled according to the asymmetric cell transmission model
(ACTM) in Gomes and Horowitz (2006). Recent study
with empirical data (Geroliminis and Sun (2011)) has
shown that a freeway system might not be well-described
with an MFD because of strong hysteresis phenomena.

In this paper, the optimal control problem for a mixed net-
work is formulated. The optimal policy aims to maximize
the trip completion in the whole network by manipulating
(1) the inflows to the freeway from the urban network
through the ramp metering controllers, and (2) the flows
transfer between urban regions through the perimeter con-
trollers. The optimal control problem is solved by a reced-
ing horizon framework, and the results are compared with
a local feedback controller for a few case study examples.

2. A MIXED URBAN AND FREEWAY NETWORK

This section describes the mixed network. Let us consider
a mixed urban and freeway network as shown in Fig. 1.
The traffic dynamics of an MFD, linking space-mean
flow, density, and speed of a large urban area, is utilized
to model the urban network. It is assumed that the
urban network is heterogeneous and partitioned into two
homogeneous urban regions, denoted by (1) and (2),
having their own MFDs. While there is a freeway, denoted
by (3), that passes through both urban regions having
one on-ramp and one off-ramp within each region. The
traffic dynamic of the freeway is modeled according to the
asymmetric cell transmission model (ACTM) described

in Gomes and Horowitz (2006), which is an extension
version of the cell transmission model in Daganzo (1994).

u12(t)

u21(t)

uor,1(k)

uor,2(k)

On-ramp

On-ramp

Off-ramp

Off-ramp

Freeway (3)
Region (1)

Region (2)

Freeway (3)

Fig. 1. A mixed urban and freeway network: two regions
(1) and (2), and a freeway (3).

To keep elegant the dynamics formulation, the following
assumptions are made regarding the trip routes in the
mixed network: (A1) the freeway can be used at most once
during the trip (exit and re-enter is not allowed), (A2)
there is at most one urban region transfer during the trip,
e.g. traveling from 1 to 2 then to 1 is not allowed. Under
these assumptions, an origin-destination trip might have
at most two routes since the traveler can choose between
using the urban network or the freeway, or using both the
urban network and the freeway (if this option exists), e.g.
there are two routes from 1 to 1: 1 → 1 traveling from 1 to
1 using the urban network of 1, and 1 → 3 → 1 traveling
from 1 to 1 using first the urban network of 1 and then
the freeway. All origin-destination trip routes in the mixed
network are summarized in Table 1.

Table 1. Trip routes and demands in the mixed
network.

O\ D 1 2 3

1
q11 : 1 → 1 q12 : 1 → 2 q13 : 1 → 3
q131 : 1 → 3 → 1 q132 : 1 → 3 → 2 q123 : 1 → 2 → 3

2
q21 : 2 → 1

q22 : 2 → 2
q23 : 2 → 3

q231 : 2 → 3 → 1 q213 : 2 → 1 → 3

3
q31 : 3 → 1 q32 : 3 → 2

q33 : 3 → 3
q321 : 3 → 2 → 1 q312 : 3 → 1 → 2

Let Qij(t) [veh/sec] be the total demand generated in
origin i with destination to j at time t, i, j = 1, 2, 3.
We distinguish between two demands for the same origin-
destination: qij(t) [veh/sec] denotes a generated demand
in origin i with destination j at time t that belongs to the
trip route i → j, while qikj [veh/sec], k 6= i, j, denotes a
generated demand in origin i with destination j at time
t that belongs to the trip route i → k → j. All origin-
destination demands are also summarized in Table 1. Note
that Qij(t) is the sum of qij(t) and qikj(t) (if it exists).
Let θ [−] be a priori known ratio, θ ∈ [0, 1], where
qij(t) = θ · Qij(t) and qikj(t) = (1 − θ) · Qij(t) if qijk(t)
exists, otherwise qij(t) = Qij(t). e.g. Q11(t) = q11(t) +
q131(t), q11(t) = θ · Q11, q131(t) = (1 − θ) · Q11, while
Q22(t) = q22(t). In this paper, due to sized limitations, the
value of parameter θ is constant (with time and O-D type)
input parameter to the model. In the more sophisticated
approach (ongoing work) θ’s will be embedded in the
modeling formulation and traffic conditions in the different
alternatives will dynamically specify their values.

Corresponding to the above traffic demands, six accumu-
lation states are used to model the dynamic equations of



the urban network : nij(t) [veh], i = 1, 2; j = 1, 2, 3, where
nij(t) is the total number of vehicles in region i with next
destination j at time t. Let us denote ni(t) [veh] as the
accumulation or the total number of vehicles in region i at
time t, i.e. ni(t) =

∑3
j=1 nij(t).

The MFD is defined byGi(ni(t)) [veh/sec] which is the trip
completion flow for region i at ni(t). The trip completion
flow for region i is the sum of transfer flows, i.e. trips
from i with destination j, i 6= j, plus the internal flow,
i.e. trips from i with destination i. The transfer flow from
i to j is calculated corresponding to the ratio between
accumulations, i.e. Mij = (nij/ni) ·Gi(ni(t)), i 6= j, while
the internal flow from i with destination to i is calculated
by Mii = (nii/ni) · Gi(ni(t)). These relationships assume
that trip length for all trips within a region (internal or
external) are similar. For a description in different case
the reader can refer to Geroliminis (2009), which will not
alter the methodology. Simulation and empirical results,
Geroliminis and Daganzo (2008), show that the shape of
MFD can be approximated by a non-symmetric unimodal
curve skewed to the right, i.e. critical density that maxi-
mizes network flow is smaller than half of jammed density.
Thus, we utilize a 3rd polynomial function of ni(t), e.g.
Gi(ni(t)) = ai · n

3
i + bi · n

2
i + ci · ni, where ai, bi, ci are

estimated parameters, e.g. from real data.

2.1 Modeling the freeway in the mixed network

The traffic dynamics of the freeway in the mixed network
are based on the ACTM. The mass conservation equations
of the on-ramps are adjusted to fit the mixed network
problem as the input demands of the on-ramps are in fact
the output of the MFDs. Moreover, the off-ramp flows of
the freeway are the input demands for the urban network,
therefore, new equations are formulated to split the off-
ramp flows to different origin-destination demands for the
MFDs.

In the following, a brief description of the ACTM is pre-
sented, while the reader can refer to Gomes and Horowitz
(2006); Daganzo (1994) for a full description. The ACTM
divides the freeway to L “cells”, where each cell l of the
freeway contain at most one on- or one off-ramp. Three
cells of the freeway are schematically shown in Fig. 2 as
cell l has an on-ramp belonging to region i. The number
of vehicles in cell l at time step k, k = 0, 1, . . . ,K − 1,
is denoted by xl(k) [veh], while fl(k) [veh] is the number
of vehicles moving from cell l to l + 1 during time step
k. The on-ramp is feeded from Mi3(t), the demand gen-
erated in region i of the urban network with destination
to the freeway, calculated by the MFD. Let nor,i(k) [veh]
be the queue length of the on-ramp in region i at time
step k, and nor,i,max [veh] be the maximum queue size of
the on-ramp in region i. It is assumed that each cell l
has a triangular fundamental diagram with the following
parameters: wl ∈ [0, 1] is the normalized congestion wave
speed, vl ∈ [0, 1] is the normalized free-flow speed, x̄l

[veh/lane] is the jam accumulation, and f̄l [veh/hour/lane]
is the mainline capacity. The freeway network is integrated
to the urban network through the following equations.

The unmetered on-ramp flow for,l(k) [veh] is the number
of vehicles that can enter cell l from its on-ramp during
time step k. It is calculated as follows

l l + 1l − 1
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i
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uor,i(k) · for,l(k)

Fig. 2. Three cells of the freeway in the ACTM. Cell l has
an on-ramp belonging to region i.

for,l(k) = min
[

nor,i(k) +Mi3(t) · Tk,

, ξl · (x̄l − xl(k)), sor,i(k)
] (1)

where i is the region that the on-ramp belongs to, Tk [sec]
is the time step size, sor,i(k) [veh] is the maximum number
of vehicles that can enter the freeway in saturated condi-
tions for the on-ramp belonging to region i at time step k,
and ξl [−] ∈ [0, 1] is the on-ramp flow allocation parameter,
see Gomes and Horowitz (2006).

The on-ramp metering controllers, denoted by uor,i(k) [−],
i = 1, 2, are introduced on the entrance of the freeway in
region i, see Fig. 1. The on-ramp controllers meter the
flow entering the freeway. The queue dynamics for the on-
ramp belonging to region i with ramp metering controller
uor,i(k) is as follows

nor,i(k + 1) = min
(

nor,i(k) +Mi3(t) · Tk−

− uor,i(k) · for,l(k), nor,i,max

) (2)

The mainline flow in the freeway is calculated as follows:

fl(k) = min
[

(1− βl(k)) · vl · (xl(k) + γ · for,l(k)),

, Fl(k), wl+1 · (x̄l+1 − xl+1(k)− γ · for,l+1(k))
] (3)

where Fl(k) , min
{

f̄l,
1−βl(k)
βl(k)

·f̄off,l

}

, f̄off,l [veh] is the off-

ramp capacity, γ [−] ∈ [0, 1] is the on-ramp flow blending
coefficient, and βl(k) [−] is the split ratio for the off-ramp
in cell l. The exit flow of the off-ramp in cell l, foff,l(k)
[veh], is calculated as follows:

foff,l(k) =
βl(k)

1− βl(k)
· fl(k) (4)

The mainline mass conservation is

xl(k + 1) = xl(k) + fl−1(k) + uor,i(k) · for,l(k)−

− fl(k)− foff,l(k)
(5)

for l = 1, 2, . . . , L, and k = 0, 1, . . . ,K−1, where for,l(k) =
0 and/or foff,l(k) = 0 if cell l does not contain on-ramp
and/or off-ramp, respectively.

For each cell of the freeway, we do not keep track of the
origins and destinations of vehicles. But, vehicles existing
from the off-ramp can have multiple destinations. To
calculate the off-ramp flow distribution we assume that
the exit ratios are similar to the O-D table ratios. Hence,
in order to integrate this effect the off-ramp exit flows,
denoted by “hat” variables, for off-ramp of region 1 are:

[q̂31(t), q̂312(t), q̂231(t)] = R1 · [q31 + q131, q312, q231] (6)

where

R1 =
foff,1(k)

Tk

·
1

q31 + q131 + q312 + q231
(7)

and similar for off-ramp of region 2.



3. THE MIXED NETWORK CONTROL PROBLEM

3.1 Problem formulation

In the mixed network control problem, there are two
types of controllers: the perimeter controllers of the urban
regions and the on-ramp metering control of the freeway.
The goal of controlling the mixed network is to maximize
the total number of vehicles that complete their trips
and reach their destinations. The perimeter controllers
denoted by u12(t) and u21(t) [−] are introduced on the
border between the two regions as shown in Fig. 1, where
the purpose is to control the transfer flows. Since the
perimeter controllers exist only on the border between
the two regions, the internal flows cannot be controlled
or restricted, while the transfer flows are controlled by
the controllers such that only a ratio transfers at time t.
The perimeter controllers u12(t) and u21(t), where 0 ≤
u12(t), u21(t) ≤ 1, are the ratio of the transfer flow that
transfers from region 1 to 2 and region 2 to 1 at time
t, respectively. The on-ramp metering controllers uor,i(k),
i = 1, 2, are introduced on the entrance of the freeway
and meter the flow entering the freeway. The control
problem has six state variables describing the dynamics
of the urban network, two state variables describing the
queue dynamics of the freeway on-ramps, and L states of
accumulation for the cells of the freeway. Therefore, the
mixed control problem is formulated as follows:

J = max
u12(t), u21(t),

uor,1(k), uor,2(k);

for k = 0, . . . , K − 1

∫ tf

t0

[

M11(t) +M22(t)

]

dt+

K−1
∑

k=0

fL(k) (8)

subject to

dn11(t)

dt
=

q̂321(t) + q21(t)

q̂321(t) + q213(t) + q21(t)
· u21(t) ·M21(t)+

+ q11(t) + q̂231(t) + q̂31(t)−M11(t)

(9)

dn12(t)

dt
= q12(t) + q123(t) + q̂312(t)− u12(t) ·M12(t) (10)

dn13(t)

dt
=

q213(t)

q̂321(t) + q213(t) + q21(t)
· u21(t) ·M21(t)+

+ q13(t) + q131(t) + q132(t)−min(M13(t), Cor,1(t))

(11)

dn21(t)

dt
= q21(t) + q213(t) + q̂321(t)− u21(t) ·M21(t) (12)

dn22(t)

dt
=

q12(t) + q̂312(t)

q12(t) + q123(t) + q̂312(t)
· u12(t) ·M12(t)+

+ q22(t) + q̂132(t) + q̂32(t)−M22(t)

(13)

dn23(t)

dt
=

q123(t)

q12(t) + q123(t) + q̂312(t)
· u12(t) ·M12(t)+

+ q23(t) + q231(t)−min(M23(t), Cor,2(t))

(14)

0 ≤

3
∑

j=1

nij(t) ≤ ni,jam i = 1, 2 (15)

umin ≤ uij(t) ≤ umax i = 1, 2; j = 3− i (16)

umin ≤ uor,i(k) ≤ umax i = 1, 2; k = 0, 1, . . . ,K − 1 (17)

nij(t0) = nij,0 i = 1, 2; j = 1, 2, 3 (18)

nor,i(t0) = nor,i,0 i = 1, 2 (19)

and (1)− (7)

where tf [sec] is the final time; nij,0, i = 1, 2; j =
1, 2, 3, and nor,i,0 are the initial accumulations for the
MFDs and on-ramps at t0; n1,jam and n2,jam [veh] are
the accumulations at the jammed density in regions 1
and 2; umin and umax are the lower and upper bounds for

perimeter and metering controllers; and Cor,i(t) [veh/sec]
is the available flow capacity in the on-ramp queue, i.e
Cor,i(t) = (nor,i,max − nor,i(k))/Tk. Recall that Mij =
(nij/ni) · Gi(ni(t)), i = 1, 2; j = 1, 2, 3. The equations
(9)–(14) are the conservation of mass equations for nij(t),
while (15) are the lower and upper bound constraints on
accumulation in region i.

3.2 Problem solution – a receding horizon (RH) controller

The optimal control problem is solved following the re-
ceding horizon (RH) scheme, where at each time step an
optimal open-loop of the problem with finite horizon is
optimized, then only the first controller is applied to the
plant and the procedure is carried out again. A receding
horizon framework has been used for optimization in differ-
ent traffic control problems, e.g. ramp metering of freeway
networks in Bellemans et al. (2006); Papamichail et al.
(2010), and mixed urban and freeway networks in van den
Berg et al. (2007).

The RH controller obtains the optimal control sequence for
the current horizon by solving an optimization problem us-
ing the direct sequential method, also referred to as single-
shooting or control vector parameterization (CVP) in the
literature, e.g. Betts (2010). The direct sequential method
transcripts the open-loop optimal control problem into a
finite-dimensional nonlinear problem through discretiza-
tion of the control variables only with piecewise constant
controls, while the ODEs are embedded in the nonlinear
problem, i.e. numerical integration are used between the
time steps. The full description of the solution method is
not presented here because of the limitation of number
of pages, however, the reader can refer to Haddad et al.
(2012) for further information.

3.3 Greedy control (GC) and ALINEA

In order to analyze the performance of the RH controller,
comparison results are done with a state feedback con-
troller that applies a greedy control (GC) for the urban
network and ALINEA ramp metering strategy for the
freeway.

The GC policy for the perimeter controllers is determined
by the current accumulations n1(t) and n2(t). Let n1,cr and
n2,cr [veh] be the accumulations that maximize G1 and G2,
respectively. The GC is designed according to the following
policy: if both regions are uncongested, i.e. n1(t) ≤ n1,cr

and n2(t) ≤ n2,cr, then both controllers should maximize
the transfer flows, therefore [u12(t), u21(t)] = [umax, umax].
If one region is congested and the other one is uncongested,
then the controllers should minimize the transfer flow to
the congested region and maximize the transfer flow to the
uncongested region. If both regions are congested, then
controllers should minimize the transfer flow to the “more
congested” region, and maximize the transfer flow to the
“less congested” region, e.g. if n1(t)/n1,jam > n2(t)/n2,jam,
then region 1 is more congested than region 2, therefore
[u12(t), u21(t)] = [umax, umin].

The ALINEA policy for the on-ramp metering controllers
is determined by the current accumulation of the cell l con-
nected to the on-ramp. The on-ramp metering controller
κ [1/sec] determines the number of vehicles entering the



freeway corresponding to the difference between the cur-
rent accumulation in cell l and the desired accumulation
xref ,

for,l(k + 1) = for,l(k) + κ · (xl(k)− xref) (20)

4. RESULTS

In this section, a numerical example with different levels
of demand is presented to investigate the characteristics of
the proposed RH controller. The time varying demand is
simulating an one hour of morning peak situation where
region 2 as the central business district (CBD) attracts
most of the trips. For the presented example, both regions
have the same MFD consistent with the MFD observed in
Yokohama (Geroliminis and Daganzo (2008)), the lower
bound is umin = 0.1, and the upper bound is umax = 0.9.
Furthermore, the freeway has four lanes and consists of
17 cells each has length of 0.48 [km] except the first cell
which is long enough to accommodate all the vehicles in
the entrance queue of the system. The parameters of the
triangular fundamental diagram of the freeway cells are:
the jam accumulation x̄l = 60 [veh/lane], the mainline
capacity f̄l = 2000 [veh/hour/lane], and the free flow speed
equals to 88.5 [km/hour]. Other setup of the simulation
are: the split ration of off-ramps β = 0.1 [−], the maximum
queue size of on-ramps nor,i,max = 300 [veh], and the on-
ramps capacity flow sor,i(k) = 6000 [veh/hour].

In this numerical example, regions 1 and 2 are initially
congested and uncongested, respectively, i.e. the initial
accumulations are n1(t0) = 5800 and n2(t0) = 3500.
The evolution of accumulations nij(t) over one hour,
corresponding to the RH controller with θ = 0.7 are
presented in Fig. 3(a), while the evolutions presented
in Fig. 3(b) are corresponding to the GC. Note that at
the beginning of the control process, both GC and RH
controllers decrease the total accumulation in region 1,
n1(t), by u21(t) = umin. Afterwards, the RH controller
tries to keep the both accumulations constant by changing
u21 from umin to umax at t = 240 to let more vehicles
enter to region 1. In contrast, the GC brings the two
accumulations equal, i.e. n1(650) = n2(650) = 4200, and
after that instance, both region accumulations increase
together while the chattering behavior occurs as a result of
switching control between umin and umax since the more
congested region is constantly altering between region 1
and region 2; note the saw lines of accumulations after
t = 650. This chattering behavior of GC always happens
once both regions reach the critical accumulation and
makes both regions to get more congested.

The control sequences u12(k), u21(k), uor,1(k), and uor,2(k)
of RH and GC are shown in Fig. 3(c) and Fig. 3(d). The
chattering behavior of GC urban perimeter controllers is
apparent in Fig. 3(d). The effect of ramp controllers on the
condition of freeway is more comprehensible with the help
of Fig. 3(e), where the density contour of freeway for RH
and GC is illustrated. The main points of interest are cell 3
and cell 11 to the end of freeway specifically during the last
1000 seconds of the simulation. The RH control uor,1(k) by
letting more vehicles to enter the freeway than GC tries to
avoid spillback from the on-ramp (cell 3) and consequently
less vehicle in the region 1 and more vehicle queuing in the
freeway behind the cell 3, which seems to be intuitive for

0 1000 2000 3000 3660
0

2000

4000

6000

8000

10000

Time [sec]
(a)

R
H

 A
cc

um
ul

at
io

n 
[v

eh
]

 

 

0 1000 2000 3000 3660
0

2000

4000

6000

8000

10000

Time [sec]
(b)       

G
C

 A
cc

um
ul

at
io

n 
[v

eh
]

 

 n
11

n
12

n
13

n
21

n
22

n
23

n
1

n
2

0 1000 2000 3000 3600
0

0.2

0.4

0.6

0.8

1

Time [sec]
(c)

R
H

 u
 [−

]

 

 

0 1000 2000 3000 3600
0

0.2

0.4

0.6

0.8

1

Time [sec]
(d)

G
C

 u
 [−

]

 

 u
12

u
21

u
or,1

u
or,2

Fig. 3. Numerical example results.

traffic control to keep the vehicles in the freeway instead of
urban network during the rush hour. The same behavior
is seen for uor,2(k) where the GC tries to keep the cell 11
at capacity which yields to underutilization of the rest of
cells to the end of freeway. Note that cells 3 and 11 have
on-ramps and cells 7 and 15 have off-ramps and the critical
density of cells is 99.4 [veh/km].

The cumulative trip completion corresponding to GC and
RH controllers are shown in Fig. 3(f). The key difference is
between the urban trip completions which for the GC the
almost horizontal ending part of trip completion reveals
gridlock of urban network. The difference between freeway
trip completions is mostly because of the inherent view
of control schemes: RH global view versus local view of
ALINEA. Since the second term of objective function is
the last cell of freeway outflow, the RH controller tries to
make the last cell at capacity, while the goal of ALINEA
is to make the cells with on-ramps at capacity (see density
of cell 17 specifically during last 1000 seconds of sim-
ulation). The effect of demand level on the controllers
is also scrutinized; the same initial accumulations with
85% (medium demand) and 70% (low demand) of the
original demand. Table 2 summarizes the cumulative trip



completion and the difference of the total delays at the
end of the simulation (expressed by the area between the
RH and GC cumulative trip completion curves [veh · sec]).
The consistent results of the example for different levels
of demand indicate the superiority of RH controller com-
pared to GC according to the trip completion and total
delay. It can be inferred that the differences between the
total delays are proportional to the congestion level, i.e.
as the demand increases the difference of total delay also
increases. In addition, during uncongested regime the per-
formances of GC and RH controller are similar, however,
with increase of demand the performance of GC declines,
whereas, outcome of RH controller demonstrate that with
proper control scheme more traffic can be managed and
accommodated in the mixed traffic network.

Table 2. The trip completion and the total
delay difference for the numerical example.

demand
RH GC RH-GC

[veh · 104] [veh · 104] [veh · sec · 106]

low 3.29 3.03 5.39
medium 3.47 2.87 8.47
high 3.43 2.36 12.0

5. CONCLUSION

The large-scale control problem of a mixed traffic network
consisting of two urban regions with MFD representation
and one alternative freeway route modeled with the asym-
metric cell transmission model is formulated. For traffic
control purposes, two controllers on the perimeter of re-
gions manipulate the urban inter-transfer flow; in addition,
two controllers operate on on-ramps to control the traffic
flow from urban regions to the freeway. The optimal traffic
control problem is solved by a receding horizon control
scheme. The proposed controller is compared with an
urban perimeter greedy controller plus ALINEA controller
for freeway and the results show the advantage of control
coordination by the receding horizon controller for all
numerical examples with various levels of demand. These
results can be beneficial for municipal administrators to
develop efficient hierarchical control strategies for mixed
traffic networks. Traffic control problem of networks with
more complex structure and dynamics is ongoing research.
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