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Abstract

This paper presents an approach to integrate social interactions with a agent based simulation
model for continuous activity planning. It describes an interface to the underlying target-based
model providing the possibility to influence agents’ behavior by manipulating targets and
effectiveness functions. It proposes tasks as the mean for exogenous modules to interact with
agents and describes a module for managing social interactions among agents. This module uses
the interface to ensure agents adhere to appointments and meet at arranged locations and specified
dates. The validation of the approach focuses on activities shared among household members
requiring regular meetings to arrange future responsibilities. We conclude by suggesting
directions for future research.
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1 Introduction

Microscopic travel demand simulation software uses a direct representation of virtual people
(usually referred to as agents) to generate demand in terms of activity plans. This leads to high
computational complexity which often results in computational performance and memory issues.
Microscopic models typically introduce constraints to counter such issues. For instance, Balmer
(2007) limits the maximum simulation horizon of standard size scenarios to a single day, making
it difficult to investigate effects occurring over a period of days or weeks. Another limitation is
that agents must commit themselves to a specific day-plan, making it challenging to simulate
unexpected events realistically (Charypar et al. (2009), Dobler et al. (2012)). To model such
flexible behavior, a different simulation approach becomes necessary that is capable of modeling
demand continuously, i.e. agents should be able to make decisions about upcoming activities on
the fly and with an open time horizon (see also the empirical insights from the work of Doherty
(2005)).

We proposed a microscopic travel demand simulation in Märki et al. (2012a) and Märki et al.

(2012b) that is capable of modeling demand continuously by using behavioral targets to guide
agents through their decision space. These targets are closely related to observed behavior like
e.g. execution frequency or time spent for an activity and can consider exogenous effects like
social and cultural norms. Our agents continuously track their performance and compare it to
their behavioral targets using observation windows of different durations. Deviations from the
desired behavior cause discomfort which is conveyed to a planning heuristic, making decisions
about future activities agents should execute. This enables agents to react spontaneously to
unexpected events. It also reduces memory consumption and computational complexity because
agents do not need to keep track of complete schedules, making simulation periods of several
months feasible.

The aim of this work is to address the question on how to integrate social interactions with
the continuous model while preserving its ability to simulate long periods in reasonable time
and keeping its memory footprint small. We describe an interface to the underlying target-
based model providing the possibility to influence agents’ behavior by manipulating target
and effectiveness functions. Arbitrary exogenous modules can use this interface to manipulate
agents according their purpose. We propose to use this interface for a module managing social
interactions among agents. This module influences agents’ behavior to ensure they adhere to
their appointments and meet at arranged locations and specified dates.

The remainder of this paper is structured as follows: first, we introduce the target-based model
and review the decision model with a focus on relevant elements for manipulating agents’





         

behavior. This is followed by a description of the interface and an illustration on how to use
it to influence agents’ behavior. The subsequent section validates the approach by focusing
on activities shared among household members requiring regular meetings to arrange future
responsibilities. We conclude the paper with a perspective on future tasks.

2 Related Work

The target-based approach shows similarities to the need-based theory introduced by Arentze
and Timmermans (2006, 2009). Whereas Arentze and Timmermans used needs as people’s
motivation to execute activities, we see the satisfaction of needs as one possible target in our
model. Generally, we assume that people describe their desired performance through measures
which are closer to data found e.g. in Swiss Federal Statistical Office (BFS) (2006) or other
travel diaries (e.g. Axhausen et al. (2002), Schönfelder (2006), Axhausen et al. (2007)). We pick
up Winston’s (1982) suggestion to use time-dependent utilities for activities (see also Axhausen
(1990, p. 34-38) for a summary or Gliebe and Kim (2010) for a recent work in this tradition)
and introduce time-dependent effectiveness functions, describing the effectivity of activities and
locations with respect to discomfort reduction. The target-based model was introduced in Märki
et al. (2012a) and validated in Märki et al. (2012b) using an existing six-week continuous travel
diary (Schönfelder (2006), Axhausen et al. (2007)).

3 Target-Based Model

Agents, representing virtual people, are the central component of our model. Each agent has
the motivation to execute activities and specifies its desired performance through behavioral
targets. Deviations to behavioral targets result in discomfort which primes agents for taking
action against the deviation; higher deviations result in higher discomfort which in turn leads to
a higher urge to take action. Agents can reduce discomfort through the execution of activities
at different locations and we assume that agents prefer activity-location pairs that provide
more discomfort reduction. This is similar to Arentze and Timmermans’ work (Arentze and
Timmermans (2009)), where they proposed activity utility as a function of need reduction.





         

3.1 Targets

The core assumption of this work is that people are motivated to execute activities and that
they have a conception of their motivation in form of a performance they want to achieve.
People specify this performance through behavioral targets and try to match with them across
observation windows of different duration. For instance, a person would like to exercise roughly
two hours of sport about twice per week. This person would still agree on 1 hour of exercise
once per week and states that up to 2.5 hours of exercise three times per week would still be
compatible with his weekly schedule. This targeted behavior is transformed into following
targets:

• The percentage of time target defines the time a person would like to spend for an activity
within an observation window. In order to simplify modelers’ task, it is possible to specify
the total execution duration and the conversion to the percentage of time target is done
internally. For the above example, the modeler would specify a target value of 2 hours
of exercise, a bandwidth of +0.5

−1 hours (upper and lower bound of the target value) and an
observation windows of one week (see Fig. 1(a)).

• The frequency target defines the number of activity executions a person would like to
accomplish within an observation window. For the above example, the modeler would
specify a target value of 2 executions with a bandwidth of +1

−1 executions and an observation
windows of one week.

Play tennis, swim and hike are possibilities to exercise. At the same time, playing tennis is
also a chance to socialize or even a mean to maintain business relations (see e.g. Arentze and
Timmermans for a discussion on multi purpose activities). Our model allows for activities to
serve multiple targets and it is possible to assign a target to several activities. This facilitates
configuration of interacting effects as outlined above.

Agents monitor their performance during simulation and compare these state values to target
values (see Fig. 1(b)). State values are exponentially discounted over the observation window of
targets. This simulates a forgetting process where agents give more weight to recent behavior
and gradually discount their past performance.

3.2 Effectiveness Functions

People seem to have a time-dependent preference to execute activities and/or visit locations.
Reasons for this behavior can be manifold and vary from constraints (e.g. opening hours)





         

Figure 1: Illustration of agent configuration and performance monitoring.

(a) Schematic illustration of a target configuration that defines the average time
a person would like to spend on executing an activity. Target values as
well as upper and lower bounds (defining the bandwidth) can be static or
dynamic and are therefore modeled as functions in time.

(b) Schematic illustration of performance monitoring. The state value (green
line) is calculated through a convolution of the activity execution pattern
with an exponential kernel resulting in an exponentially weighted moving
average. The observation window, in which the person tries to comply with
the target, defines the kernel length.

over norms (e.g. business hours) and dependencies (e.g. weather conditions) to combinations
of such effects. Effectiveness functions are a simple but comprehensive concept to describe
such interdependencies and are expressed in percentage of execution effectivity. Effectiveness
functions inform agents about the effectiveness of activities and locations with respect to
discomfort reduction. This is similar to Winston (1982) who proposed time-dependent utilities
for activities (see also Axhausen (1990, p. 34-38) for a summary or Gliebe and Kim (2010) for
a recent work in this tradition). Possible effects that can be modeled by effectiveness functions
are:

• Shop opening hours for a daily shopping activity. Agents can use this information to
either determine if they can shop and for how long or how long it takes until they can shop
next time. Since effectiveness functions can be location dependent, it is also possible to





         

model location dependent shop opening hours.
• Daylight intensity for a sleep activity. This function specifies the light intensity. Agents

can use this information as an indication of sleep effectiveness. Hereby, we assume that
people sleep at night and have already adapted to their current timezone.

• Business hours for a work activity. This function can be seen as a cultural norm (dif-
ferent cultures may have different business hours) and a social norm (social groups, e.g.
professions, may have different business hours). Agents can use this information as an
indication of work effectiveness. Hereby, we assume that people depend on co-workers to
be able to do their work (the degree can differ depending on the profession).

• Seasonal effects for a sport activity. This function is location dependent and combines
different effects like time of the year and weather conditions. As an example, a ski resort
can have a hight effectiveness during the winter months after a snowfall whereas the yacht
club has a hight effectiveness during the summer months with sunny weather and a good
breeze. This enables agents to follow seasonal rhythms because they choose to ski at the
ski resort during the winter and to sail at the yacht club during the summer.

4 Decision Model

Other approaches to agent-based microsimulations revealed various disadvantages. Balmer
(2007) re-planned the same day until the algorithm produced an optimal state. This procedure
led to high computational costs. Kuhnimhof and Gringmuth (2009) struggled with inflexibilities
when agents should spontaneously react to unexpected events. Charypar and Nagel (2006)
formulated the planning procedure as a reinforcement learning problem and reported that this
approach performs poorly for large scenarios. We use a decision heuristic to overcome the limi-
tations described above. The proposed heuristic uses a continuous decision procedure, enabling
agents to spontaneously react to unexpected events. Since a heuristic aims to approximate a
good solution, it is also possible to use incomplete knowledge about the state of mind and plans
of other agents. This is helpful since complete knowledge generally induces high computational
and memory costs. One could argue that people seek optimal day plans and applying a heuristic
makes this infeasible. However, other authors (e.g. Simon (1955) and Schlich (2004)) doubt that
behavior can be explained as a utility maximization function.

The decision heuristic we proposed in Märki et al. (2012a) combines several aspects which are
derived from targets and effectiveness functions. The decision heuristic takes each promising
activity-location pair, optimizes its variables to find the highest heuristic value, and decides to
implement the activity-location pair which yields the highest heuristic value per invested time.





         

The heuristic function is defined as

HF(tts, tes, tee) = DR(tes, tee) · LA(tee) ·CEE(tes, tee) · ET Q(tts, tes, tee) (1)

the multiplication of the discomfort reduction DR(tes, tee) between execution start tes and ex-
ecution end tee with a look-ahead measure LA(tee) at execution end multiplied by the current
execution effectiveness CEE(tes, tee) and the execution time quota ET Q(tts, tes, tee). The follow-
ing list discusses the heuristic function with a focus on aspects relevant for the location choice
procedure (see Märki et al. (2012a) for a more detailed explanation of the heuristic):

• Discomfort: Discomfort builds on targets and is a function of the difference between
target value and state value. It takes longer to execute an activity at a location with low
effectiveness because it takes longer for activity-location pairs with a low effectiveness
to increase their state value compared to pairs with high effectiveness (the calculation of
the state value (see Fig. 1(b)) also takes effectiveness into account). Since the heuristic
chooses the activity-location pair that yields the highest heuristic value per invested time,
agents have a preference for effective locations.

• Discomfort Reduction: Discomfort reduction is the difference between the discomfort at
execution start and execution end. We assume that people have a preference for activity-
location pairs that yield the highest discomfort reduction and hence, we maximize the
heuristic function.

• Look-Ahead Measure: The look-ahead measure builds on effectiveness functions and is
calculated through the convolution of an effectiveness function with an exponential kernel
that points into the future of the simulation. This gives an indication about prospective
effectiveness and hence, about the flexibility to execute an activity at a later point in
time. The decision heuristic uses this measure to postpone activities with more execution
options/higher prospective effectiveness and favors other activities for current execution.

• Current Execution Effectiveness: The current execution effectiveness builds on effec-
tiveness functions and is calculated through the integral of the effectiveness function
between activity start and end normalized by the activity execution duration. This measure
introduces a preference to execute activity-location pairs during efficient time windows,
whereas efficiency is defined by whatever the effectiveness function represents (e.g. social
or cultural norms).

• Execution Time Quota: The execution time quota introduces an aversion for traveling
and a preference for activity execution and is defined as the ratio between execution
duration and the duration between travel start and execution end. Accordingly, it introduces
a preference for accessible locations (locations that can be reached fast) and fosters activity
chaining.





         

5 Behavior Modification Interface

Agents base their decisions on the heuristic function value HF (see Eq. (1)). This value is
influenced primarily by the discomfort value being the difference of state values and target

values of behavioral targets (see Section 3.1) and time-dependent effectivenesses of activities and
locations (see Section 3.2). Consequently, it is possible to influence agents’ behavior by manipu-
lating behavioral targets and effectiveness functions. The application of these manipulations is
manifold and ranges from stimulating agents to execute activities (by manipulating the frequency
target) over stimulating agents to spend time for an activity (by manipulating the percentage of
time target) to changing agents’ likelihood executing a specific activity and/or visiting a specific
location (by manipulating effectiveness functions). Table 1 illustrates different manipulation
combinations and how they influence the behavior of agents. The aim of these manipulations is
to introduce additional tasks an agent has to execute. Consequently, the described manipulations
are only visible for this specific agent and only during the specified time.

5.1 Target Modification

Target modifications temporarily influence behavior, e.g. by temporarily increasing target values,
lower bounds, and upper bounds of targets (in this work we focus on target values). This is a
mechanism to stimulate agents to e.g. temporarily spend time for an activity (by modifying the
percentage of time target) and/or to temporarily perform activity executions (by modifying the
frequency target). Consequently, a target modification defines the time when the modification
takes place and how targets should be modified during that time. Lets assume a person exe-
cutes an activity (e.g. daily shopping) every other day for two hours (Fig. 2(a) illustrates the
configuration of this activity). Furthermore, we assume that this activity can be executed at any
time (there are no opening hours or other execution constraints). This is necessary to guarantee
that changes in behavior are a result of the target modification and is not influenced by other
elements. Based on these assumptions, we produce a base configuration and apply different
modifications resulting in new configurations. For each of these configurations, we generate 100
identical agents and run a 10 week simulation.

• Fig. 2(a) illustrates the base configuration. In average, the activity should be executed
every second day (3.5 times per week - orange plot) for two hours (3.5 · 2h / (7 · 24h) =

4.17% - dark red plot). Fig. 2(b) shows that agents execute the activity in average slightly
more than 0.5 times per day (about every other day - blue plot) and spend in average about
one hour for this activity per day (every other day two hours - green plot). Consequently,
agents follow the configuration and behave as expected.





         

Table 1: Illustration of different manipulation combinations with the aim to introduce tasks an
agent should execute.

Task Parameters Description
buy extra
food

Activity: daily shopping
Duration: +0.5h

Frequency: +0×+1
−0

Time: 24/04/2013 between
9:00 am to 4:00 pm

This agent invited guests for dinner and needs to do
extra daily shopping to buy groceries. The agent
needs to spend 0.5 extra hours (since these gro-
ceries are in addition to daily needs) and is free to
combine it with other shopping duties or to do an
extra shopping trip (increase of upper bound of fre-
quency). The task should be done on Wed 24th Apr,
2013 between 9 am and 4 pm (before preparation
of dinner) and hence, manipulations on behavioral
targets are active during this time.

extra
sport

Activity: sport
Duration: +2.0h+0

−0

Frequency: +2×+1
−1

Time: 24/04/2013 to
26/04/2013

This agent decided to spend extra time for sport
during e.g. a conference taking place from Wed 24th

Apr, 2013 to Fri 26th Apr, 2013. The agent would
like to spend 2 extra hours (parameter duration)
and favors to split this time in 1 to 3 additional
sessions (parameter frequency). Manipulations on
behavioral targets are active while the conference
takes place.

get a hair-
cut

Activity: personal care
Duration: +1.0h+0

−0

Frequency: +1×+0
−0

Location: hair dresser
flying scissors

Time: 24/04/2013
from 2:30 pm to 3:30 pm

This person has a hair dresser appointment on Wed
24th Apr, 2013 from 2:30 pm to 3:30 pm. Manip-
ulations on behavioral targets are active while the
appointment takes place. Additionally, the location
effectiveness of the hairdresser flying scissors is
set to 100% whereas the location effectiveness of
all other locations are set to 0% while the appoint-
ment takes place. This forces the agent to visit the
location of the hairdresser flying scissors.

• In a second configuration (see Fig. 3(a)), we stimulate the agent to temporarily spend two
hours (dark red plot) for the activity by performing an execution of the activity (orange
plot) on Tuesdays between 9 am and 6 pm. This figure also illustrates that modifications
of target values are discounted (through a convolution with an exponential kernel of one
week) as it is done for state values (see Section 3.1). This is necessary because abrupt
changes would result in a sudden increase of the difference between target and state
values, leading to an instantaneous discomfort increase leaving agents with no time to





         

Figure 2: Illustration of the base configuration and simulation outcome.

(a) In average, the activity should be executed every second day (3.5 times per
week) for two hours (3.5 · 2h / (7 · 24h) = 4.17%).

(b) Agents execute the activity in average slightly more than 0.5 times per day
(about every other day) and spend in average about one hour for the activity
per day (every other day for two hours).

react. Fig. 3(b) shows that every agent executes the activity at least once during Tuesdays
(about 20% of the agents even twice - blue plot) and that agents spend slightly more than
two hours for the activity (green plot). The average frequency and average duration (blue
and green plot) stays constant during the rest of the week. This shows that the execution
during Tuesdays does not influence agent’s behavior besides Tuesdays. Interesting to note
is the wavelike form of the execution pattern (yellow plot) during Tuesdays. This indicates
that some agents execute the activity right at the beginning of the execution window while
others wait until its end or even execute it thereafter.

5.2 Effectiveness Modification

Effectiveness functions inform agents about the effectiveness of activities and locations with
respect to discomfort reduction (see Section 3.2). By modifying effectiveness functions, it is
possible to change agents’ preference for activities and locations (since effectiveness functions
can be activity and location specific). Accordingly, it is possible to influence the likelihood of
activity executions and/or the likelihood of location visits. By introducing an opening window





         

Figure 3: Illustration of the second configuration and simulation outcome.

(a) Modification of the base configuration for an execution on Tuesdays between
9 am and 6 pm for two hours.

(b) Every agent executes the activity during Tuesdays at least once for about
two hours. Agents behavior during the rest of the week is not affected by
the extra execution on Tuesdays. Interesting to note is that agents tend
to execute the activity at the start, at the end, or even after the execution
window (yellow plot).

for an activity/location and a closing window for all other activities/locations, it is even possible
to force agents to execute a specific activity/visit a specific location. By combining target
modifications and effectiveness modifications, it is possible to ensure agents execute activities
on time and at an arranged meeting location. This feature is of importance for social interactions,
where groups of people meet at specific locations to execute specific activities together.

In a third configuration (see Fig. 4(a)), we reuse the second configuration and limit the execution
window from 9 am to 11 am (resulting in an execution window having the same duration as the
time the agent should spend for the activity). Additionally, we modify the effectiveness function
and introduce closing windows between 9 am and 11 am for all activities (except the considered
activity). Fig. 4(b) shows that all agents execute the activity on Tuesdays between 9 am and
11 am (yellow plot). In comparison to the second configuration (see Fig. 3(b)), agents execute
the activity slightly more often and longer during Tuesdays. This probably originates from the
additional increase in agents executing the activity right after the execution window (yellow
plot) and is probably also the reason why less agents execute the activity on Wednesdays and
Thursdays (green plot).





         

Figure 4: Illustration of the third configuration and simulation outcome.

(a) Modification of the base configuration for an execution on Tuesdays between
9 am and 11 am for two hours (resulting in an execution window having
the same duration as the time the agent should spend for the activity).
Additionally, we modify the effectiveness function and introduce closing
windows between 9 am and 11 am for all activities (except the considered
activity).

(b) All agents execute the activity on Tuesdays between 9 am and 11 am (yellow
plot). In comparison to the second configuration, slightly more agents
execute the activity twice during Tuesdays. This is probably the reason why
less agents executing the activity during Wednesdays and Thursdays (green
plot)

5.3 Interaction Model

Apart from periodically executed activities (e.g. sleep or daily shopping), people can also have a
motivation to execute activities which are limited to a certain time period and in that sense extra
to their life rhythm. The motivation and the time period is thereby defined by a special event.
An simple example is the plan to give a party and the necessity to buy extra food before the party
starts. In this case, it is the event of having a party that drives people to the shop. We envisage
a concept building on projects to model such events. Axhausen (1998) and Schönfelder and
Axhausen (2009) define projects as a coordinated set of activities, tied together by a common
goal or outcome. We described tasks as the basic component of projects (Märki et al. (2011)).
Tasks are linked to activities and temporarily modify targets and effectiveness functions during a
specific time period (see also Section 5).





         

We envisage that exogenous modules can manipulate agents’ behavior by defining projects and
tasks, which in turn interact with the target-based model through the behavior modification

interface (see Section 5). In this work, we focus on a household interaction module and use a
conceptual implementation building on tasks to manipulate agents’ behavior. We understand it
as a proof of concept showing how the envisaged approach works correctly.

6 Household Interaction

Household interactions range from coordination meetings (e.g. to coordinate activities serving
a common goal like daily shopping or to assign duties like pick up children from school) to
ordinary social interactions (as observable in other social groups). All these interactions have
in common that people agree to meet at a predefined location and time to execute activities
together. Consequently, the target-based model also needs to provide agents the possibility to
agree on meetings and to specify activities they want to execute together. The interaction model
described in Section 5.3 offers the necessary means. In this work, we provide a proof of concept
by focusing on coordination meetings among household members. However, we think it is
possible to generalize coordination meetings to other social interactions since all interactions
require that agents can define meeting location and date and that the model ensures that agents
adhere to these appointments.

6.1 Shared Activities

We introduce shared activities to validate the proposed approach. A shared activity serves a
common goal among people of a social group like e.g. household members. Daily shopping acts
as an example because it supplies all household members with daily goods and potentially every
member could be in charge of this activity. Accordingly, we ensure that household members
meet on a regular bases to interact and negotiate about the responsibility for shared activities
based on their work load. We define work load as the total amount of time necessary to reduce
an agent’s discomfort level of the percentage of time target to zero (assuming a concurrent
execution of all activities) and weight it with an agent specific value of time. This is defined by

WLi = VTi ·

n∑
j=0

∆ti, j (2)





         

∆ti, j = solve(D(t + ∆ti, j)i, j = 0,∆ti, j) (3)

agent i’s specific value of time VTi multiplied by the sum of the duration ∆ti, j necessary to
reduce activity j’s discomfort D(t)i, j to zero.

Since every activity contributes to the work load, it is of interests to find an allocation which
leads to an equally distributed work load among all household members. Work loads dynamically
change over time due to a changing environment (e.g. changing obligations of people). Thus,
agents need to meet on a regular basis and renegotiate the shared activity allocation. We
ensure this by introducing a periodic coordination meeting task for all household members. We
utilize a variation of the greedy approximation algorithm proposed by Dantzig (1957) to find a
dynamic activity allocation providing a fair work load distribution for all household members
(see Algorithm 1). Shared activities are sorted in decreasing order according their contribution
to the work load. Thereafter, one activity after another is assigned to the agent with the lowest
work load until all shared activities are allocated to an agent.

Algorithm 1 Distribute shared activities among involved agents
sortedS haredActivities← getAllS haredActivitiesS orted()
agents← getAllInvolvedAgents()
for all activity in sortedS haredActivities do

agent ← getAgentWithLowestWorkLoad(agents)
agent.add(activity)

end for

By showing that this algorithm provides an equally distributed activity allocation, we can show
that the model ensures that agents adhere to their coordination meetings and hence, that the
model supports social interactions among any group of people (by providing the possibility to
define meeting location and time and ensuring agents adhere to appointments).

6.2 Interaction Validation

We pair agents used for the base-configuration simulation in Section 5.1 together into households.
This results in 50 households with two members per household. Each member has the same
configuration and thus the same work load. We remove the shopping activity and reintroduce
it as a shared household activity. Furthermore, we introduce a coordination meeting task on
Sundays when household members meet and renegotiate the allocation of shared activities (see
Section 6.1 for a description of the negotiation protocol). Fig. 5 shows that agents execute the





         

Figure 5: Illustration of the simulation outcome when two agents share a shopping activity.
Agents perform the activity every forth day (compared to every second day in Fig. 2(b))
and in average execute the activity for 0.5 hours per day (compared to an average of
one hour per day in Fig. 2(b)).

activity in average slightly more than 0.25 times per day (about every forth day compared to
every second day in Fig. 2(b)) - blue plot) and spend in average about 0.5 hours per day for this
activity (every forth day two hours compared to every second day two hours in Fig. 2(b)) - green
plot).

7 Future Work

It is on our long term agenda to extend the household interaction approach presented in this
work to arbitrary social interactions. We think this should be straight forward since we could
show that the proposed behavior modification interface already provides the necessary means to
support interactions among other social groups.

In this work, we use a conceptual implementation of tasks and their interaction with the behavior
modification interface of the target-based model. We understand it as a proof of concept showing
that the proposed approach works correctly. The long term goal is to provide a framework
allowing a dynamic generation and allocation of tasks. This would provide an interaction
interface for exogenous modules of arbitrary purpose.

8 Summary

This paper proposes a behavior modification interface to the target-based model allowing
exogenous modules to influence agents’ behavior. This interface builds on tasks defining the





         

behavior modification and the time period when it takes place. The application of such tasks
are manifold and can represent different things like e.g. definitions of special events being extra
to people’s life rhythm or meetings to coordinate activities serving a common goal among
people of a social group like e.g. household members. Tasks influence agents’ behavior by
modifying target values in order to influence the execution frequency and execution duration
of an activity and by modifying effectiveness functions in order to influence the likelihood
of activity executions and/or the likelihood of location visits. We demonstrate the behavior
modification interface by using different modification configurations for a shopping activity and
present the resulting behavioral changes. We conclude by describing and validating a module
to manage social interactions and use it to coordinate activities serving a common goal among
household members.
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