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Abstract

In Switzerland, the largest railway stations are called “RailCities” by the Swiss Railways. It
emphasizes their transformation into places to perform different activities, similar to a small-scale
city. Concerns are similar than in urban areas: costs of new infrastructure, traffic congestion,
land scarcity.

The activity-based approach models the activity participation patterns. Traveling is seen as a
derived demand from the need to pursue activities. In the pedestrian context, postulate rules,
such as the home-based structure with tours from home, do not hold. The large dimensionality
of the problem implies aggregation or hierarchy of dimensions, with priorities of activity types.

We develop a modeling framework based on path choice. The activity-episode sequence is seen
as a path in an activity network. The sequence is not home-based nor tour-based. The model can
be applied in different contexts, both urban and pedestrian. The large dimensionality is managed
through an importance sampling based on Metropolis-Hastings algorithm for the generation of
the choice set. The time is discretized. The utility of an activity-episode sequence is the sum of
individual trips and activities, including the time-of-day preferences and the satiation effects.

First results of a case study on campus are presented, based on data from WiFi traces.

Keywords
Activity-based modeling, pedestrians, campus, train station
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Notation

aψi an activity episode, aψi = (x, t−, t+), for individual i

a1:Ψi = (a1, ..., aΨi) an observed activity-episode sequence
att(x, t) the attractivity for location x ∈ POI at time t

Aψ an activity, Aψ = (Ak, t−, t+)
A1:Ψi = (A1, ..., Aψ, ..., AΨi) an activity pattern with Ψi activities, indexed by ψ
A(aψi) a function aψi 7→ A(aψi) = Ak ∈ {A1,A2, ...,AK}
Ak an activity type, k ∈ K

Ak,τ a node in the activity network, corresponding to activity typeAk

and unit of time τ
A1:T an activity path, i.e., a representation of an activity pattern A1:Ψi

in an activity network
b(Γ) the unnormalized target weights for path Γ

DDR the domain of data relevance.
β the parameters of the choice model
δ a cost function
δv(v) the cost of node v

δΓ(Γ) the non-link-additive cost of path Γ

δ(Γ) the generalized cost of path Γ

e the end node of an activity network
E the set of edges in S ERG

f the labeling function, f : N → L̃, in S ERG

g a function associating nodes with coordinates in a coordinate
system, g : N → R × R × R

Γ a path in the activity network
i an individual
I the set of all individuals in the period of interest
j the index of a measurement m̂ j

J the total number of measurements
k the index of an activity type.
kΓn the number of times activity path Γ is drawn
K the number of activity types.
L the number of different activity-episode sequences a1:Ki corre-

sponding to observation i

Li the set of all activity patterns corresponding to observation i

L̃ a set of relevant labels for rooms in S ERG





            

m̂ a raw measurement, containing location x̂ and timestamp t̂

m̂1:J a set of measurements m̂ j

n a node in SERG, n ∈ N
N the set of all nodes in S ERG

POI the set of points of interest, POI ∈ N
Pi the set of all candidate activity paths for observation i

PI the set of all candidate activity paths for all individuals i ∈ I in
the period of interest.

PA1:Ψi
the set of candidate paths corresponding to the activity pattern
A1:Ψi

ψi the index of a activity episode aψi .
Ψi the total number of episodes aψi in the activity-episode sequence

a1:Ψi and the total number of activities A in the activity pattern
A1:Ψi . Ψi is individual specific.

q( j) the sampling probability
s the start node of an activity network
S x,i(t) the instantaneous potential attractivity measure in location x ∈

POI at time t for individual i

S x,i(t−, t+) the potential attractivity measure in location x ∈ POI between
start time t− and end time t+ for individual i

SAk ,τ the potential attractivity measure for activity type Ak at time
interval τ for individual i, corresponding to nodeAk,t

schedx,i(t) a dummy variable for time constraints in location x ∈ POI at
time t for individual i

S ERG a semantically-enriched routing graph, S ERG :=
(N ,E,L, f , g, POI)

t time, continuous
τ a discrete unit of time in the activity network, τ ∈ 1, 2, ...,T . τ

can also be seen as a time interval between τLB and τUB

τLB the lower bound of the time interval τ
τUB the upper bound of the time interval τ
T the total number of units of time τ
Tmin a minimum time threshold for activity episodes (typically 5 min-

utes in a pedestrian context)
t̂ a timestamp of a raw measurement m̂

t− the start time of an activity episode a, a continuous random
variable





            

t+ the end time of an activity episode a, a continuous random
variable

ttxψ,xψ+1 the travel time from xψ to xψ+1.
U the choice set corresponding to the activity network
v a node in the activity path Γ, v ∈ Γ

w(Γ) the target weight of Γ

x the episode location, x ∈ POI

x̂ the position of a raw measurement m̂. x̂ ∈ R × R × R (x-y
coordinates in a coordinate system, and floor or altitude in a
multi-floor environment).





            

1 Introduction

Pedestrian infrastructures such as multimodal transportation hubs (airports, train stations), mass
gathering (music festivals) or campuses are facing complex issues. Designing efficient buildings
for pedestrian flows, managing congestion, locating new points of interests (ticket machines,
shops or restaurants), modifying schedules to improve efficiency and guarantee connections
(trains or flights) require pedestrian demand management strategies. These strategies allow to
modify individual travel behavior, in particular in terms of activity sequences.

Activity-based modeling at the city scale has been motivated by its sensitivity to different policy
issues and demand management measures including congestion pricing, toll lanes, and changing
schedules for work or shops (Davidson et al., 2007). While some of these measures, like parking
pricing, are irrelevant for pedestrians, changing schedules to minimize the travel time or the flow,
or specific design of the walking areas are efficient strategies for pedestrian facilities. Toll tunnel
exist for pedestrian for a long time. In Antwerp, Sint-Anna tunnel was not free for pedestrians
when it opened in 1933 (Razemon, 2013). More generally, the activity sequence and the location
of the points of interest have a large impact on pedestrian flows in multimodal transportation
hubs.

The activity-based approach models the interactions shaping the activity participation patterns.
Traveling is seen as a derived demand from the need to pursue activities. Several models have
been proposed. Activity scheduling model in an entire-day framework is a mix of rule-based
algorithm, duration models and discrete choice structures. The biggest drawback of most of
these models is the postulated rules: they are structured on home and tours from home, with
models applied sequentially according to priorities of activity types. Very often, the large
dimensionality of the problem (activity types, continuous time, number of episodes in the day)
implies aggregation (broad periods of time, mandatory vs non mandatory, primary vs secondary)
or hierarchy of dimensions.

Our modeling approach consider that pedestrians first choose the activity type, timing and
duration in their activity patterns in pedestrian facilities. Only then, conditionally on the activity
type and time of day, they choose their specific destination. In a railway station, a typical
pedestrian chooses first that he needs a sandwich before taking his train, and then only chooses
which of the sandwich shops he will visit.

We develop a modeling framework based on path choice. The activity-episode sequence is seen
as a path in an activity network. The sequence is not home-based nor tour-based. The model can
be applied in different contexts, both urban and pedestrian. The large dimensionality is managed





            

through an importance sampling based on Metropolis-Hastings algorithm for the generation
of the choice set. The time is discretized in regular intervals. The utility of a activity-episode
sequence is the sum of individual trips and activities, including the time-of-day preferences and
the satiation effects.

In Section 2, a literature review briefly presents some concepts. Section 3 develops the method-
ology. Finally, in Section 4, first results of a case study on campus are presented, based on data
from WiFi traces.

2 Literature review

2.1 Activity choice

Reviews about activity-based travel demand modeling can be found in Ettema (1996), Bhat and
Koppelman (1999), Roorda (2005), Habib (2007), Bowman (2009), Feil (2010), Pinjari and
Bhat (2011) and Miller (2014).

2.1.1 Location-aware technologies for activity modeling

One recent trend in activity-based travel demand modeling is the usage of data from location-
aware technologies (Miller, 2014). Traditionally, data collection are revealed preferences about
activity and travel patterns from diary surveys, where people describe a past day (Ettema, 1996).
Standard revealed preference data usually avoid from collecting multiple answers from the
same individual. GPS-based prompted recall activity-travel survey allows for longitudinal
surveys, using GPS devices carried by respondents (Frignani et al., 2010). Recall methods can
be implemented on mobile devices (Rindfüser et al., 2003).

Location-aware technologies help improving the quality of explicit surveying. They can also be
used alone, from the communication infrastructure side, such as cell tower traces or WiFi access
points traces (Bekhor et al., 2013, Calabrese et al., 2013), or from the individuals’ devices (Etter
et al., 2012, Buisson, 2014). Etter et al. (2012) show that it is possible to predict up to 60% of
next visited places from passive smartphone data.

Data preprocessing methods are needed to transform these raw observations into data adapted for
modeling purpose. First, detection of stops points discriminates places where people spend time
and perform activities from moving between these stop points (Rieser-Schüssler, 2012, Jiang





            

et al., 2013). After cleaning the data, Bekhor et al. (2013) define a destination as a cell tower
where the device is connected for more than 20 minutes without changing. Using triangulation
from cell towers, Calabrese et al. (2013) merge all measurements in a time interval ∆T with
maximum distance 1km. ∆T is not given. In Jiang et al. (2013), the first step is similar, with
a distance of 300 meters and a stay time of 10 minutes. Here, the accuracy of the location is
about 200 to 300 meters. The second step associates with each other the different stop points at
different times if they are close using a grid-based clustering method. It allows to identify the
places that are visited multiple times, despite measurement errors. Based on triangulation from
WiFi access points, Danalet et al. (2014) associate all measurements to points of interest (POI)
in the map, compute the travel time between these POI, define a distribution for arrival and
departure time based on travel time and measurement timestamp, and finally remove destinations
with expected duration smaller than Tmin = 5min. From WiFi data from smartphones, Buisson
(2014) clusters measurements using a Density-based Spatial Clustering of Applications with
Noise (DBSCAN) algorithm.

Pure location-aware technologies lacks the path semantics (Miller, 2014). To overcome this
issue and detect activity purpose, localization data are merged with land-use information (Rieser-
Schüssler, 2012, Miller, 2014, Danalet et al., 2014). A review of research in this direction before
2012 is available in Miller (2014). Jiang et al. (2013) propose a visual example of how land
use data could be applied, without a general methodology. In a pedestrian facility, Danalet et al.

(2014) propose a Bayesian approach:

P(a1:Ψi |m̂1:J) ∝ P(m̂1:J |a1:Ψi) · P(a1:Ψi) (1)

where a1:Ψi is an activity-episode sequence for individual i, m̂1J a set of measurements, P(m̂1:J |a1:Ψi)
is the measurement likelihood and P(a1:Ψi) is a prior. The prior is proportional to a potential
attractivity measure, that allows for merging different land use data sources. By definition,
potential attractivity measure is a model of aggregated occupation per POI built on attractivity,
such as number of jobs in the area or point-of-sale data in a supermarket, and time constraints,
such as opening hours. In urban context, Buisson (2014) also uses a Bayesian approach. For a
given cluster of access points:

P(Ak|t̂) ∝ P(t̂|Ak) · P(Ak) (2)

whereAk is an activity type and t̂1:J is a set of measurement timestamps corresponding to the
cluster. P(t̂|Ak), the probability of generating a signal at a certain time knowing the activity type,
is computed using time-use statistics, e.g., from travel diary surveys. The prior is similar to the
one defined in Danalet et al. (2014), using OpenStreetMap data for list of POI, and census and
national statistics for number of residents and employees.





            

2.1.2 Activity choice for pedestrians

Reviews about activity choice for pedestrians can be found in Timmermans et al. (1992),
Bierlaire and Robin (2009) and Danalet et al. (2014)

Recently, Liu (2013) develops an activity-based travel demand model in the context of an airport,
focusing on activity scheduling, destination and route choice and rescheduling models. It is
based on revealed and stated preference survey data. The revealed preference survey was sent
to faculty and staff from the author’s university. They were supposed to describe the activities
their performed and the activity with the longest duration the last time they visited an airport in
the last 12 months. 359 responses were used for estimating the model. This thesis particularly
focuses on congestion and consequent rescheduling. For Liu (2013), the home-based structure
of urban activity behavior is replaced in airports by three structuring events: check-in, security
check and boarding. Supposedly, in pedestrian context, the level of service (congestion, queues
and flight schedules) is more important than people’s characteristics, compared to activity choice
in urban context. About the model, a nested logit is used. Each choice of activity is considered
independently from other activities from a same individual. The nesting structure does not
reflect any intuitive behavior.

Ton (2014) studies route and destination choice in train stations based on tracking and counting
data. Counting data come from infrared scanners and tracking data come from WiFi and
Bluetooth scanners. Counting data allow to apply the model to pedestrians without smartphones.
The choice is between destinations for a given activity type. The choice used here is a logit.
Kalakou and Moura (2014) apply a similar logit approach for destination choice for a given
activity type (which coffee shop knowing that the individual is visiting one). This model
includes space syntax in the specification of the utility through “integration”, i.e., a measure of
accessibility. The case study takes place in an airport.

2.2 Route choice and other discrete choices

2.2.1 Choice set generation

Choice set generation is the process of defining the considered alternatives in an individual
decision making. Assumptions must be made about the availability of the different options and
the decision maker’s awareness of them. Availability or awareness of the alternatives can be
deterministically or stochastically defined (Ben-Akiva and Bierlaire, 2003).





            

In the route choice context, the number of paths connecting an origin and a destination is very
large and cannot be enumerated in practice. The universal choice set, containing all possible
routes, cannot be used. There are two ways of dealing with it: selecting a choice set that only
contains the paths considered by the decision maker (consideration choice set), or sampling a
subset of paths large enough to be confident that it contains all important paths for the decisions
maker (importance sampling). The consideration choice set is supposed to be consistent with
behavior but is very often not available and too small for estimation, while the importance
sampling is not very realistic behaviorally but is statistically more efficient.

Van Nes et al. (2008) propose a classification of different choice sets, by order of inclusion
of alternatives: the chosen alternative, the considered alternatives, the reported alternatives
(by the decision makers as considered), the feasible alternatives (i.e., available), the logical
alternatives (i.e., no loop) and the existing alternatives (i.e., the universal choice set). They
compare choice sets made of reported alternatives by the respondents and choice sets made
of feasible alternatives defined by a set of constraints. Having access to reported alternatives
is difficult, and even impossible when using localization data from smartphones or antennas.
Moreover, when data are available, the size of the choice set is too small for model estimation
(average size of 2.8 in Van Nes et al. (2008)).

Consideration choice set Depending on the data collection technique, the consideration
choice set can be explicitly asked in a survey. This is very often not possible, in particular when
using different traces (GPS, WiFi, or other tracking systems). In these cases, the consideration
must be modeled and a choice set generation algorithm is defined. It can be seen as a pre-choice
before the actual choice. These models are not based on data but on assumptions about how
people choose the paths they evaluate.

Repeated shortest path search

These approaches assume that people consider only the shortest paths as possible alternatives.
This is less restrictive that it might appear, by using a generalized cost. The repeated shortest
path approaches assume that the consideration set is made of a large enough number of shortest
paths. These approaches generate very similar paths. In order to represent the heterogeneity
of all paths and the variety of choices, van der Zijpp and Fiorenzo Catalano (2005) propose to
remove unrealistic paths. Instead of generating a large number of shortest paths and removing
the irrelevant ones, they propose algorithms for the constrained shortest path problem, directly
generating feasible shortest paths. Constraints are supposed to express relevance, such as
attractivity, circuitousness, non-overlapping or detour.

Constrained enumeration





            

These approaches assume that people do not consider some alternatives due to constraints. They
generate all possible alternatives satisfying these constraints using branch-and-bound. Prato
and Bekhor (2006) describe the construction of a connection tree between the origin and the
destination. It is depth-first built and the branching rule is based on logical constraints: shortest
path constraints with tolerance for going backwards or for longer travel times, avoiding detours,
loops, overlaps and left turns. Parameters for these constraints are hand-tuned in order to
reach behavioral consistency. Consistency is defined as heterogeneity and realism, i.e., ability
to reproduce actual chosen routes. 91.1% of chosen paths and 82.6% of reported paths are
reproduced.

Importance sampling Flötteröd and Bierlaire (2013) propose a Metropolis-Hastings algo-
rithm for the sampling of paths. Paths are sampled according to an arbitrary distribution, avoiding
complete enumeration. In other words, the goal consists in drawing a path with probability

b(i)∑
i∈S b(i) , with S the state space. The targets weights are defined as

b(i) =
e−µδ(Γ)

|Γ|(|Γ| − 1)(|Γ| − 2)/6
(3)

where δ is the cost function of the path Γ, µ a scale factor and |Γ| the number of nodes in path
Γ. The denominator in the definition of b(i) is justified by the state variable definition, a tuple
(Γ, a, b, c), with a, b and c nodes on Γ.

The transition matrix Q is defined by two main operations. One operations randomly draw
a node as a replacement of b and connect a and c through this new node with shortest paths
according to the target weights. The other one redistribute a, b and c along Γ. Flötteröd and
Bierlaire (2013) propose to draw the new node with a logit distribution using shortest path length
through this node, in order to drive the process toward short paths. To guarantee scale-invariance
with respect to path cost, they suggest the use of a scale parameter µ = ln 2

(ζ−1)δS P
. In this way, the

probability of choosing a path of cost ζδS P is twice less than the shortest path (with cost δS P).
For the second operation, they propose a uniform ascending choice of a, b and c.

These techniques allow to sample path from a large network according to any sampling proba-
bilities. The sampling probabilities do not need to be defined by link, but can be defined directly
for the whole path. Importance sampling is important for an explicit correction in the discrete
choice model.

Chen (2013) in Chapter 5 uses the Metropolis-Hastings path sampling technique by Flötteröd
and Bierlaire (2013) for a route choice model estimated from GPS data. The weight function
is composed of the path’s length and of the frequency of observation of the given path. This





            

“observation score” represent the inclusion of observed GPS data in the sampling process in order
to include more relevant observations. This algorithm reduces the needed choice set size.

2.2.2 Correlation structure

In route choice model, the different paths in the choice set are overlapping. Overlapping
segments of paths share the same source of errors. For example, if the analyst does not know the
high flow of pedestrians on a pedestrian crossing on a certain road segment, the impact of this
pedestrian flow on route choice for cars will be absorbed by the error term and shared by all
paths going through this road segment. The independence assumption about the error term is
violated and the independence from irrelevant alternatives (IIA) property of the logit model does
not hold.

Different solutions have been proposed: multinomal probit, cross nested logit, mixed logit.

Another approach to overcome the issue of correlated alternatives makes a deterministic cor-
rection of correlation. It is based on the theory of aggregation of alternatives (Ben-Akiva and
Lerman, 1985). Already in 1985, the chapter about aggregation is motivated by “destination
and other spatial choices”. In route choice context, the elemental alternative is a path (Frejinger
and Bierlaire, 2007). They are mutually exclusive, collectively exhaustive and the decision
maker is choosing one and only one of them. The universal choice set containing all elemental
alternatives should be decomposed into nonoverlapping subsets, aggregate alternatives. In route
choice context, the aggregate alternatives are the links. Following the notation in Frejinger and
Bierlaire (2007), n is the decision maker, Cn is the universal choice set of elemental alternatives,
i.e., paths, a = 1, ...,M are the links, Can are the nonoverlapping subsets of aggregate alternatives,
i.e., the set of paths using arc a. In the route choice context, the aggregate alternatives represent
a group of the elemental alternatives are the same, i.e., path, constrained to go through one given
arc.

We define the probability P′n(a) of choosing an aggregate alternative, i.e., a group of paths going
through an arc a, as the probability that the decision maker chooses one of these paths i ∈ Can:

P′n(a) =
∑
i∈Can

Pn(i) (4)

The utility of a path i is Uin = Vin + εin. The utility of a group of paths going through an arc a is
Uan = maxi∈Can(Vin + εin), since only one of the paths with maximum utility is chosen. It can be
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Figure 1: Network for a simple route choice model. Cn = {1, 2/3, 2/4}, C1n = {1}, C2n =

{2/3, 2/4}, C3n = {2/3} and C4n = {2/4}.

written as Uan = Van + εan with Van = E
(

maxi∈Can(Vin + εin)
)
. The average of the systematic part

of the path utility is V̄in = 1
Mi

∑
i∈Can

Vin.

3 A path choice approach to activity modeling

Our approach to activity-based travel demand modeling decomposes the behavior in two steps.
First, a path choice approach models how people choose their activity type in time, taking into
account the type of activities (e.g., eating), their sequence (e.g., eating first, then buying a ticket
and finally waiting for the train) and their timing/duration (eating for 20 minutes, starting at
12.20 pm). Once the activity type, sequence and timing are chosen, a second step consists in
modeling destination choice (e.g., choosing a restaurant, knowing the activity type: eating).
We present here only the first step, the choice of activity sequence. An example of destination
choice model is presented in Ton (2014) in a similar context.

There are mathematical and behavioral motivations for this decomposition. Mathematically,
the problem is very complex. The number of destination is usually very large. The number
of sequences of destinations is larger. Including the duration spent at destination makes the
problem definitively too large and untractable. Behaviorally, the choice of activity type and
time of day precedes the choice of destination. We experience it every day: around lunch break,
people start to be hungry, decide they want to eat, decide it is time to go, and only then decide in
which restaurant to go.





            

3.1 Representation of activity type and time

3.1.1 Activity-episode sequences and activity patterns

We define an activity episode aψi = (x, t−, t+) as a location, usually a point of interest (POI),
where the individual i is spending time. x is the episode location, t− is the start time, and t+ is
the end time. t− and t+ are continuous random variables, expressing the fact that we don’t know
them perfectly. t+ − t− defines the episode duration.

Each individual i performs activity-episode sequences (a1, ..., aΨi), which is abbreviated a1:Ψi ,
where Ψi is the total number of episodes. Ψi is individual specific. Depending on the way the
data are collected, there could be one activity-episode sequence per individual/observation i or
several different activity-episode sequences representing the ambiguity in the data. In this case,
each of the L different activity-episode sequences is associated with the probability P(a1:Ψi |m̂) of
being the actual one (knowing the measurements m̂). Danalet et al. (2013) derive this probability,
explicitly representing the ambiguity in the data.

We assume K activity typesA1,A2, ...,Ak, ...,AK . For each activity episode aψi = (x, t−, t+), an
activity Aψi is defined, Aψ−i = (A(aψi), t

−, t+). A(aψi) is a function mapping activity episode aψi

to an activity typeAk. A(aψi) depends on the episode location x, its start time t−, its end time
t+ and the individual i. The list of activities A1, ..., AΨi corresponding to the activity-episode
sequence, with their associated start times t− and end times t+, is called an activity pattern and
is abbreviated A1:Ψi . It contains the same number Ψi of elements. Its probability of being the
actual one is

P(A1:Ψi) =
∑

A1:Ψi =A(a1:Ψi )

P(a1:Ψi |m̂) (5)

Since we have L different activity-episode sequences and some of them may correspond to the
same activity pattern, the set Li of all activity patterns corresponding to an observation i has less
than L elements.

Activity patterns are the behavior we observe.

Illustration In a train station, let’s assume an individual has K = 3 possible activity types:
waiting for the train on the platform, buying a ticket, and having a coffee. The individual enters
the station at 7:39 and starts by buying a ticket, from 7:40 to 7:43, then drinks a coffee from
7:47 to 8:01 and goes on the platform, waiting there from 8:03 to 8:12, until the departure of the





            

train. This activity pattern is represented in Figure 2.
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Figure 2: Illustration: an activity pattern on a campus.

A similar example in the context of a day-long urban model is presented in Bowman (1998),
p.15.

3.1.2 Activity network

We assume a discretization of time, τ ∈ 1, 2, ...,T . An activity network represents the choice
set and contains all possible activity patterns. It is discrete with respect to activity types
A1,A2, ...,AK and time. It is composed of links and nodes. Nodes Ak,τ represent the perfor-
mance by the individual of an activity type k for a unit of time τ. At a given unit of time τ, the
number of nodes represent the available activity types K. There are two special nodes, start node
s and end node e. They represent the beginning and the end of the observed activity pattern.
In total, the activity network contains a maximum of KT + 2 nodes. Edges connect some of
these nodes and represent the fact that they are successively performed. s is connected to all
nodes; it represents the beginning of the observed activity pattern in the time unit of the arrival
node. All nodes are connected to e; it represents the end of the observed activity pattern in the
time unit of the departure node. All nodes of a given time unit t are connected with the nodes
corresponding to the next time unit t + 1; it represents the choice of changing activity type or
maintaining the activity type for one more time unit. In total, the activity network contains a
maximum of 2KT + K2T edges.

The activity network is a representation of all possible activity patterns. It is a representation of
the universal choice set. Time constraints for activity types can be included in it by removing
some nodes corresponding to a specific activity type and time period.

The timeline must be defined in two ways. First, the time unit must be defined for discretization.
Second, the first and last elements, τ = 1 and τ = T , must be defined. They define the earliest
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Figure 3: The activity network: the start node s is connected with all nodes and all nodes are
connected to the end node e

possible start time and the latest possible end time. In an urban context, it would be defined by
a day (τ1 = 4am), assuming a major period of rest in the night. In a pedestrian infrastructure
context, it would be the opening hour of the facility when it applies or a day.

It needs to be stressed that the activity network is cycle-free and the only path between the
upstream node and the downstream node of every link is the link. Thus, it complies with the
requirements in Flötteröd and Bierlaire (2013), independently of the target weights defined
later.

Illustration Coffee shops open at 7:30. In this case, the activity network is shown in Figure 4,
with a time discretization of 5 minutes.
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Figure 4: Illustration: an activity network for a train station.





            

3.1.3 Activity path

Activity pathsA1:T are the representation of an activity pattern A1:Ψi in an activity network. One
activity pattern can correspond to several activity paths, due to imprecision in the measurement
of time. The set of candidate paths corresponding to the activity pattern A1:Ψi is called PA1:Ψi

.

In order to represent the activity patterns described in Section 3.1.1 with continuous time in
an activity network, we define a very simple rule. The activity of the time unit in the activity
network is the longest activity in the activity pattern for this time interval. In case there are long
distances between the activities (i.e, trips longer than a time unit), a “traveling” activity type
must be defined.

Activity paths are generated to cover all start and end time support. For each element in A1:Ψi

with activity typeAk, start time t− and end time t+, several nodesAk,τ in the activity network are
generated with τ such that P(t− > τ) = P(t+ < τ) = 0. The first node corresponding to the first
element A1 of the activity pattern is connected to s, and similarly the last node corresponding to
the last element AΨi of the activity pattern is connected to e.

For each activity path A1:T generated from an activity pattern A1:Ψi , we need to compute the
probability P(A1:T |A1:Ψi) that this activity path is the true one based on the distribution of the
start time t− and the end time t+ of each activity episode. For a given time interval t ∈ {1, ...,T }
and a given activity pattern A1:Ψi:

K∑
k=1

Ak,τ = 1 (6)

For a given activity pathA1:T , the probability that it represents the activity pattern A1:Ψi is the
probability that each nodeAk,τ represents the activity pattern at this particular time interval τ.
For each node, the probability that it is the true one is proportional to the episode duration t+ − t−

in this time interval τ, compared to the episode duration for other activities different than k.

P(A1:T |A1:Ψi) =

T∏
τ=1

P(Ak,τ|A1:Ψi) (7)

=

T∏
τ=1

durationk,τ(A1:Ψi)
durationτ(A1:Ψi)

(8)

where durationk,τ is a function computing the time spent performing activity type k during time





            

interval τ for a given activity pattern, and durationτ is a function computing the time spent
performing any activity type during time interval τ for a given activity pattern.

durationτ(A1:Ψi) =

M∑
m=1

min
(
E(t+), τUB

) −max
(
E(t−), τLB

)
(9)

durationk,τ(A1:Ψi) =

M∑
m=1

Am=Ak

min
(
E(t+), τUB

) −max
(
E(t−), τLB

)
(10)

where tLB is the lower bound of the interval τ and τUB is the upper bound of τ.

The set of all candidate activity paths for a given individual i is called Pi and consists in each set
of candidate activity pathA1:T corresponding to each of the L activity patterns A1:Ψi ,

Pn =
⋃
Li

PA1:Ψi
(11)

P(A1:T ) =
∑
Li

P(A1:T |A1:Ψi)P(A1:Ψi) (12)

Activity paths are the alternatives of the choice process.

Illustration Between 7:40 and 7:45, the main activity is buying a ticket; between 7:45 and
7:50, it is having a coffee; etc. Between 7:35 and 7:40, the individual is not in the area of study
and so no activity is executed. This activity path is represented in Figure 5.
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Figure 5: Illustration: an activity path in a train station.

There might be uncertainties in the time measurement. It comes from the error of the respondent
in a traditional survey or from the measurement error of a tracking technology. In the previous





            

example, let’s assume there is uncertainty in the departure time from the coffee shop. It happened
between 8:01 and 8:04, and the arrival on the platform between 8:03 and 8:06. In this case, there
are two possible activity paths for this activity pattern.
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Figure 6: Illustration: an activity network with ambiguity in start and end times.

If we assume a uniform distribution between the bounds, the duration of the activity “Having a
coffee” is:

duration“Having a coffee”, 8:00-8:05 = min
(
E(t+), tUB

) −max
(
E(t−), tLB

)
(13)

= 8:02:30 − 8:00 (14)

= 2′30 (15)

And the duration of all activities in the time interval t is:

duration8:00−8:05 =

2∑
m=1

min
(
E(t+), tUB

) −max
(
E(t−), tLB

)
(16)

= 2′30 + (8:05 − 8:04:30) (17)

= 3′ (18)

The probability of following the activity path including having a coffee between 8:00 and 8:05
is:

P(A1:T |A1:Ψi) =
2′30
3′

=
5
6

(19)

while the probability of following the activity path including “waiting for the train” between
8:00 and 8:05 is 1

6 .
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Figure 7: Illustration: an activity pattern in a train station with uncertainty in time, zoom in the
time interval 8:00-8:05.

3.2 Choice set generation

The Metropolis-Hastings algorithm defined by Flötteröd and Bierlaire (2013) requests the target
weight of a path for importance sampling. It can be defined for each link, and then added up, or
defined directly for the whole path. As explained in Frejinger and Bierlaire (2010), “the sample
should include attractive alternatives” in order to provide efficient estimators. In the context of
activity choice modeling, we propose two measurements of the attractive alternatives: potential
attractivity measure and the length and frequency of observed paths in the activity network.

3.2.1 Generation from potential attractivity measure

Potential attractivity measure has already been defined in Danalet et al. (2013). We define a
potential attractivity measure by merging attractivity and time constraints for the pedestrian
context. Formally, we define the potential attractivity measure as a model of aggregated
occupation per point of interest (POI). The unit of attractivity is the number of persons. The
potential attractivity measure S x,i(t−, t+) between a start time t− and an end time t+ for x ∈
POI and individual i is time dependent and may differ across individuals. It depends on the
instantaneous potential attractivity measure S x,i(t) at a given time t:

S x,i(t−, t+) =

∫ t+

t=t−
S x,i(t)dt (20)

The instantaneous potential attractivity measure depends on time-constraints and attractivity:

S x,i(t) = schedx,i(t) · att(x, t) (21)





            

where schedx,i(t) is a dummy variable for time-constraints such as schedules or opening hours,
with value 1 if the POI is open or scheduled and 0 otherwise: opening hours of shops and
restaurants, or timetables in the case of conferences, campuses, or public transport infrastruc-
tures. Timetables may vary for different individuals, depending on the level of anonymity for
localization data (Danalet et al., 2013).

Attractivity att(x, t) is context-specific (Danalet et al., 2013): number of jobs, annual retail sale,
population per zone, places at day-nurseries, hospital beds. In the pedestrian facility context,
data sources could be checkouts in supermarkets, number of seats in a restaurant, number of
employees per office, number of students in class, capacity of different zones in a stadium or a
public transport infrastructure.

The potential attractivity measure of an activity type Ak for a time interval τ (i.e., for a node
Ak,τ) is the sum of the potential attractivity measure over all x ∈ POI corresponding to this
activity type:

SAk ,τ =
∑

A(x,τLB,τUB)=Ak

S x,i(τLB, τUB) (22)

The potential attractivity measure SAk ,τ corresponds to a nodeAk,τ in the activity network. In
order to keep the link-additive specification of cost used in Flötteröd and Bierlaire (2013), weight
can be associated to the entering edge by convention.

Let’s call Γ the generated activity path, to differentiate them from the observed activity path
A1:T . In order to keep the shortest path formulation from Flötteröd and Bierlaire (2013), node
cost δv for node v can be defined as

δv(v) = max
k=1,...,K
τ=1,...,T

(
SAk,τ

) − S v + 1 (23)

The generalized cost δ(Γ) of the activity path Γ is:

δ(Γ) = −µv ·
∑
v∈Γ

δv(v) − δΓ(Γ) (24)

where µv is a nonnegative real number that defines the weight of the sum in Equation 24, and
δ(Γ) represents the non-link-additive cost of path Γ.

If δ is based only on link cost, the most likely output of the Metropolis-Hastings algorithm
consists in spending one time unit in the most attractive activity. Link cost is based on attractivity
but does not consider the likelihood of spending more than one time unit in an activity, nor the
possibility of visiting several activities.





            

In order to account for time constraints, the non-link-additive cost of Γ can be defined as

δΓ(Γ) =
1
N

∑
A1:T∈N

I(|A1:T | = |Γ|) (25)

where |Γ| is the number of nodes in the generated activity path Γ and |A1:T | is the number of
nodes in the observed activity pathA1:T .

This approach can be extended to each activity type:

δΓ(Γ) =

K∏
k=1

(
1
N

∑
A1:T∈N

I(|A1:T,k| = |Γk|)
)

(26)

where |Γk| is the number of nodes in the generated activity path Γ with activity type k, and |A1:T,k|
is the number of nodes in the observed activity pathA1:T with activity type k.

We use the exponentially decreasing function of the generalized cost as unnormalized target
weights b(Γ) described in Eq. 3, as proposed by Flötteröd and Bierlaire (2013). The output of
the Metropolis-Hastings algorithm is a sample of paths with their sampling probability q(Γ),
Γ ∈ U, expressed in an unnormalized form b(Γ). The choice set Ci ∈ U for observation i is the
set of the sampled paths with the observed activity pathA1:T .

Illustration Let’s fix the potential attractivity measure for each activity type: 5 for “Waiting
for the train”, 1 for “Having a coffee” and 4 for “Buying a ticket”. The weight is shown on some
edges in Figure 8. The weight of the edge corresponds to the activity type of the arrival node of
the edge.
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Figure 8: Illustration: target weights in an activity path in a train station.

The algorithm presented in Flötteröd and Bierlaire (2013) is applied with µv = 1 and δ(Γ) = 0 in
Figure 9. 20 paths are generated. We observe that they are “shortest path” in the sense that they
spend the smallest amounts of time in the most likely activities. They are not realistic activity
paths in the railway station context. In Figure 10, a constraint is defined in order to end the path





            

not in e but on the platform at 8:12, when the train is leaving. Activity paths are still not very
realistic. Figure 11 presents one more constraint, about the non-link-additive cost of the path.
Since there is only one observation here, we replace the empirical distribution of length by

δ(Γ) =
∣∣∣|Γ| − µΓ|A1:T |

∣∣∣ (27)

corresponding to Equation 25 with a triangular distribution. It forces the generated paths to have
a small difference in overall time spent in the railway station compared to the observed activity
path.

This approach introduces endogeneity in the model since it uses observed choices as input for
the choice set generation (Chen, 2013). Even it the paths look reasonable, it is recommended to
use the length distribution of all observed paths, as showed in the next section.

3.2.2 Generation from length and frequency of observed paths

Another approach to define the attractivity of a node in the activity network for choice set
generation purpose consists in using all observed paths in the network. In the route choice
context, Chen (2013) calls it the observation score. It is defined here as the sum of all observed
path through a given node v.∑
A1:T∈P

P(A1:T |m̂1:J)I(v ∈ A1:T ) (28)

where I(v ∈ A1:T ) is an indicative function with value 1 if v is a node of activity pathA1:T and 0
otherwise. In order to keep the shortest path formulation from Flötteröd and Bierlaire (2013),
node cost δv for node v can be defined as:

δv(v) = max
k=1,...,K
τ=1,...,T

( ∑
A1:T∈P

P(A1:T |m̂1:J)I(Ak,τ ∈ A1:T )
)
−

∑
A1:T∈P

P(A1:T |m̂1:J)I(v ∈ A1:T ) + 1 (29)

Similarly to the generation from potential attractivity measure, using only a link cost will leads
to very short activity paths. The most likely output is one time unit in the most attractive
activity type. The time distribution can be derived from observed activity paths. The number of
time units for an activity pathA1:T is equivalent to the number of nodes |A1:T |. We define the
non-link-additive cost of Γ as the number of observed paths with length |Γ|:

δΓ(Γ) =
∑
A1:T∈P

P(A1:T |m̂1:J)I(|A1:T | = |Γ|) (30)
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Figure 9: The 20 generated paths based only on link cost.
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Figure 10: The 20 generated paths with constrain on the link to e.
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Figure 11: The 20 generated paths with constrain on the link to e and constrain about the length
with µv = µΓ = 1





            

Similarly to Equation 29, the number of observed paths is weighted by the measurement
equation.

3.3 Activity path choice model for WiFi traces

We propose a choice modeling framework for activity paths. This framework uses the proba-
bilistic association between the WiFi data and the activity network with the choice set generated
in the previous section, and corrects for importance sampling.

For each individual i, a set of measurements m̂ covering the period of interest (one day or
the time in the pedestrian infrastructure) is observed. Using the methodology from Danalet
et al. (2013), signals are generating L activity-episode sequences a1:Ψi . Each activity episode
aψi corresponds to an activity Aψi , and activity-episodes sequences can be transformed into an
activity pattern A1:Ψi . Activity patterns are represented in an activity network as activity path
A1:T . Discretization of time from continuous random variables possibly leads to several activity
paths corresponding to one activity pattern.

Inspired by Bierlaire and Frejinger (2008) and Chen (2013), each individual i generates J

“network-free” measurements m̂1:J with some error. Measurements m̂ are defined in detail in
Danalet et al. (2013). The choice probability P(m̂1:J) for individual i is

P(m̂1:J) =
∑
A1:T∈U

P(m̂1:J |A1:T ) · P(A1:T |U; β) (31)

where P(m̂1:J |A1:T ) is the measurement likelihood of observing measurements m̂1:J while per-
forming activities A1:T and P(A1:T |U; β) is a path choice model with unknown parameters β
and choice setU.

To be operationalized, the model must correct for the sampling of alternatives from a very large
choice set, and for the correlation structure of a path choice. In Section 3.3.1, a measurement
likelihood is presented. Then, in Section 3.3.2, a correction term for the sampling of alternatives
is presented. The correlation structure is discussed in Section 3.3.3. Finally, Section 3.3.4
describe the structure of the utility function.





            

3.3.1 Measurement likelihood

For each activity pattern, our goal is to compute the probability that the performed episodes
generated the observed measurements m̂1:J:

P(m̂1:J |A1:T ) (32)

This is equivalent to the measurement likelihood of the original activity-episode sequence:

P(m̂1:J |a1:Ψi). (33)

If one activity-episode sequence corresponds to several activity paths in the activity network,
the activity paths have the same measurement likelihood. The imprecision in time leading to
several different activity paths is related to a lack of information in some points in time. In this
period of time without information, there is no measurement, thus no measurement likelihood
(see Danalet et al. (2013) for an example).

We assume that a measurement m̂ j always corresponds to an activity episode aψi . We denote
m̂ψ

j = (x̂ψj , t̂
ψ
j ) the measurements in m̂1:J corresponding to aψi = (xψ, t−ψ, t

+
ψ), i.e. when t−ψ 6 t̂ j 6 t+

ψ.
As a result, m̂1:J = ∪ψm̂ψ

1:J.

If the device’s owner is performing activity episode a, the probability that it will generate a
measurement m̂ is a function of the location of the episode location x and the measurement
location x̂ (e.g., the distance). Thus we can decompose Equation 33 as:

P(m̂1:J |a1:Ψi) =

Ψi∏
ψ=1

P(m̂ψ
1:J |aψ) (34)

=

Ψi∏
ψ=1

J∏
j=1

P(m̂ψ
j |aψ) (35)

=

Ψi∏
ψ=1

J∏
j=1

P(x̂ψj |xψ) (36)

Equality in Equation 34 assumes measurement independence between activities: measurement
error of network traces is only related to the corresponding activity episode in time. Equality in
Equation 35 assumes measurement independence between signals: measurement error is the





            

same for different signals while in the same location xψ in the same time interval t−ψ, t
+
ψ. Equality

in Equation 36 assumes no measurement error in time: measurement error is a localization
error.

IfA1:T < Pi, P(m̂1:J |A1:T ) = 0.

3.3.2 Sampling alternatives

We assume the choice set to be the universal choice set containing all possible paths between
s and e in the activity network. The sampling strategy for choice set generation presented in
Section 3.2 requires the deterministic part of the utility to be corrected in order to estimate
unbiased parameters. According to Frejinger et al. (2009), a sampling correction term must be
added:

ln q(Cn|Γ) = ln
kΓn

q(Γ)
(37)

where kΓn is the number of times activity path Γ is drawn in Cn and q( j) is the sampling
probability.

The correction term is particularly necessary since there is no alternative specific constant in
the utility, similarly to traditional route choice. The alternative specific constant would allow to
estimate all other parameters without bias. Alternative specific constants cannot be estimated
due to the size of the choice set.

The sampling probability q(Γ) is available using the unnormalized target weights b(Γ) but require
full enumeration for normalization: q(Γ) =

b(Γ)∑
Γ′∈U b(Γ′) . In practice, the normalizing sum cancels

out in the logit formulation:

P(Γ|Cn) =
eµVΓn+ln kΓn

q(Γ)∑
Γ′∈Cn

eµVΓn+ln
kΓ′n
q(Γ′)

(38)

=

∑
Γ′∈U b(Γ′) · eµVΓn · kΓn

b(Γ)∑
Γ′∈U b(Γ′) ·∑Γ′∈Cn

eµVΓn · kΓ′n
b(Γ′)

(39)

=
eµVΓn · kΓn

b(Γ)∑
Γ′∈Cn

eµVΓn · kΓ′n
b(Γ′)

(40)





            

3.3.3 Correlation structure

We propose here two possible correlation structures, inspired from route choice techniques.

Activity path size Let’s consider an example, inspired by the case study (Section 4): a
student and an employee on campus are going for lunch, in a restaurant, between 12.15 pm and
12.30 pm. In terms of activity paths, they visit the same node (same activity type, same time
unit). Let’s further assume there is a queue at this time in general in all restaurants on campus.
The queue is not measured nor observed by the modeler. It is shared by both the employee and
the student, independently of what they have done before and which activity they will perform
after lunch.

Ben-Akiva and Bierlaire (1999) proposed the traditional path size logit model, where a path size
attribute PS p corrects the utility for the correlation related to overlapping segments of paths.

PS p =
∑
a∈p

La

Lp

1
Ma

(41)

where a is an arc of path p, La and Lp are the length of arc a and path p, and Ma is the number
of paths in Cn using link a, i.e., Ma =

∑
j∈Cps

δa j (δa j is the link-path incidence variable that is
one if link a is on path p and 0 otherwise). PS p is usually computed for a limited number of
paths when using a consideration set Cps. When sampling from the universal choice set, Ma

must be computed for all paths. Frejinger et al. (2009) recommend to use a large set of paths for
Cps in practice.

When dealing with an activity network, its symmetry can be used to compute Ma. Assuming
that all K activity types are available for each time interval τ, Ma = Kτ−1 and does not depend on
a. Moreover, the length La and LΓ of arcs and paths correspond to the number of time intervals,
La = 1, LΓ = |Γ| − 1, and thus we define the activity path size APS Γ for path Γ as:

APS Γ =
1

Kτ−1

∑
a∈Γ

1
|Γ| − 1

(42)

=
1

Kτ−1 (43)

A second approach considers aggregation similar to route choice, but neglecting time. the
elemental alternatives correspond to activity paths and the aggregate alternatives are activity





            

types. The size of aggregate alternatives, activity types, equals the number of activity paths
performing this activity type. Cn is the set of paths considered by individual n. Can ⊆ Cn, a =

1, ...,M is the set of paths using activity type a., and M is the number of activity types. The utility
of path i is Uin = Vin + εin. The utility of activity type a is Uan = max j∈Can(V jn + ε jn), a = 1, ...,M.
Ma is the number of paths using activity type a.

The size of Can is large: all activity types are visited by a lot of different activity paths. Path
utilities using an given activity type have equal means and εin are i.i.d.. The utility associated
with activity type a is:

Uan = V̄an +
1
µ

ln Ma + εan (44)

Ma is the number of paths using activity type a. Ma = Kτ − (K − 1)τ.

We believe that other correlation structure might be more realistic. In particular, we could
consider specific patterns as sharing unobserved factors. The correlation of activity path is
still an open question. Moreover, it seems that a deterministic correction for correlation is not
adapted in our context. The correction must be estimated to confirm the different intuitions
about correlation structures in activity choice.

3.3.4 Path utility

The path utility is the sum of the utilities of individual nodesAk,τ:

VΓ =
∑
τ

V(Ak,τ) (45)

The utility V(Ak,τ) of a node Ak,τ represents the individual utility from allocating time to a
certain activity type. It does not include the trip (dis)utility (since there is no specified trip
between two activity types). Trip utility is included in a submodel of destination choice knowing
the sequence of activity types and schedules. The utility includes both the satiation effect and the
time of day preference. Satiation effect represents the diminishing marginal utility with duration,
ηk ln(tk), where tk the duration of activity type k and ηk a satiation parameter for activity type k

(Ettema et al., 2007). The time-of-day utility depends on both the activity type k and the time
interval τ. It can be generally expressed as βk,τIk,τ, where Ik,τ is a dummy variable and βk,τ the





            

corresponding parameter. In practice, some β’s might be statistically equal. The path utility is:

V(Ak,τ) = ηk ln(tk) +
∑
k,τ

βk,τIk,τ (46)

Parameters ηk and βk,τ can be interacted with socioeconomic variables.

Finally, the deterministic part of the utility correcting for both the sampling of alternatives and
the correlation due to the physical overlapping of paths in Cin is:

VΓn = ηk ln(tk) +
∑
k,τ

βk,τIk,τ + ln
kΓn

b(Γ)
+ βPS ln APS Γ (47)

4 Pedestrian case study on EPFL campus

EPFL campus approximately hosts 13’000 people per day. Similarly to transport hubs, some of
its users follow schedules (classes instead of train, bus or plane schedules). The activities are
diverse. People very often spend a day on campus and work, study or eat during the day.

4.1 Data source

We collected network traces as defined in Danalet et al. (2013). Campus users authenticate
themselves on the WiFi network through WPA using a Radius server. Accounting is one of the
process on the Radius server. It allows to associate a MAC address with a username.

For visitors from University of Lausanne (UNIL), the user name is unique for all users (unil.ch).
For members of the campus, the username was associated to employee or class attribute through
LDAP requests. First, 317 employees were randomly selected, 501 students were selected
from 6 random classes1 and 729 UNIL students visiting EPFL campus. For a party on campus,
Vivapoly (http://vivapoly.epfl.ch/), the lists of employees and students were modified.
4493 employees were selected, corresponding to all employees who recently connected to the
WiFi, and similarly all students in the selected classes, resulting in 298 IDs. After the party, the

1Life Science, 1st year students (SV-BA2), Computer Science, 2nd year (IN-BA4), Civil Engineering, 2nd year
(GC-BA4), Mathematics, 1st year (MA-BA2), Computer Science, Master students (IN-MA2), Physics, 1st year
students (PH-BA2).
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lists for students and visitors remained the same, but the list of employees returned to its original
317 IDs. The output of this process is anonymized network traces with known category of users
on campus.

Data were grouped in text files on 11 different days2, and were collected every day at a fixed
time. Each time, historical data were collected individually from the CWS system of the Cisco
Context Aware Mobility API with the Cisco Mobility Services Engine (MSE) Cisco (2011) that
was lent to us. It was impossible to extract all data at once. This was done sequentially, MAC
address by MAC address. It resulted in 2’392’973 network traces. For some users and some
days, the 11 data collection campaigns would overlap over time. We cleaned the data to avoid
broken daily traces related to the time of grouping in text files: if the last signal of a text file for
a given individual does not appear in the next text file for the same user, we delete all signals
related to this day. Similarly, for the very first signal of the first text files, we remove all signals
till 3am. This way, we ensure to have complete days, and no partial sequences of signals for a
day. Table 2 shows the number of signals, IDs and days for raw data (without duplicates), and
for cleaned data (without partial days).

Table 2: Number of network traces

Employees Students Visitors
SV-BA2 IN-BA4 GC-BA4 MA-BA2 IN-MA2 PH-BA2 UNIL

Raw data 963’294 204’516 111’199 164’203 178’339 127’911 162’954 446’344
# IDs 4140 221 125 153 168 190 176 729
# days 51 51 50 51 47 49 50 52

Clean data 203’713 110’432 162’583 177’159 127’198 161’930
# IDs 209 114 138 152 178 158
# days 51 50 51 47 49 50

We applied the algorithm described in Danalet et al. (2014) to all measurements related to
students with L = 1. The potential attractivity measure as defined in Danalet et al. (2014) is
based on different data sources:

• for offices, the attractivity is based on the cumulative work percentage of the different
employees of a given office, e.g., if there are 2 full time employees and one working 80%
of a full time, the attractivity is defined as 2.8. No schedule is applied on offices, so this
attractivity is the same all day long.

• for classrooms with classes, the attractivity equals to the number of registered students to
this class. The attractivity is valid only between the start and end time of the class. For the

2May 23, 2012, 18:58:36; May 24, 17:10:33; May 25, 16:45:17; May 31, 10:42:24; June 8, 8:42:06; June 14,
13:06:45; June 21, 11:37:40; June 27, 10:20:43; July 2, 10:58:31; July 4, 16:31:49; July 5, 10:33:33.





            

language classes, the number of registered students is not known but the language center
provided an estimation of 13 students per class.

• for the library and the multimedia room of the language center, the attractivity equals to
the capacity, i.e., the number of seats, during opening hours.

• for the restaurants, the point-of-sale data are aggregated per quarter of hour and used as
attractivity. Note that this is different than in Danalet et al. (2014), where the attractivity
for restaurants was their capacity, i.e., their number of seats.

The attractivity and time constraints for other points of interest are not available and have to be
imputed by the modeler:

• the attractivity of an office for a student must be non-zero and has been fixed to 0.1.
• the attractiviy of classrooms with classes for employees has been fixed to 2 during the

class.
• the attractivity of conference rooms has been fixed to 3.
• the attractivity of the post office has been fixed to 13 during opening hours and 3 when

only the ATM is available.
• the attractivity of the student union has been fixed to 3.
• the attractivity of all other points of interest has been fixed to 1, by default.

4.2 Activity pattern, activity network and activity path

In Figure 12, an activity pattern is presented as described in Section 3.1.1. This activity pattern
is based on real data of one student on campus.
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Figure 12: Activity pattern for a student on campus.

As defined in Section 3.1.2, a portion of the activity network on campus is shown in Figure 13.
The full activity network covers a complete day. There are seven activity types: classrooms,





            

shops, offices, restaurant, library, lab and other. The types “Office”, “Classroom” and “Lab”
are based on norm DIN 277 defined by the Deutsches Intitut für Normung. The types “Shops”,
“Restaurant”, “Library” and “Other” are extracted from a list of points of interest from http:

//map.epfl.ch.
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Figure 13: Activity network on campus.

The activity pattern from Figure 12 is expressed as an activity path in the activity network in
Figure 14.
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Figure 14: Activity path for a student on campus.

4.3 Choice set

The potential attractivity measure as defined in Section 3.2.1 is based on different data sources
described in Section 4.1. Figure 15 shows the cumulated potential attractivity measure per
quarter of hour for employees over one week. Lunch break is visible.

Figure 16 shows the importance of each activity type in time based on activity paths from WiFi
data for employees on campus. Lunch break is visible. Offices are the most visited activity
type.
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Figure 15: The cumulated potential attractivity measure per quarter of hour for employees.
Aggregation is over one week. Y-axis represents the attractivity, expressed as the
number of people.

We use this second data, the output of the processing of WiFi measurements, to generate a choice
set using the methodology presented in Section 3.2.2. Figure 17 shows the weight of each node
in the activity network based on the number of activity paths using each node. This figure is a
representation of Figure 16 in the activity network.

Figure 18 shows the length of activity paths for employees. A group of observations have a
duration of 8 to 9 hours, which is realistic. Some observations have a short length, about 1 hour,
or a very long one, up to 24 hours. These observations are probably due to the source of data,
i.e., people turning their device off in office or fix devices.

Results from a mobility survey for 2012 show that the shortest activity sequence for students
and employees on campus over 2116 observations is 2h30 per day (Tzieropoulos, 2012). We
remove all observations from WiFi that represent less than 2h30. Shorter observations from
WiFi are probably due to devices that are turned off part of the day, such as laptops. Results of
this filter are presented in Figure 19. This figure shows that activity sequences from WiFi are
globally shorter than declared activity sequences from the mobility survey. This might be related





            

Figure 16: The cumulated number of employees per quarter of hour based on the activity
path from activity-episode sequences generated from WiFi measurements. Y-axis
represents the number of people.

s e

Classroom

Shop

Office

Restaurant

Library

Lab

Other

11
:0

0-
11

:1
5

11
:1

5-
11

:3
0

11
:3

0-
11

:4
5

11
:4

5-
12

:0
0

12
:0

0-
12

:1
5

12
:1

5-
12

:3
0

12
:3

0-
12

:4
5

12
:4

5-
13

:0
0

13
:0

0-
13

:1
5

13
:1

5-
13

:3
0

13
:3

0-
13

:4
5

13
:4

5-
14

:0
0

14
:0

0-
14

:1
5

14
:1

5-
14

:3
0

14
:3

0-
14

:4
5

14
:4

5-
15

:0
0

Figure 17: The distribution of activity type and quarter of hour for employees, based on the
activity path from activity-episode sequences generated from WiFi measurements. It
represents the data of Figure 16 in the (partial) activity network.

to devices with low density of measurements, such as smartphones not regularly connecting to
the WiFi.

Danalet et al. (2014) conclude that a density of 5.4 measurements per hour is the minimum





            

Figure 18: The distribution of length of activity path from activity-episode sequences generated
from WiFi measurements. Y-axis represents the number of activity path with a given
length.

density of measurements for generating stable and trustworthy activity-episode sequences with
respect to the number of episodes, their activity type, their duration and their exact location.
We remove here activity paths with a lower mean density. Results are shown in Figure 20. We
observe that even with dense measurements, the activity sequences from WiFi are still shorter
than declared activity sequences from the mobility survey. Respondents of the mobility survey
might have declared longer activity sequences than what they really did. Cognitively incongruent
answers are common for declared preferences (Bertrand and Mullainathan, 2001). Students and
employees want to show a work-intensive day in their answer to the survey. It might also be that
the respondents were asked to answer about a “typical day” in the recent past.

Figure 21 shows when people are present on campus during the day. People arrive between 7
and 10 am and leave starting from 4 pm up to midnight. They arrive earlier based on the mobility
survey than based on WiFi measurements.

1200 paths were generated.





            

Figure 19: The distribution of length of activity paths from activity-episode sequences generated
from WiFi measurements is represented as blue bars. The left Y-axis represents
the number of activity path with a given length from WiFi measurements. The
distribution of length from (Tzieropoulos, 2012) is represented as dots and green
lines. The right Y-axis represents the number of individuals with a given length from
(Tzieropoulos, 2012). Activity sequences of less than 2h30 are removed.

4.4 Choice model

We estimate a very simple model. It is a logit model, with no correction for correlation. The
utility function is:

VΓn = ηk ln(tk) +
∑
k,τ

βkIk,τ + ln
kΓn

b(Γ)
(48)

It corrects for importance sampling and consider only one βk per activity type.





            

Figure 20: The distribution of length of activity paths from activity-episode sequences generated
from WiFi measurements is represented as blue bars. The left Y-axis represents
the number of activity path with a given length from WiFi measurements. The
distribution of length from (Tzieropoulos, 2012) is represented as dots and green
lines. The right Y-axis represents the number of individuals with a given length from
(Tzieropoulos, 2012). Activity sequences of less than 2h30 are removed. Activity
sequences with a mean density of measurements lower than 5.4 are removed.

4.5 Estimation results

Results are shown in Table 3. βClassroom and βOffice are not significantly different from zero and
have been removed from the model. Satiation parameters for “Office” ηOffice is in the model and
not significant. It means that the duration of episodes has no impact on their attractivity for this
activity.

Offices, shops, the library and classrooms have a negative satiation parameter. The more time is
spent at these activities, the less utility is collected for employees. On the other hand, spending
more time in labs, restaurants or other points of interest increases their utility. Employees like
to avoid the library and other points of interest the most during their day and generally have a
negative tendency toward restaurants, the library, labs and other points of interest.





            

Figure 21: The time-of-day distribution of activity paths from activity-episode sequences gener-
ated from WiFi measurements is represented as blue bars. The left Y-axis represents
the number of activity path present at this quarter of an hour from WiFi measurements.
The time-of-day distribution from (Tzieropoulos, 2012) is represented as dots and
green lines. The right Y-axis represents the number of individuals at a given quarter
of an hour from (Tzieropoulos, 2012). Activity sequences of less than 2h30 are
removed. Activity sequences with a mean density of measurements lower than 5.4
are removed.

More complex models must be implemented. Different betas for different periods of day could
be defined, and similarly different satiation parameters could be estimated. For example, the
attractivity and satiation are probably not the same in restaurants during lunch break and during
the rest of the day.

5 Conclusion and future work

Our approach allows to evaluate and forecast the effects of different policies and designs of
pedestrian facilities. It models the choice of activity sequences of individuals and evaluate the
attractivity of the different points of interest. Our model is not home-based, nor tour-based. It





            

Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 βLab -0.337 0.0949 -3.55 0.00
2 βLibrary -2.74 0.0795 -34.45 0.00
3 βOther -2.78 0.0483 -57.62 0.00
4 βRestaurant -0.725 0.0612 -11.85 0.00
5 βShop -0.473 0.103 -4.59 0.00
6 ηLab 2.55 0.895 2.85 0.00
7 ηOffice -0.787 0.600 -1.31 0.19
8 ηOther 9.66 1.27 7.63 0.00
9 ηRestaurant 5.56 0.789 7.05 0.00

10 ηShop, Library, Classroom -3.26 0.782 -4.16 0.00

Summary statistics
Number of observations = 2219
Number of estimated parameters = 10

L(β0) = −17952.561
L(β̂) = −1484.635

−2[L(β0) − L(β̂)] = 32935.852
ρ2 = 0.917
ρ̄2 = 0.917

Table 3: Estimation results for the model.

can adapt to different contexts and activity types. The large dimensionality of the problem is
managed through importance sampling techniques.

The approach presented in this report needs to be associated to a destination choice model
conditional on the activity type. A logit model could be used, similar to Ton (2014).

Preliminary results show that the approach is feasible in a realistic context. The model can
largely be improved by specification, adding more details and different variables. An important
feature of our approach is that it allows to add in the utility function variables that are not
specific to activity episodes, but are related to the path itself. Patterns can be included in the
utility function and their specific utility or satiation parameters can be estimated.

An important next step in this work is the evaluation of the quality of the generated choice set
and its impact on the choice model.
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