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Abstract 

The aim of this paper is to employ spatial regression modelling as a form of direct demand 
modelling where the speed of each link is the dependent variable of interest. The variables 
that their inclusion in the regression model is investigated, correspond to only aggregated 
values where no personal data information can be traced back. More specifically, socio-
demographic variables along with variables that represent the network characteristics are 
taken into account for that purpose. A particular focus is given on the identification and the 
construction of the spatial weighting matrices. Three different spatial autoregressive models 
are estimated and compared to the ordinary linear regression to highlight their capability of 
explaining transport related phenomena.    
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1. Introduction 

Travel demand models have increased their data demands massively both in scope and scale, 

and in addition their complexity has increased in a similar way. The obvious reluctance of the 

practice to adopt such advanced models, raises the concern that the gap between academia and 

practice has become wider than ever. On the one hand, the increased data collection abilities 

of the field, along with the expected wave of "big data" might allow the (academic) field to 

continue on its current trajectory, but on the other hand the use and abuse of big data raises 

the danger of a sudden change in the course of public policy and the sudden lack of high 

quality alternatives to the existing state-of-the-art (i.e. academic) models. At this point, it is 

tempting to contradict this trend and explore the formulation of an alternative direct travel 

demand model structure that requires only aggregate and anonymous data. Nevertheless, the 

model structure should be able to make statements about the speed and the traffic volume on a 

link level, that constitute the minimum requirements for the transport project appraisal. The 

alternative that is checked is spatial econometrics techniques, and more specifically spatial 

regression.   

Spatial econometrics was popularized by Anselin (1988), defined as the domain that deals 

with the peculiarities caused by space in the statistical analysis of regional science models. 

More specifically, these peculiarities are caused by the dependence and the heterogeneity of 

data in space (spatial effects). As spatial dependence, it can be considered to be the existence 

of a functional relationship between what happens at one point in space and what happens 

elsewhere. Spatial heterogeneity is considered to be the lack of structural stability of the 

various phenomena over space, and also the lack of homogeneity of the spatial units of the 

observations. (Anselin, 1988) 

A number of applications of spatial regression models can be found in the urban and 

modelling area. A comprehensive review of the application of such models is presented by 

Paez and Scott (2004). The presence of spatial effects constitutes a dimension which normally 

is neglected in the existing transport modelling approaches. There is a relatively limited 

number of applications employing spatial regression models for the explanation of how 

transport related phenomena, such as speed or flows, occur and evolve over the space. The 

correlation of speed observations was demonstrated by Bernard et al. (2006) and pointed out 

the necessity of accounting for spatial dependency when it comes to the estimation of speed or 

flows. Hackney et al. (2007) demonstrated the plausibility of accounting for the spatial 

dependence in the estimation of speed where three spatial autoregressive models were 

estimated and compared. Cheng et al. (2011) examined the spatio-temporal dependence 

structure of road networks.  



14th Swiss Transport Research Conference                                                                                                 May 14-16, 2014 

 ______________________________________________________________________________________________  

3 

 

In this paper, the first steps towards a simplified direct demand modelling approach is 

presented along with the relevant theoretical background of spatial regression that is the 

employed modelling approach. In particular, three different spatial simultaneous 

autoregressive (SAR) models are estimated and compared to an ordinary linear regression in 

order to highlight and evaluate the impact of utilizing spatial regression models as a 

simplified direct travel demand model approach. The SAR models are constructed to offer a 

structural explanation of the speed on the links, and subsequently their predictive power is 

assessed to draw conclusions regarding the plausibility and the effectiveness of the approach.         
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2. Spatial regression models 

As mentioned above, the alternative of spatial econometrics techniques constitutes the option 

that is examined to be employed in an coherent framework of a direct demand modelling 

approach.  Conceptually, it is arguable that a simplified approach cannot exhibit the predictive 

accuracy and the sensitivity of the existing approaches (4-step and agent-based models), 

however it cannot be overseen the fact that when it comes to the appraisal of public transport 

projects, as Flyvbjerg et al. (2005) argue, the quality of the demand forecasts has not been 

improved over the years even though more complex and advanced models have been 

employed. Driven by this, the option of spatial regression as a simplified demand modelling 

approach is examined in the context of transport project appraisal. The advantage of that 

choice in comparison to the “classical” approaches is that it is significantly less cumbersome 

to apply, less data demanding, and also offers a structural explanation of the observed 

transport phenomena such as speed and flows in a direct way. The underlying assumption and 

hypothesis is that by accounting properly for the impact of spatial effects in the context of 

regression modelling, accurate demand forecasts can be provided. Nevertheless, the value of 

the research towards this direction is not only as a competing alternative of the existing 

methods but it can also point directions regarding the importance of accounting properly for 

the spatial effects and thus can provide insight on how the existing approaches can be 

improved.  

As spatial regression models is defined the use of regression models by accounting for the 

impact of spatial effects in their specification and estimation, avoiding to give rise to 

statistical problems such as unreliable statistical tests and biased and inconsistent estimated 

parameters. This is accomplished by incorporating in the model the information about the 

spatial structure of the data, in the form of a contiguity matrix. Spatial simultaneous 

autoregressive (SAR) models is a popular category of such models that they have been 

applied in many cases. As suggested by Ord (1975), their estimation can be conducted by 

means of maximum likelihood since the ordinary least square (OLS) estimation produces 

inconsistent estimates. The assumption of these models is that the response variable at each 

location is a combination of the explanatory variables at that location but also of the response 

of neighbouring locations (Löchl and Axhausen, 2010).  

Three main types of SAR models can be found in the literature, each one having different 

characteristics based on their underlying assumptions about where the autoregressive occurs 

(Kissling and Carl (2007), LeSage and Pace (2004)). At first, the spatial error autoregressive 

model (SARerr) assumes that the spatial dependence is in the error term of the model, and 

thus the spatial autoregressive process is applied to it. The formulation of the model is: 
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ܻ ൌ ߕߚ ൅  ሺ1ሻ	ݑ

with  ݑ ൌ ݑܹߣ ൅  ሺ2ሻ	ߝ

where Y is a vector with N values of the dependent variable, β is a vector with the regression 

coefficients, X is a matrix with the independent variables, u the error term, λ the spatial 

autoregressive coefficient, W a matrix with the contiguity structure having dimensions N x N, 

and ε a vector of independent and identically distributed (iid) error terms.   

The spatial lag autoregressive model (SARlag) assumes that the spatial dependence exists in 

the response variable, and applies the spatial autoregressive process to the response variable 

and treats it as a lagged variable. The formulation of the model is: 

ܻ ൌ ܻܹߩ ൅ ߕߚ ൅  ሺ3ሻ	ߝ

where ρ is the spatial autocorrelation parameter, and WY is the term for the lagged variable. 

The spatial mixed autoregressive model (SARmix, also denoted as spatial Durbin model in 

some application (eg LeSage and Pace (2004)) assumes that the spatial dependence exists in 

both the response and the independent variables. The formulation of the model is: 

ܻ ൌ ܻܹߩ ൅ ߕߚ ൅ܹܺߛ ൅  ሺ4ሻ	ߝ

with  ߛ ൌ െߚߩሺ5ሻ 
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3. Case study 

In order to assess the plausibility of applying SAR models for speed prediction purposes, a 

case study scheme is established. A part of the national network of Switzerland is selected, 

including the canton of Zurich and extending to the neighboring cantons as well. In particular, 

the full road network of the North-East Switzerland is included in the chosen network. A 

navigational network is used, commercially available by Tom-Tom, including hourly speed 

estimations based on GPS measurements for the majority of the links. In detail, the study 

network includes approximately 190.000 links (having excluded the secondary, or less 

important links) while the remaining links are classified based on their type (5 available 

types). In addition to the estimated speeds, the set speed limit is available for each link along 

with a dummy variable denoting if it is an on/off ramp. A visual representation of the study 

network can be seen in Figure 1. 

Figure 1: Case study network with administrative borders of cantons 

 

The average speed for the morning peak hour (8-9pm) of a typical weekday is the dependent 

variable of interest for the regression. This choice is made in order to ensure that there is 

sufficient variation of the speed values on the links, in comparison to their reported free flow 

speeds. The regression yields two speed components; first, the average road speed which is a 

function of the speed limit and the link type and it is a non-spatial quantity. Spatial variation 

is added to the link speed estimates in the second component via the spatially resolved 

explanatory variables. Spatially resolved road and public transport network densities represent 

the effect of road supply on speed. Spatial data on population and employment densities are 
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taken to be indicative of the intensity of local activities, reflecting travel demand locally 

(Hackney et. al, 2007). 

3.1 Spatially resolved variables 

Apart from the network data that presented above, the spatial resolved variables constitute an 

important component of the regression model since they introduce variation on the estimated 

average values, as resulted from the non-spatial component. At first, the road and public 

transport densities are of apparent interest since they represent the effect of road supply and 

also the spatial competence between the private and public modes, especially in the urban 

areas, on speed. The road density is estimated as the total length of links within a given area 

and it is calculated for different radii. The full navigational network is used for that density 

calculation. Besides the full network, the densities of ramp links is calculated as well as it is 

expected to have local impact on speed. In the case of accounting for the impact of the public 

transport network on speed, it is less straightforward the way that an appropriate variable can 

be constructed. As an approximation, the density of public transport stops within a given area, 

is considered to be the most appropriate variable for that purpose.    

Another source of spatially resolved variables corresponds to the impact of socio-

demographic data on speeds. More specifically, the socio-demographic data of interest are the 

population and the employment positions for the whole area of Switzerland, aggregated per 

hectare, and they are available from the Swiss Federal Statistical Office (BFS: Bundesamt für 

Statistik).. The population data correspond in the year 2011, taken from the “Statistics of 

Population and Households 2011” ("Statistik der Bevölkerung und der Haushalte 2011", date 

of version: 30 August 2012), while the employment data are taken from the “Federal Business 

Census” of 2008 (Eidgenössische Betriebszählung 2008, date of version: 29 March 2008).  

Given the disaggregate level of these data (hectar based), they are taken into account as 

densities over different radii. In addition to the normal densities, kernel densities are 

calculated as well to account for the diminishing impact of the socio-demographic data over 

the space.    

At last, the spatially resolved variables need to be associated to the links of the network. 

Thereupon, each link of the network associate with the hectare (cell) values of each spatial 

variable, closest to the upstream endpoint of the link.    
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4. Estimation of models 

In this section the different regression models estimations are presented and compared to 

exhibit the impact of accounting properly for the spatial dependency of speeds. More 

specifically, a standard linear regression model is estimated in terms of ordinary least squares 

(OLS), while three SAR models are estimated as well. A comparison of the estimated models 

is conducted in order to shed some light on the plausibility of the SAR models to predict 

traffic related variables, as speed, and also to what extent they can accomplish that.  At first, 

OLS 

4.1 Linear regression model 

At first, a linear regression model is estimated (ordinary least squares estimate) to serve as the 

basis for testing the necessity of accounting properly for the spatial association (auto-

correlation). It is expected that the OLS model is going to give rise to biased and inconsistent 

estimates and thus the resulted adjusted coefficient of determination will be inconsistent and 

not true. Additionally, OLS predicted values are going to be used for testing if spatial 

association exists in the residuals by estimating Moran’s I measure. Depending on the results 

of the Moran’s I, a justified  explanation of whether or not it is needed to account for the 

spatial dependence properly is going to be provided. The independent variables that are 

included in the model are determined based on their predictive power and in accordance to the 

appropriate statistical tests , avoiding to give rise to multicollinearity issues. The specification 

of the model and the estimated coefficients are presented in Table 1.   

As it can be seen, the adjusted R square is extremely high while the estimated parameters are 

all statistically significant. Employment positions and population densities are not used at the 

same time due to high correlation. Notably, a differentiation of the employed densities radius 

for different links’ types is found to be more appropriate and thus chosen, instead of a fixed 

radius density for all links’ types. This finding reflects that depending on the type of the link, 

the impact of spatial resolved variables on speed is not homogeneous, indicating a rather 

localized impact in the case of lower link types. In the case of ramps, with the exception of 

other roads type, all the rest seem to have a positive impact on speed, a possible explanation 

can be that ramps are unlikely to have congestion because of their sort length and thus their 

speed remains high and close to the existing speed limit. However, that is not the case for the 

lower classified ramps that seem to have a negative impact on speed. Ramps’ density 

variables have a negative impact on speed besides the cases of collector and trunk roads. This 

can be possibly explained by the fact that the higher the density of ramps, more vehicles are 

exiting the roads and thus causing alleviation of traffic. In the case of highways, the 



14th Swiss Transport Research Conference                                                                                                 May 14-16, 2014 

 ______________________________________________________________________________________________  

9 

magnitude of ramps’ density variable is reasonable, since the highest the number of on/off 

ramps can lead to higher disruption of the traffic flow, and thus decreased speed.   

Table 1: Estimated OLS parameters  

Y = Morning Peak-Hour Speed 
Estimate

Std. 
Error 

t value Pr(>|t|)   Signif. 
Explanatory variables 

Speed-limit 0.513 0.003 195.572 0.00E+00 ***
Highways: Constant 64.956 0.956 67.932 0.00E+00 ***
Trunk roads: Constant 43.558 1.124 38.768 0.00E+00 ***
Collector roads: Constant 41.744 0.879 47.472 0.00E+00 ***
Distributor roads: Constant 41.284 0.234 176.106 0.00E+00 ***
Other roads: Constant 34.014 0.197 172.901 0.00E+00 ***
Distributor: PuT stops density,r=0.5km -0.320 0.010 -31.021 9.68E-211 ***
Other roads: PuT stops density, r=0.2km -0.177 0.005 -38.391 3.26e-321 ***
Highways: ln(popul, r=5km) -3.529 0.144 -24.443 9.63E-132 ***
Trunk roads: ln(popul,r=2km) -3.954 0.175 -22.578 1.01E-112 ***
Collectors: ln(employm,r=2km,kernel) -3.723 0.120 -30.897 4.44E-209 ***
Distributor: ln(employm,r=1km,kernel) -2.402 0.026 -92.469 0.00E+00 ***
Other roads: ln(employm,r=0.5km,kernel) -1.531 0.018 -84.887 0.00E+00 ***
Trunk roads: Ramp dummy 11.285 0.948 11.907 1.12E-32 ***
Collector roads: Ramp dummy 11.722 1.041 11.264 2.02E-29 ***
Type 4: Ramp dummy 5.270 0.201 26.206 4.30E-151 ***
Type 5: Ramp dummy -2.822 0.499 -5.653 1.58E-08 ***
Highways: Ramps' dens, r=1km -2.087 0.224 -9.329 1.08E-20 ***
Trunk roads: Ramps' dens, r=1km 6.805 0.825 8.246 1.64E-16 ***
Collector roads: Ramps' dens, r=1km 3.886 0.764 5.084 3.70E-07 ***
Distributor roads: Ramps' dens, r=0.5km -0.311 0.048 -6.419 1.38E-10 ***
Other roads: Ramps' dens, r=0.5km -0.197 0.073 -2.679 7.39E-03 **
Distributor roads: Road density, r=100 m -0.173 0.003 -56.836 0.00E+00 ***
Other roads: Road density, r=100 m -0.171 0.003 -56.501 0.00E+00 ***
adjusted R-square 0.9673
Log-Likelihood (x 10^4) -684431
observations 188428         
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

4.2 Spatial regression models  

The first key aspect of proceeding to the estimation of the spatial regression models is to 

determine the underlying spatial dependence, if any, and incorporate it accordingly in the 

spatial regression models, in the form of a spatial weight matrix. In order to assess the impact 

of different weighting matrix type, two categories of weighting matrices are tested 

thoroughly; one that assigns a uniform weight on all the k-nearest neighbours based on the 

Euclidean distance, and one similar where once the k-nearest neighbours are identified, the 
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assigned weight is calculated as the inverse squared distance, aiming in capturing the 

diminishing dependence of links over the distance (distance decay). Subsequently, each row 

of the latter matrix is standardised to one. In addition, the issue of identifying the extent of the 

neighbourhood needs to be treated. Driven by this, three SAR models are estimated for 

different number of neighbours, namely the SARerr, the SARlag, and the SARmix models. 

The optimum number of neighbours for each model is identified on the basis of minimizing 

the Akaike Criterion (AIC). The spatial autocorrelation of the OLS residuals is estimated as 

well in terms of the Moran’s I measure, for each weighting scheme. The estimation of the 

SAR models and the construction of the weighting matrices was conducted in R (R 

development team, 2005), making use of  the package “spdep” (Bivand et al., 2011). It should 

be noted that for facilitating computationally the estimation of the SAR models, the LU 

method for the decomposition of sparse matrix is used (LeSage and Pace, 2009).  

Table 2: Measures of quality of fit for SAR models for different weight matrices  

Number 
of 
Neighbors 

OLS residuals 
autocorrelation SARerror AIC SARlag AIC SARmix AIC 

Binary  
Inv. sqr. 
dist. Binary  

Inv. sqr. 
dist. Binary  

Inv. sqr. 
dist. Binary  

Inv. sqr. 
dist. 

3 0.709 0.662 1256831 1272235 1282845 1293182 1245797 1260697

4 0.680 0.653 1245499 1261144 1276645 1285096 1236069 1249901

5 0.660 0.646 1243602 1256478 1276704 1282107 1235519 1245892

6 0.635 0.638 1241721 1253803 1276195 1280352 1234832 1243703

7 0.615 0.631 1243688 1252396 1278225 1279639 1237746 1242814

8 0.593 0.624 1245333 1251527 1280106 1279362 1240238 1242372

9 0.574 0.618 1248958 1251186 1283485 1279503 1244532 1242429

10 0.554 0.613 1251851 1250988 1286159 1279654 1247991 1242542

11 0.537 0.608 1255871 1251017 1289591 1279956 1252482 1242878

12 0.518 0.603 1259222 1251052 1292591 1280288 1256256 1243204

13 0.502 0.599 1263237 1251232 1296075 1280690 1260598 1243640

14 0.486 0.595 1266602 1251387 1298935 1281014 1264229 1244000

15 0.471 0.591 1270264 1251570 1302068 1281400 1268111 1244370

OLS AIC 1368911               

As it can be seen in the table above, there is evidence of strong spatial autocorrelation on the 

residuals of the OLS regression, and naturally the spatial autocorrelation decreases as the 

number of nearest neighbours increases. The optimum number of k-nearest neighbours, in 

terms of AIC, for the binary weighting scheme is found to be equal to 6 for all three SAR 

models. In the case of the inverse weighting scheme, the optimum number differs and it is 

found to be equal to 10 for the SARerr model, while for the case of the rest two SAR models 

is found to be 8. It can be concluded that the binary weighting matrix scheme outperforms the 

inverse square distance weighting scheme and due to that it is the employed one for the 

comparison and the evaluation of the models that follows.  
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4.3 Comparison of models  

In Table 3, the estimated coefficients, along with the relevant goodness of fit measurements, 

can be seen. In summary, the coefficients of the OLS model are higher than the corresponding 

ones in the SAR models, reflecting that in the absence of accounting properly for the spatial 

dependence, more weight is assigned mistakenly on the structural variables. SAR models are 

significantly better than the OLS one, all of them having smaller values (in absolute terms) of 

both the AIC and the Log-likelihood measure. It should be noted that the formulation of the 

model remains the same in the different model estimations in purpose, in order to allow a 

comparison of all models in terms of identifying the impacts that the three different SAR 

models have both on the estimated coefficients and on the results.  

Table 3: Estimated coefficients for the different models 

Y = Morning Peak-Hour Speed OLS SARerr SARlag SARmix 

Explanatory variables Coeff. Coeff. Coeff. Coeff. Lag.Coeff. 

Speed-limit 0.513 0.421 0.282 0.38 ‐0.038

Highways: Constant 64.956 83.675 31.739 60.38 ‐8.007

Trunk roads: Constant 43.558 58.389 13.67 32.497 ‐4.054

Collector roads: Constant 41.744 63.514 18.141 40.257 ‐5.287

Distributor roads: Constant 41.284 47.721 12.342 23.668 ‐2.377

Other roads: Constant 34.014 34.477 9.862 8.088 NA

Distributor: PuT stops density,r=0.5km -0.32 -0.282 -0.099 -0.149 0.010 ‘*’
Other roads: PuT stops density, r=0.2km -0.177 -0.094 -0.066 -0.039 ‐0.001‘**’
Highways: ln(popul, r=5km) -3.529 -4.97 -1.486 -4.282 0.616

Trunk roads: ln(popul,r=2km) -3.954 -4.038 -1.486 -2.879 0.345‘**’
Collectors: ln(employm,r=2km,kernel) -3.723 -4.792 -2.06 -3.919 0.504

Distributors: ln(employm,r=1km,kernel) -2.402 -2.298 -0.858 -1.663 0.189

Other roads: 
ln(employm,r=0.5km,kernel) 

-1.531 -1.061 -0.492 -0.49 0.020‘***’

Trunk roads: Ramp dummy 11.285 6.234 2.278 5.052 0.272‘^’
Collector roads: Ramp dummy 11.722 8.583 5.584 8.2 ‐0.528‘***’
Distributor roads Ramp dummy 5.27 2.085 -1.597 1.395 0.283

Other roads: Ramp dummy -2.822 -1.5 -5.069 -1.15 0.243‘^’
Highways: Ramps' dens, r=1km -2.087 -3.902 -5.275 -3.739 0.544

Trunk roads: Ramps' dens, r=1km 6.805 5.537 2.916 4.889 ‐0.769‘^^’

Collectors: Ramps' dens, r=1km 3.886
2.936 

‘****’
-0.325 

‘^’ 
1.631 

‘^’  
‐0.199‘^^’

Distributors: Ramps' dens, r=0.5km -0.311
-0.059 

‘^^’
-0.673 -0.149 ‐0.018‘^’

Other roads: Ramps' dens, r=0.5km 
-0.197 
‘****’

-0.443 -0.924 0.045 0.001‘^’

Distributors: Road density, r=100 m -0.173 -0.078 -0.074 -0.063 0.0003‘^^’

Other roads: Road density, r=100 m -0.171 -0.129 -0.095 -0.095 0.007

ρ - - 0.101 0.126
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λ - 0.131 - 

AIC 1368911 1241721 1276195 1242372
adjusted R-square 0.9673 - - - 

Log-Likelihood (x 10^4) -684431 -620834 -638072 -617367

Signif. codes:  0.001 ‘****’ 0.01 ‘***’ 0.05 ‘**’ 0.1 ‘*’ 0.5‘^^’ 1‘^’      

The predictive power of each model is calculated in order to facilitate their comparison and 

draw some conclusions with respect to their ability to make accurate predictions. The 

predictive accuracy in terms of predicted values that are within different specified ranges is 

presented in Table 4. As it can be seen, OLS model performs relatively bad since less than 

50% of the predictions fall within a range of 10%. On the other hand the predictive accuracy 

of the SAR models is much better and it is clearly reflected that accounting for the spatial 

dependence of data, in addition to the structural variables can lead to significantly improved 

predictions. This finding shows that in the case of OLS models, the estimated coefficients are 

inconsistent and biased since more explanatory power is attributed on them. Among the SAR 

models, clearly the SARerr model is better than the SARlag model, indicating that accounting 

for the spatial dependence in the error terms of the model is more important than accounting 

for the spatial dependence in the response variable. Nevertheless, the SARmix model that 

accounts for both, is slightly better than SARerr model. However, in terms of AIC values, 

SARerr model seems to be better. The disadvantage of the estimated SARmix model is that 

many of the constructed spatial lagged variables’ coefficients are insignificant while their 

interpretation is less straightforward than of the other models and should be conducted with 

caution. In summary, the results of the SAR models can be considered that they highlight the 

impact of accounting properly for the spatial dependence of transport related data. 

Table 4: Predictive accuracy of estimated models in terms of predicted speeds within 
specified range of actual speeds 

Model 
2% 
range 

5% 
range 

8% 
range 

10% 
range 

15% 
range 

20% 
range 

30% 
range 

OLS 9.43% 23.16% 36.39% 44.71% 62.38% 74.87% 86.62% 
SARerrr 20.04% 45.51% 63.05% 71.13% 83.20% 89.26% 94.54% 
SARlag 16.15% 38.57% 56.51% 65.64% 79.87% 86.93% 93.13% 
SARmix 20.45% 46.10% 63.66% 71.64% 83.32% 89.31% 94.60% 
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5. Conclusion 

In the present paper, the first steps of building up a simplified model towards a direct demand 

modelling approach were presented. The first results showed the plausibility of the spatial 

regression models to be used in that context and highlight how the careful set up of the 

weighting matrices can contribute to obtaining better predictions.  

The next steps will be in the direction of further investigating issues regarding the form of the 

employed spatial regression models and also the form of the weighting matrices. An apparent 

improvement would be to account for the network connectivity of the links, in line with the 

approach presented by Hackney et al.(2007). Moreover, modelling approaches that account 

for structural instability in space (eg geographically weighted regression) will be tested as 

well to conclude in the best modelling approach for modelling transport related phenomena. 

The modelling approach will be extended and applied for the estimation of the average daily 

volume on the links, in order to be able to form a complete framework that can provide the 

essential answers for transport project appraisal purposes. In addition, the results of the 

developed approach will be compared with the results of existing modelling techniques 

(MATSim and VISUM) and an analytical comparison will be done within the context of a 

cost-benefit analysis for a given set of transport projects and policies to identify the trade-offs 

between the modelling technique and the supported choices. 
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