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Abstract

We propose a data-driven approach to pedestrian flow characterization. New definitions of
density, flow and speed are derived by extending the ones existing in the literature through
three-dimensional Voronoi diagrams. The proposed approach results in a set of definitions that
are adjusted to the reality of the flow and independent from an arbitrarily chosen discretization.
The advantages of this approach are illustrated empirically. Using data from simulation and
walking experiments the approach is shown to: (i) reproduce the settings with uniform and
non-uniform movement; (ii) reflect the self-organization phenomena typical for pedestrian traffic
and pedestrian heterogeneity; (iii) allow for the analysis of congestion at the microscopic level;
(iv) lead to smooth transitions in measured traffic characteristics.
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1 Introduction

Understanding and predicting of pedestrian flows are of the utmost importance for providing
convenience and safety for pedestrians. In this respect a number of modeling approaches have
been proposed in the literature (Duives et al., 2013) addressing different levels of pedestrian
movement and behavior (strategic, tactical or operational). In all cases speed (v, in m/s), density
(k, in ped/m2) and flow (q in ped/ms) are used as fundamental variables to describe pedestrian
traffic. Nonetheless, the consistent and unified approach to the definitions of these variables is
still missing.

Zhang (2012) has provided a comprehensive review of existing approaches to pedestrian flow
characterization (denoted by A, B, C and D in the mentioned study). The approach A is concerned
with a stream behavior on a small increment of a walkway over a longer period of time. A
reference location in space (x) is considered and flow and (time-mean) speed are specified as the
average over time (∆t):

q =
n
∆t

(1)

v =
1
n

∑
i

vi(t), (2)

where n is the number of pedestrians passing the location x during ∆t and vi(t) is the instantaneous
speed of a pedestrian i observed at location x.

In the approach B density and (space-mean) speed are specified as the average over time (∆t)
and space (∆x × ∆y):

k =
1
∆t

∫
t

n
∆x∆y

dt (3)

v =

∑
i vi

n
, (4)

where ∆x and ∆y are the length, respectively width of the considered discretization unit in space,
and vi = ∆x

∆t is the individual space-mean speed.

The approach C focuses on a stream behavior during a small increment of time over longer
spatial units and defines density and (space-mean) speed per unit of space (∆x × ∆y) as:

k =
n

∆x∆y
(5)





      

v =

∑
i vi

n
, (6)

where ∆x, ∆y and vi are the same as for the approach B.

The approach D (proposed by Steffen and Seyfried (2010)) is based on spatial discretization
via Voronoi diagrams (Okabe et al., 2009). Given the positions of the pedestrians at any time,
Voronoi diagram for these positions is computed, giving cells Ai to each person i. Based on this
discretization in space the density distribution is specified as:

ki =
1
|Ai|

, (7)

where |Ai| is the area of the Voronoi cell Ai, with the unit m2. Finally, density and speed are
defined per unit of space (∆x × ∆y) as:

k =

∫
x

∫
y

kidxdy

∆x∆y
, (8)

v =

∫
x

∫
y

vidxdy

∆x∆y
, (9)

where vi is the instantaneous speed of pedestrian i.

In the field of vehicular traffic the widely used definitions of traffic indicators are the ones
proposed by Edie (1963). Edie’s definitions are derived based on vehicular trajectories in the
time-space region of duration ∆t and length ∆x as:

k =

∑
i ti

∆x∆t
, (10)

q =

∑
i xi

∆x∆t
, (11)

v =

∑
i xi∑
i ti
, (12)

where ti is the time spent by vehicle i in the region ∆x × ∆t and xi is the distance traversed by
vehicle i in the region ∆x × ∆t.

Saberi et al. (2014) have proposed a three-dimensional approach to pedestrian flow character-
ization by extending the definitions introduced by Edie (1963). Density and flow are defined
as the flux of pedestrian trajectories through a plane ax + by + ct + d = 0 (with normal vector
n = (a, b, c)) that is specified for the considered volume in the three-dimensional space-time
diagram. Specifically, the density at time t is defined as the flux of trajectories through the plane





      

parallel to the time axis:

k =
Ndt
|A|dt

=
N
|A|
, (13)

where N is the total number of pedestrians passing through the plane and |A| is the area of the
specified plane with the unit square meters.

The flow is defined as the flux of trajectories through the plane vertical to the time axis:

q =
Ndm
|A|dm

=
N
|A|
, (14)

where N is the total number of pedestrians passing through the plane, m is the normal vector
of the specified plane, and |A| is the area of the specified plane with the unit meters times
seconds. The distinction is made between the backward and forward flow, thus accounting to
some extent for the directional composition of pedestrian flow. A similar approach is presented
in van Wageningen-Kessels et al. (2014), where definitions for speed and velocity are proposed
additionally.

What all of the presented approaches appear to have in common is their discretization being
chosen arbitrarily in at least one dimension. This may generate noise in the data, and results
may be highly sensitive even to minor changes in the discretization in both time and space.
If discretization units are too small, many of them are at risk of remaining empty, whereas a
discretization with units too large may lead to the loss of heterogeneity. It is the approach D

in which this issue has been partially addressed through a Voronoi-based spatial discretization.
In addition, several empirical studies (Seyfried et al., 2005, Zhang, 2012) have demonstrated
that the results obtained by utilizing the presented approaches are incomparable due to the
averaging performed over different degrees of freedom. Edie’s definitions appeared to eliminate
any ambiguity with respect to averaging and to lead to consistent results in observations and
modeling (van Wageningen-Kessels et al., 2014). What we suggest is combining the strengths
of the approaches proposed by Edie (1963) and Steffen and Seyfried (2010) in order to address
the issues with respect to pedestrian flow characterization. In particular, we propose a new
set of definitions of pedestrian traffic variables derived by adapting Edie’s definitions through
data-driven spatio-temporal discretization.

The structure of the paper is as follows. Section 2 describes the data-driven discretization
framework designed by using three-dimensional Voronoi diagrams. In Section 3, we formally
define the characteristics of pedestrian traffic, that is density, flow and speed. Section 4 presents
the preliminary empirical analysis of the proposed approach based on data from simulated and
walking experiments. Finally, Section 5 summarizes the outcomes of the proposed methodology





      

and determines future research directions.

2 Data-driven discretization framework

We consider a space-time representation, where triplet (x, y, t) represents a physical position
(x, y) in space at a specific time t. An orthonormal basis for the spatial dimensions is considered,
so that the distance along each of the two spatial axis is expressed in meters. Time is expressed
in seconds.

We define the distance between two points p1 = (x1, y1, t1) and p2 = (x2, y2, t2) as:

dα(p1, p2) =
√

(x1 − x2)2 + (y1 − y2)2 + α(t1 − t2)2, (15)

where α is a conversion constant expressed in meters per second. Note that using α = 1m/s
would give the interpretation that 1 second in time is equivalent to 1 meter in space.

The trajectory of pedestrian i is a curve in space and time, that is:

pi(t) = (xi(t), yi(t), t), (16)

such that xi(t) and yi(t) are the coordinates of the position of pedestrian i at time t. In practice,
the analytical description of a trajectory is seldom available. Instead, the pedestrian trajectory
data are collected by using an appropriate tracking technology (e.g. Daamen and Hoogendoorn
(2003), Alahi et al. (2014)). In this case, a sample of points is available:

pis = (xis, yis, ts), (17)

where i (i = 1, ...,N) is the pedestrian and ts = (t0, t1, ..., t f ) corresponds to the available
sample.

We consider three-dimensional (3D) Voronoi diagram (Okabe et al., 2009) associated with the
points pis for the distance dα defined by (15). This spatio-temporal tessellation assigns a 3D cell
Vis to each pedestrian i in such a way that each point p = (x, y, t) in Vis is closer to i than to any
other pedestrian, with respect of dα:

Vis = {p|dα(p, pis) ≤ dα(p, p js),∀ j}. (18)

If p lies on the border between two or more Voronoi cells, exactly one of them is arbitrarily
selected to be associated to p. The volume of a cell Vis is denoted by Vol(Vis) and has the unit





      

square meters times seconds.

We define the set of all points in Vis corresponding to a specific time t, that is:

Vis(t) = {(x, y, t) ∈ Vis}. (19)

It represents the set of dimension 2 or a physical area on the floor.

Similarly, we define the set of all points in Vis corresponding to a specific location (x, y), that is:

Vis(x, y) = {(x, y, t) ∈ Vis}. (20)

It represents the set of dimension 1 or a time interval.

3 Traffic indicators

The definitions of traffic indicators are specified by extending the definitions of Edie (1963)
through a data-driven discretization in space and time described in Section 2.

The density of the cell Vis around pedestrian i positioned at pis = (xis, yis, ts) is defined as:

kis =
Vis(xis, yis)
Vol(Vis)

. (21)

The cell Vis(xis, yis) is the time interval ‘occupied’ by pedestrian i positioned at pis. The unit of
kis is a number of pedestrians per square meter.

The flow for pedestrian i positioned at pis = (xis, yis, ts) is defined as:

qis =
dis

Vol(Vis)
, (22)

where dis is approximated by a maximum distance in Vis(ts) in the movement direction of
pedestrian i positioned at pis. Note that Vis(ts) is the region in space ‘belonging’ to pedestrian i

at time ts, with the unit square meter. The unit of qis is a number of pedestrians per meter per
second.

The speed of pedestrian i positioned at pis = (xis, yis, ts) is defined as the ratio between the





      

distance traversed and the time spent by a pedestrian in Vis :

vis =
dis

Vis(xis, yis)
. (23)

The unit of vis is meters per second.

The three indicators are related as follows:

qis = kisvis. (24)

Note that upon taking the limit conditions (t → 0, x → 0, y → 0) the definitions yield the
classical ones (instantaneous and local).

The definitions given by (21), (22) and (23) are adjusted to the reality of the flow flow and are
as much independent from the arbitrarily chosen discretization as possible. They provide the
characterization of pedestrian traffic at the disaggregated level. If more aggregated indicators
are of interest, then the indicators from multiple Voronoi cells are to be combined as follows:

k(V) =

∑
i kisVol(Vis)∑

i Vol(Vis)
=

∑
i Vis(xis, yis)∑

i Vol(Vis)
, (25)

q(V) =

∑
i qisVol(Vis)∑

i Vol(Vis)
=

∑
i dis∑

i Vol(Vis)
, (26)

v(V) =

∑
i dis∑

i Vis(xis, yis)
. (27)

Note that in specific circumstances the aggregation of speed and flow indicators can lead to
their mutual cancellation. For instance, in a case of two equally sized groups of pedestrians
who are walking at the same speed but in the opposite directions, the aggregation will lead to
zero value of the resulting speed. Therefore, the proposed discretization framework is further
enhanced by stream-based definitions of the variables so that they can be applied in the case of
multi-directional flow composition. Since the focus of this paper is on data-driven discretization,
for further details on stream-based definitions of traffic variables we refer to Nikolić and Bierlaire
(2014).





      

4 Empirical analysis

In this section, we present the preliminary results of our analysis with an intention to illustrate
the advantages of the proposed approach empirically. First, we consider pedestrian trajectory
data that is generated in a simulated environment. In the second case, the data from a controlled
walking experiment are employed. All analyses are performed with the parameter α fixed to the
value 1m/s.

4.1 Simulation experiments

We first analyze the characteristics of pedestrian traffic defined in Section 3 in the case of a
single pedestrian. Pedestrian is assumed to perform a straight line movement and his trajectory
in an analytical form is given as:

p = (x(t), y(t), t) = (0.02t2 + 0.9t + 0.1, 1, t). (28)

We consider a three dimensional area of length 6 meters, width 2 meters and duration 6 seconds
and sample points from pedestrian trajectory every 1 second. 3D Voronoi diagram obtained
based on this sample is shown in Figure 1. Discretization based on Voronoi diagrams depends
on the proximity of the points in the considered space-time region. Since a pedestrian in our
experiment is alone, the Voronoi-based time intervals occupied by a pedestrian and regions in
space belonging to him will be overestimated. Consequently this will lead to an inaccurate
estimation of traffic indicators. However, if we bring more pedestrians into focus, it is expected
that the accuracy of the results of the corresponding 3D Voronoi discretization increases. Indeed,
this is the case of interest to be analyzed.

Figure 1: Three-dimensional Voronoi diagram for single pedestrian





      

To illustrate this we consider the experiment in which we sample from the trajectories of 11
pedestrians. In this case density is controlled by changing the speed of pedestrians over time. In
the first case, we consider pedestrians who are walking at a constant speed, while in the second
case, one group of pedestrians is made to walk at a faster speed. In both cases we consider a
three dimensional area of length 6 meters, width 2 meters and duration 6 seconds.

The Voronoi-based density maps obtained for both the former and latter case respectively are
shown in Figure 2(a) and Figure 2(b). In Figure 2(a) the black dots correspond to all of the
positions of pedestrians over time. In Figure 2(b) the dots correlate with the positions of the
slower-walking pedestrians while the crosses agree with the positions of those walking at a
greater speed. The color corresponds to the density level in such a way that a darker gray color
indicates a greater density. In the first case, the density is constant over space and time, whereas
in the second one, inhomogeneous density conditions between the two groups of pedestrians are
observable. This observation indicates the ability of our approach to reproduce the simulated
settings with uniform and non-uniform movement.

Figure 2: Voronoi-based density maps for a sample from pedestrian trajectories: (a) uniform and
(b) non-uniform movement





      

4.2 Controlled walking experiments

The second set of data has been collected during a controlled experiment at the Technical
University of Delft in the Netherlands (Daamen and Hoogendoorn, 2003). The individuals
participating in the experiment were instructed to walk at a normal speed along a corridor that is
10 meters long and 4 meters wide. The scene was filmed from above by digital cameras. The
individual trajectories were extracted from the digital video sequences.

For the purposes of our analysis we use the subset of the data set corresponding to a bi-directional
flow. The experiment lasted for about 7 minutes. A total of 709 trajectories were collected
whereby the position of each individual was available every 0.1s. The average length of the
trajectories is approximately 10 meters. The average time of the trajectories is 7.8 seconds.

The investigation that was performed on the basis of this data set has revealed the capability
of the approach to reflect the lane formation for bi-directional flows (Figure 3). The Voronoi
cells represented by darker gray color in Figure 3 correspond to a lane formed by pedestrians
from a minor stream when confronted to a major stream from the opposite direction. Given
that the approach allows to correlate the momentary speed of an individual pedestrian (or
a group of pedestrians) with the availability of space, it is possible to get more insight into
the formation of such patterns by analyzing the effects of flow composition and congestion
at the microscopic level. This property makes the framework useful for the analysis of the
self-organization phenomena typical for pedestrian traffic.

Figure 3: Self-organization phenomena revealed by three-dimensional Voronoi approach





      

The approach allows for the detailed representation of pedestrian traffic indicators at the disaggre-
gated level. Figure 4 illustrates an empirical speed-density profile obtained through pedestrian
trajectories from bi-directional experiment. The considered time interval ranges from 200
seconds to 235 seconds. Figure 4 shows 638 observations where each circle corresponds to one
observation, that is, one pedestrian at one specific time in the horizon. The x coordinate of the
circle corresponds to the density calculated from (21), and its y coordinate corresponds to the
speed calculated from (23).

A scattering is observed with a higher level of variability at lower densities in comparison to
greater densities where the distribution of speed is less spread and shifted more towards lower
values This observation indicates the capability of the approach to reflect the heterogeneity
of pedestrians. On the other hand, the methods with arbitrarily selected discretization may
suffer from the loss of heterogeneity. Consequently, the models of the speed-density relation-
ship derived from such methods may lack the realism in the representation of the observed
phenomena.

Figure 4: Speed-density profile obtained using three-dimensional Voronoi method





      

We also compare the properties of our approach with the traditional ones from the literature
based on the data extracted from the bi-directional walking experiment. Figure 5 shows a time
sequence of density measured at a specific point in space (x = 6.5m, y = 2.5m) using three-
dimensional Voronoi (dash-dot line) and grid-based (black dots) discretization. The considered
grid unit has the length and width of 1 meter.

The pattern in Figure 5 illustrates that the grid-based method leads to unrealistic features which
are reflected through large fluctuations (discontinuities) in density. These fluctuations occur
due to the fact that entering or exiting of the grid unit by a person affects the density indicator
considerably. Our approach, however, is able to provide a detailed resolution in space and time
and results in smooth (realistic) transitions in the measured density.

Figure 5: Time sequence of density values measured using three-dimensional Voronoi and grid
based method





      

5 Conclusion

We proposed a methodology for pedestrian-oriented flow characterization by utilizing the
potential of the data itself. The definitions of traffic indicators that we have put forward are
based on data-driven 3D Voronoi partitioning in space and time, and therefore, have a capacity to
eliminate the issues related to an arbitrary selection of discretization. We have shown empirically
that this new approach leads to a number of desired features: (i) reproduces the settings with
uniform and non-uniform movement; (ii) reflects the self-organization phenomena typical for
pedestrian traffic and pedestrian heterogeneity; (iii) allows for the analysis of congestion at the
microscopic level; (iv) leads to smooth transitions in measured traffic characteristics.

To further evaluate the performance and potential shortcomings of the proposed methodology
the real case study will be used. It represents a dataset of pedestrian trajectories collected in the
train stations in Lausanne and Basel by using technology provided by Alahi et al. (2014). The
numerical analysis will be directed towards the investigation of the role of conversion constant
α and the issues related to the potential numerical instability of results and flow characterization
in the case of the presence of obstacles.

The presented approach can also be regarded as the basis for the specification of better or
improvement of existing models of pedestrian traffic. In that manner, our further research will
focus on the stream-based definitions of the flow indicators and on their mutual interaction. It
will subsequently lead to the representation of the effects of multi-directional pedestrian flows
through a stream-based model of fundamental relationships.
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