

Photo or figure (optional)

Methodology for generating extreme traffic
demand patterns with optimization techniques

Mireia Roca-Riu, ETH Zürich
Qiao Ge, ETH Zürich
Mónica Menéndez, ETH Zürich

Conference paper STRC 2015

STRC

15
th

 Swiss Transport Research Conference

Monte Verità / Ascona, April 15-17, 2015

15th Swiss Transport Research Conference April 15-17, 2015

 __

I

Methodology for generating extreme traffic demand

patterns with optimization techniques

Mireia Roca Riu

Institute for Transport

Planning and Systems ETH

Zurich, 8093, Zurich

Qiao Ge

Institute for Transport

Planning and Systems ETH

Zurich, 8093, Zurich

Mónica Menéndez

Institute for Transport

Planning and Systems ETH

Zurich, 8093, Zurich

Phone: +41766361988

Fax: +41 44 633 1057

email: mrocariu@gmail.com

Phone: +41 44 633 3249

Fax: +41 44 633 1057

email:qiao.ge@ivt.baug.ethz.c

h

Phone: +41 44 633 6695

Fax: +41 44 633 1057

email:monica.menendez@ivt.b

aug.ethz.ch

April 2015

15th Swiss Transport Research Conference April 15-17, 2015

 __

II

Abstract

Traffic scenario generation can aid analyzing and evaluating the performance of transportation

systems under different traffic conditions. Unfortunately, it has not drawn much attention in

practical applications. No standard scenario generation approach can be found so far, other than

manual generation, random generation or exhaustive generation, which are neither accurate nor

efficient.

Given its importance, we propose to borrow ideas from optimization techniques to solve the

optimization problems in generating representative and/or extreme traffic scenarios. In this

paper, five optimization methods, i.e., Linear Programming (LP), Dynamic Programming (DP),

Greedy Algorithm (GR), Genetic Algorithm (GA), and Tabu Search (TS), are introduced and

implemented to generate extreme traffic demand patterns.

The accuracy and efficiency of these methods are explored with a case study, in which the best

and worst traffic demand patterns are searched for an abstract grid network. It is found in the

case study that when the problem uses an independent traffic assignment model (e.g., shortest

path assignment), LP and DP are the most accurate methods. GR is the most efficient method.

GA presents certain accuracy when searching for best demand patterns, while TS is more

accurate when searching for worst demand patterns. Moreover, GR, GA, and TS do not require

linear constraints and objective functions, thus they could also work with other dependent traffic

assignment models if computational times become affordable. Considering the overall

performance (accuracy, efficiency, and constrains in application), GR is recommended as the

best methods for generating extreme demand patterns.

Keywords

Demand pattern generation, Demand Scenario, Traffic Assignment, Traffic Networks

15th Swiss Transport Research Conference April 15-17, 2015

 __

3

1. Introduction

Traffic scenario generation is an important tool for analyzing transportation systems. Through

generating different traffic scenarios, relevant information can be gathered and used in short-

term traffic forecasting, and/or to support the traffic control systems. Furthermore, for any

specific traffic network, the traffic scenario generation can be employed for evaluating the

performance of the network under different traffic conditions (e.g., specific events, different

traffic demand patterns, and signal plans). This could help the transportation planner to

evaluate the performance of the network design, and try to further improve it.

Despite its importance, however, to the best of the authors’ knowledge, this topic has not

drawn much attention in practical applications. In many cases, the traffic scenarios are

generated manually by practitioners based on their assumptions (e.g., Scott et al., 2006). As

one can imagine, the number of manually generated traffic scenarios is usually quite limited.

Hence, planners and engineers are usually not able to thoroughly investigate all possible

scenarios, and may omit certain important cases. On the other hand, using a brute force

approach to produce all possible scenarios can be very time consuming for both the scenario

generation process and the subsequent analysis of scenarios. Moreover, as some scenarios

generated by an exhaustive search may only present minor differences between each other,

the computation resources could be wasted in the assessment of those very similar scenarios.

Therefore, the research of efficient methods that are able to generate a limited number of

representative and/or extreme scenarios could be very valuable.

In several scientific research fields, optimization techniques are commonly used to find the

best solution from many possible solutions. Since the problem of generating extreme traffic

scenarios can be regarded as an optimization problem (i.e., finding the best or worst scenario

from all possible scenarios), the ideas from these existing optimization techniques can be

borrowed to efficiently solve the described problem.

This paper presents our findings in applying optimization methods to generate extreme traffic

scenarios. It covers generating traffic demand patterns for a grid network that yield the best

and worst traffic performance. The methods include linear programming, dynamic

programming, greedy algorithm, genetic algorithm, and tabu search. The accuracy and

efficiency of these methods are compared with a case study.

The paper is organized as follows: a brief review of the relevant optimization techniques is

given first. Following the review, the problem is presented and the selected optimization

methods for generating extreme traffic demand patterns are introduced in detail. Afterwards, a

15th Swiss Transport Research Conference April 15-17, 2015

 __

4

case study is presented to illustrate and compare the performance of the different optimization

methods. Conclusions and some recommendations for future research are given at last.

15th Swiss Transport Research Conference April 15-17, 2015

 __

5

2. Brief review of optimization methods

 This section provides a brief review of the optimization techniques. Note that these are

general approaches, and there are a number of more specific optimization methods that fall

within each category. The focus here lies on the methods that are most relevant to this study.

2.1 Mathematical Programming

Mathematical Programming (MP) represents a group of mathematical methods that are used

to identify the “best” solution from a set of possible alternatives. There are many methods and

applications available in this category, e.g., linear programming, integer programming,

nonlinear programming, and dynamic programming. In this study, linear programming and

dynamic programming are used.

Linear Programming

Linear Programming (LP) is a special form of MP. All constrains and objective functions in

LP are in the linear form. The LP problem becomes an Integer Linear Programming (ILP)

problem if all parameters are integers, or a Mixed Integer Linear Programming (MILP)

problem if only some of the variables are integers. In contrast to the LP problem which can

usually be efficiently solved, most ILP and MILP problems are NP-hard (i.e., the problem is

at least as hard as any problem that is solvable in polynomial time, for details see Du and Ko,

2011).

The optimization problem in this study is a MILP problem. As the solution space of the MILP

is non-convex, a systematic and potentially exhaustive search is needed. One classic method

is Branch and Bound (Land and Doig, 1960). CPLEX (IBM ILOG, 2009), which is a

powerful commercial solver that supports solving MILP with Branch and Bound approach

among others, is employed in this study to solve the MILP problem. This method is able to

provide the optimal solution of the problem, which allows to assess the results of other non-

optimal procedures.

Dynamic Programming

Dynamic Programming (DP) was originally implemented in (Bellman, 1954). It solves a

complex problem by first dividing the original problem into multiple sub-problems. When

many sub-problems are the same or similar, DP will solve each individual sub-problem only

once, and the solution will be stored for use if the same sub-problem is met next time. Thus, it

can greatly save computational cost in searching the optimal solution when the problem has

15th Swiss Transport Research Conference April 15-17, 2015

 __

6

many similar sub-problems. Finally, the solution of the original problem is obtained by

combining the solutions of the sub-problems.

One major concern in DP is the dimensionality of the problem. Since DP is indeed an

exhaustive search but without re-computing the solutions for the same sub-problems, the

computational complexity of DP could increase exponentially along with the growth of

dimensionality. This feature sometimes makes it infeasible for large-scale applications.

2.2 Heuristic Methods

When an exact method is not feasible due to extremely high computational cost, the heuristic

methods can be applied to find an approximate solution. The heuristic methods are generally

efficient, however, a truly optimal solution is not always guaranteed. According to (Marti and

Reinelt, 2011), some of the important heuristic methods are decomposition methods,

inductive methods, reduction methods, constructive methods, and local search methods. In

this study, we employ a greedy algorithm, which belongs to the constructive methods, to solve

the optimization problem.

Greedy Algorithm

Greedy Algorithm (GR) first decomposes the original problem into several stages (Cormen et

al., 2001). Then it tries to find the locally optimal solution starting from the first stage, and the

solution of any subsequent stage is based on the solution(s) of the previous stage(s). In

general, a new decision made by GR only depends on the existing decisions but not on the

future decisions. GR does not necessarily find the global optimal solution, however, it may

approximate the global optimal with limited time requirements.

2.3 Metaheuristic Methods

The metaheuristic methods are higher-level heuristic methods with more intelligence. They

consider the interaction between local improvement and higher level strategies, so that the

searching process can be efficiently guided and the local optima could be avoided (Glover,

2003). They can provide satisfactory solutions with less computational effort than those

simple heuristic methods (Blum and Roli, 2003).

Moreover, the metaheuristic methods usually make few assumptions of the optimization

problem, thus they are independent of the specific contents of the problem being solved. This

feature has made the metaheuristic methods quite attractive for solving a variety of

15th Swiss Transport Research Conference April 15-17, 2015

 __

7

optimization problems, especially when there is little or no information available for the

objective function (i.e., black-box function).

The most popular metaheuristic methods are genetic algorithm (Holland, 1973), simulated

annealing (Kirkpatrick et al., 1983), scatter search (Glover, 1977), and tabu search (Glover,

1986). In this paper genetic algorithm and tabu search are used.

Genetic Algorithm

Genetic algorithm (GA), which was first developed in (Holland, 1973), mimics the natural

selection process in solving a complex optimization problem. It first generates a random set

(i.e., population) of possible solutions (i.e., phenotypes). Each phenotype is encoded by a

genotype, normally in the binary form of 0s and 1s. Through calculating the fitness of all

genotypes, some genotypes that best satisfy the fitness function are picked as parents. Then

new offsprings are produced by crossing over the parents. To avoid getting the search stuck in

local genotype space, mutations are introduced to alter the new offsprings. The old population

is then replaced by the new offsprings. This is an iterative process (see Eiben and Smith, 2003

for more details), and it will be stopped when the maximum number of iterations (i.e.,

generations) is reached, and/or the solutions in the last few generations reach convergence

(i.e., there is no improvement among these solutions).

One concern for GA is that it may converge toward local optima rather than global optimum,

and the converging speed is greatly influenced by the initial population. In such case, one

possible improvement is using different fitness functions, increasing the mutation rate, or

employing other selection algorithms to retain certain diversity in the population

(Taherdangkoo et al., 2013).

Tabu Search

Tabu Search (TS) is a local metaheuristic search approach introduced in (Glover, 1986). It is

applied in several fields (Gendreau and Potvin, 2005). At each iteration step, some

modifications of the solution based on the neighborhood are analyzed, and the best

modification is chosen. To avoid local optima, TS accepts also the solutions that may not

improve the objective function.

Before starting a new iteration, tabu status, long-term memory, and solution unfeasibility are

checked. The tabu status is designed to prevent cycling but can be overridden if the solution

improves the current best objective value (i.e., the aspiration criterion). Long-term memory

and unfeasibility are techniques often employed to intensify or diversify the search process.

Long-term memory stores some attributes of the solutions explored in order to guide the

15th Swiss Transport Research Conference April 15-17, 2015

 __

8

search. In some cases, unfeasible solutions are accepted during some iterations in order to

explore different search areas.

15th Swiss Transport Research Conference April 15-17, 2015

 __

9

3. Methodology

3.1 Problem Description and Assumptions

In general, demand describes where vehicles enter the network and to which place they travel.

It is defined in terms of quantities, as well as origins and destinations represented by trip

matrices. Demand scenario generation is useful, as it can be employed for evaluating the

performance of the network under different traffic conditions (e.g., specific events, different

traffic demand patterns, signal plans). In particular, the generation of extreme demand

patterns is interesting because it provides a range of performance of the given network. Our

objective is to build the extreme patterns: the best and worst demand patterns for a given

network.

The generation of demand patterns is associated with traffic assignment problem. In order to

evaluate the goodness of a given scenario, we need to perform a traffic assignment to obtain

performance indicators. Traffic assignment is the identification of the links and routes

vehicles will use to cover their trip trying to emulate the real behavior of drivers. There are

different algorithms to solve traffic assignment problem with different assumptions adapted to

each context and problem. The shortest path algorithm (Dijkstra, 1959) is simple and easy to

implement, however it is not very reliable when volumes and travel times increase.

Algorithms based on User Equilibrium (UE) are still simple and have low memory

requirements if solved under static conditions (Frank and Wolfe, 1956), even though

computational effort is higher than shortest path. More realistic features are presented with

dynamic models (Pedersen, 2011), but the complexity increases as well as the computing

capacity needs. An algorithm for generating extreme demand pattern must include a balance

approach representing a good compromise between efficiency and accuracy in them of traffic

assignment.

Our long-term proposal is to build an algorithm divided in two consecutive phases: the

demand pattern generation and the demand pattern evaluation. In the first phase, shortest path

assignment will be used. Although it is not very accurate, it is rather efficient and allows the

algorithm to run the traffic assignment many times with a low computational cost. In the

second phase (evaluation), the best and worst demand patterns found in the first phase will be

evaluated, this time with a higher quality traffic assignment.

The focus of this paper is only the first phase of the algorithm, the generation phase. The

generation problem can be formulated as an optimization problem. The objective is to propose

a demand pattern that minimizes or maximizes the traffic performance in a given network. We

15th Swiss Transport Research Conference April 15-17, 2015

 __

10

investigate the accuracy and efficiency of multiple optimization methods for the generating

extreme demand patterns.

We employ a simple n-by-n grid network in this study, although the methodology could be

applied to any network with different topologies. In addition, the following assumptions are

made to simplify the problem:

1) All trips are generated and ended in the middle of the link, i.e., the demand nodes.

2) The traffic is uniformly distributed in terms of time.

3) The trips between any two demand nodes in the network can only be either T or 0

(i.e., no trips).

4) As stated previously the traffic assignment used in this phase of the algorithm will

be the Shortest Path Algorithm. That means, traffic assignment from one origin-

destination (OD) pair is independent of the traffic assignment from any other OD

pair. This assumption is not very realistic in traffic, but it gives an approximation

of the performance in a very simple way and with very few computational efforts.

In particular, the simplicity allows LP and DP methods to be applied. These

methods might be able to obtain the exact solutions. GR, GA, and TS could work

with other traffic assignment methods, but the computational requirements are still

too high to obtain results with reasonable computational times. In any case, all

methods will be compared with shortest traffic assignment.

In an n-by-n grid network, there are 2n(n-1) links and 2n(n-1) demand nodes (1st

assumption). We consider demand node o and demand node d (o, d [1, 2n(n-1)], d ≠ o) as

the origin and destination node, respectively. Thus, there are a total of N* = 4n4-8n3+2n2+2n

possible OD pairs.

Given the 3rd assumption, for a total demand of N×T (N[1, N*]), the corresponding demand

pattern (i.e., a certain combination of OD pairs) should therefore meet the following

requirement: N OD pairs with T trips each, and the other N*-N OD pairs with no trips. The

total number of possible demand patterns that satisfy such condition is N*!/[N!×(N*-N)!].

Accordingly, the problem of generating the extreme traffic demand patterns can be considered

as a combinatorial optimization problem, i.e., the target is to find out one or several demand

patterns that yield the best or worst traffic performance from the N*!/[N!×(N*-N)!] demand

patterns.

Due to the extremely large number of combinations, an exhaustive search or a totally

randomized search could be an unfeasible and tedious process. To solve the combinatorial

15th Swiss Transport Research Conference April 15-17, 2015

 __

11

optimization problem with both accuracy and efficiency, we borrow some ideas from well-

known optimization techniques, and implement them below.

Moreover, we employ the maximum flow across all links in the network as the traffic

performance indicator. The worst demand pattern should maximize the maximum flow across

all links, while the best demand pattern should minimize the maximum flow across all links.

Note that other indicators such as maximum link travel time can also be used with these

algorithms. However, according to the BPR function (Bureau of Public Roads, 1964), the

travel time monotonically increases along with the growth of traffic flow when the road has a

fixed capacity. Therefore, it is expected that the worst or best demand patterns found using the

maximum flow across all links are the same as those found using the maximum link travel

time.

3.2 Linear Programming

A MILP model is proposed for finding both best and worst demand patterns. A binary vector

X = [x1, x2, …, xN*] is used to define a possible demand pattern. xi (i[1, N*]) is 1 when OD

pair i has T trips, otherwise it is 0. Then we define function ta as the traffic assignment

function. It calculates ()kf X , the total flow on a specific link k by a given demand pattern X:

() (,) [1,2 (1)]k

af X t X k k n n   (1)

Given the 3rd assumption, the value of ()kf X will be a multiple of T or 0. Since the traffic

assignments from different OD pairs are independent (i.e., the 4th assumption), the function ta

is an additive linear function:

*

1

(,) (,)*
N

a a i i

i

t X k t X k x


 (2)

where Xi means all elements in X are 0s, except the i-th element xi that is 1. ta(Xi, k) calculates
k

i
f , i.e., the flow on link k if only the OD pair i has T trips.

(,)
k

a ii
f t X k (3)

Due to the 4th assumption,
k

i
f (i[1, N*], k[1, 2n(n-1)]) can be pre-computed and directly

used in the subsequent computation. Moreover, because of the 3rd assumption,
k

i
f will be

either T or 0. Then Equation (1) is simplified by combining Equations (2) and (3):

*

1

() *
N

k
k

ii

i

f X f x


 (4)

15th Swiss Transport Research Conference April 15-17, 2015

 __

12

We use variable z to indicate the maximum flow across all links in the network. When

searching for the best demand pattern, the objective is to minimize z. The formulation of the

best demand pattern with respect to any demand pattern X must satisfy the following

constraints:

*

1

N

i

i

x N


 (5)

*

1

() * [1,2 (1)]
N

k
k

ii

i

f X f x z k n n


     (6)

Constraint (5) limits the number of OD pairs with T trips to N. Constraint (6) imposes that

variable z has to be not less than any ()kf X .

When searching for the worst demand pattern, the objective is to maximize z, but with only

the above constraints the problem would be unbounded. To solve this problem, we introduce

an extra binary variable ξk (k[1, 2n(n-1)]) that takes the following values:

*

1

1 if *
 [1,2 (1)]

0 otherwise

N
k

ii

ik

f x z
k n n 




   




 (7)

The following constrains are used to translate Equation (7) into a linear form:

2 (1)

1

1
n n

k

k






 (8)

*

1

* (1) [1,2 (1)]
N

k

i ki

i

f x M z k n n


      (9)

Constraint (8) guarantees that at least one link will have the maximum flow. Constraint (9) is

active (i.e., equality holds) only when ξk = 1. When link k has the maximum flow, then

variable ξk = 1, and Constraint (9) gives the upper bound of variable z. We set M to a

sufficiently large value (e.g., M= N×T), so that Constraint (9) does not affect the variables

(i.e., inequality holds) when ξk = 0. The above MILP model is implemented in Optimization

Programming Language (OPL) and solved with CPLEX 12.1.

3.3 Dynamic Programming

The idea of DP is dividing a complex optimization problem into several sub-problems, and

combining the solutions of all sub-problems in the end to form the final optimal solution. In

this study, to find the worst demand pattern, the first step is to find out which demand patterns

can maximize the flow on individual links.

15th Swiss Transport Research Conference April 15-17, 2015

 __

13

Due to the 4th assumption that the traffic assignments from different OD pairs are

independent, to maximize the flow on a given link k (k[1, 2n(n-1)]) is analogically a “0-1

knapsack problem” (for details see Martello et al. 1999). Assume that the capacity of a

knapsack is N (i.e., the total demand is N×T, N[1, N*]), and there are in total N* items (i.e.,

N* OD pairs). The weight of each item is 1, and its value is either T or 0. The original

problem (i.e., maximizing the flow on link k) is the same problem as finding out which items

should be put into the knapsack, so that the total value of all items in the knapsack is

maximized. Below is the pseudo code for computing the maximum flow on link k, under the

constraint that only N OD pairs have T trips:

for w=1 to N+1

 hDP(1,w)=0

end

for i=1 to N*+1

 hDP(i,1)=0

end

for i =1 to N*

 for w =1 to N

 hDP(i+1,w+1) = max[hDP(i,w+1),
k

i
f + hDP(i,w)]

 end

end

hDP is a (N*+1)-by-(N+1) matrix storing the maximum flow by different demand patterns, and
k

i
f is the traffic flow on link k if only OD pair i has T trips (Equation (3)). The maximum flow

on link k is therefore hDP(N*+1, N+1). Through backtracking, we can determine which OD

pairs have T trips in the worst demand pattern.

If the above searching process is applied to all links, then we can find the worst demand

pattern(s) for each individual link, namely, WN
1, …, WN

2n(n-1). The corresponding maximum

flows on individual links are respectively mf1, mf2, …, mf2n(n-1). In the next step, we cross

compare these maximum flows on individual links. Suppose mfk* (k*[1, 2n(n-1)]) is larger

than other flows, then WN
k* is the worst demand pattern.

Unfortunately, the above method does not work for the best demand pattern case. The reason

is the demand pattern that minimizes the maximum flow on one individual link will not

necessarily minimize the maximum flow in the network. Thus, in this paper we only use DP

to compute the worst demand pattern.

3.4 Greedy Algorithm

The greedy algorithm is based on the method described in (Ge and Menendez, 2014). It

implements the same searching process for the best and worst demand patterns except the

15th Swiss Transport Research Conference April 15-17, 2015

 __

14

target functions. For the ease of illustration, here we just show the searching process for the

worst demand pattern, in which N (N[1, N*]) OD pairs have T trips while all other OD pairs

have no trips.

We use the same binary vector in LP, i.e., X = [x1, x2, …, xN*], to represent a possible demand

pattern. Using Equation (4), the maximum flow across all links in this network with respect to

demand pattern X (i.e., ()GRh X) can be defined as:

 
*

[1,2 (1)] [1,2 (1)]
1

() max () max *
N

k
k

ii
k n

GR
n k n n

i

X f X fh x
   



 
   

 
 (10)

In the first step, we produce a set of N* vectors, namely,
1p

X (p1[1, N*]).
1p

X is a binary

vector with N* elements: all elements are 1s except the p1-th element that is 0. Accordingly,

the maximum flow across all links are
1

()GR p
h X (p1[1, N*]). Suppose

1

()GR w
h X (w1  [1, N*])

is larger than all other maximum flows, then vector
1w

X is the optimal solution in this step.

In the second step, we generate a set of N*-1 vectors based on
1w

X , namely,
1 2,w p

X (p2[1, N*],

p2≠w1). All elements in
1 2,w p

X are 1s, except the w1-th and p2-th elements that are 0s. Again,

we can evaluate the corresponding maximum flow across all links
1 2,

()GR w p
h X . The vector

1 2,w w
X (w2[1, N*], w2≠w1) is selected as the solution in the current step if

1 2,
()

wGR w
h X is larger

than all other maximum flows.

In the next step, we do the same but based on
1 2,w w

X , etc. In each step, we change one non-zero

element to 0 based on the solution from the previous step. The iteration will stop when the

vector
1 2 *, ,...., N Nw w w

X


 (
1w , …,

*N Nw 
 [1, N*],

1 2 *... N Nw w w   ) is found. The worst demand

pattern found by the greedy algorithm is the following: OD pairs
1w , …,

*N Nw 
 have no trips,

while all other N OD pairs have T trips.

3.5 Genetic Algorithm

GA starts with generating several random solutions (i.e., phenotypes). These solutions are

encoded in binary strings (i.e., genotype) with 1s and 0s: if OD pair i has T trips in a certain

demand pattern, the i-th gene in the genotype is 1, otherwise it is 0. As a rule-of-thumb, to

completely scan the solution space, the population size P should be at least twice the number

of parameters. However, a large size will certainly increase the computational cost. Therefore,

in this study, considering both accuracy and efficiency, we manually set P = 2N*.

15th Swiss Transport Research Conference April 15-17, 2015

 __

15

Suppose that in a certain generation, xi
p

 (i[1, N*], p[1, P]) is the i-th gene in the p-th

genotype Xp (i.e.,
1 2 *[, ,...,]p p p p

NX x x x). As there are only N OD pairs with T trips in one demand

pattern, the following constrain is used:

*

1

 [1,]
N

p

i

i

x N p P


   (11)

Similar to Equation (4), in GA, the fitness function with respect to Xp is:

* *

[1,2 (1)]
1 1

max * if
()

 otherwise

N N
k

p p

i iip
k n n

i iGA

x f x N
h X

penalty

 
 

  
  

   



  (12)

where
k

i
f is defined according to Equation (3). The algorithm will minimize (maximize) the

fitness function hGA when searching for the best (worst) demand pattern. The parameter

penalty is used when the genotype is not feasible (i.e., Constrain (11) is not satisfied). It is set

to N×T when searching for the best demand pattern, or 0 when searching for the worst

demand pattern.

Starting from the first generation, all randomly generated solutions will be evaluated using

Equation (12). Then, the 1% of the population that best fit the fitness function will be selected

as the parents. In this study, one-point cross over is employed in GA, i.e., two offsprings are

created by exchanging the genes on the tails of the parents starting from a randomly picked

point. The cross-over rate is 80%, i.e., when producing offsprings, 80% of the offsprings are

produced by crossing over two randomly selected parents, while the other 20% are copies of

the parents. In addition, we randomly mutate 10% of the offsprings. A gene will be randomly

picked and inverted (i.e., if the original gene is 0, it is changed to 1, and vice versa) in

mutated offsprings. The P offsprings are then used as the new population in the next

generation by repeating the previous process.

The above iteration process will stop when there is no improvement in the fitness function for

the last 20 generations (i.e., the solutions have reached convergence), or when a maximum of

200 generations is reached. The solution in the last iteration that best fits the fitness function

is taken as the final solution.

In this study, GA is implemented with the Matlab Global Optimization Toolbox (Matlab,

2003).

15th Swiss Transport Research Conference April 15-17, 2015

 __

16

3.6 Tabu Search

TS is a meta-heuristic that has been tested in several transport problems with successful

results (Glover, 1990). The search begins with a randomly generated solution. At each step,

several neighborhoods of the solution are tested. Then the search moves to a new solution,

even though it might not improve the objective value.

The neighborhood of the solution is defined by different modifications of the solution. We use

the states of all OD pairs to form a solution: the state of an OD pair is 1 when it has T trips, or

0 when it has no trips. The modification can be either changing the state of one OD pair from

1 to 0, or from 0 to 1, so that the objective value is improved at each step. To decide which

OD pairs are modified in each step, we consider both random and non-random selections with

probability of 20% and 80% respectively. The non-random selection utilizes information from

existing solution. Suppose in a solution, link k is found with maximum flow across all links,

to influence the value of the objective function, the modifications should be made on the OD

pairs that are expected to have trips passing through this link. For example, when searching

for the best demand pattern that minimizes the maximum flow, we change the state of an OD

pair from 1 to 0 if the trips from this OD pair are most likely to pass through link k (e.g., when

the OD pairs are near link k), and change the state of another OD pair from 0 to 1 if the trips

from this OD pair are not likely to pass through link k.

Moreover, we use a tabu label to prevent the algorithm from getting stuck in the same

solutions. When the state of an OD pair is changed from 1 to 0 in a new solution, this OD pair

is labeled as tabu for a certain number of iterations. During these iterations, the state of this

OD pair cannot be changed back to 1 again in the new solutions. Similarly, when the state of

an OD pair is changed from 0 to 1 and it is labeled as tabu, the state of this OD pair cannot be

changed back to 0 in the solutions for several iterations.

Note that the search may be dependent on the initial solution and converge to a local optimal

solution. To avoid this effect, when it is not able to provide better solutions after several

iterations, the algorithm is reinitialized. It will start either from the best available solution, or

from another randomly generated solution.

15th Swiss Transport Research Conference April 15-17, 2015

 __

17

4. Case Study and Results

4.1 Design of the Case Study

An abstract 4-by-4 grid network with bidirectional streets (Fig. 1a) is employed in the case

study. Each link in the network is 100 m long. The reason for using this small network is for

the ease of deriving the optimal best and optimal worst demand patterns, so that it is feasible

to cross compare the performance of different optimization methods. Note that it is not

necessary to use a small network in practice, and there is no specific constrain for the size of

the network when applying the abovementioned optimization methods.

Figure 1 (a) Layout of the 4-by-4 grid network. (b) Layout of the 4-leg intersection. (c)

Layout of the 3-leg intersection.

3

2

1 8 15

9 16 23

19

18

22

125

20136

21147

10 17 24

4 11

1 demand node

 (a) (b) (c)

This network has two types of intersections:

 4-leg intersections (Fig. 1b) inside the network. The right turn and the through traffic are grouped

in one lane, while the other lane is dedicated to left turners.

 3-leg intersections (Fig. 1c) in the periphery. The left turn, right turn, and the through traffic are all

separated in different lanes.

As assumed in the previous section, all demand nodes are located in the middle of the link

(Fig. 1a). Hence, there are 24 demand nodes, and N* = 552 OD pairs. In a given demand

pattern, the trips from any OD pair can only be T or 0. We further assume that capacity of the

link is infinite as congestion is not considered. Moreover, all vehicles have a constant speed of

50 km/h.

A shortest path algorithm is used for the traffic assignment. It applies the Dijkstra’s algorithm

(Dijkstra, 1959) to determine one single route with the shortest total travel distance from the

origin node to the destination node. It assigns all trips of the corresponding OD pair to this

15th Swiss Transport Research Conference April 15-17, 2015

 __

18

shortest route independent of the traffic assignments from other OD pairs, which is in

accordance with the 4th assumption in the previous section. Different green times are given to

the left turners (2.5s) and right turners (22.5s) at intersections. Hence, when two routes have

the same distance, the traffic will be assigned to the route with less left turns. The shortest

path based traffic assignment can be found in simulations such as (Ortigosa and Menendez,

2014) and (Gora, 2009). For the ease of comparing different optimization algorithms, it is

employed here because it takes much less computation time than other complex assignment

methods such as dynamic assignment.

The maximum flow across all links is used as the traffic performance indicator. The objective

functions are hence minimizing the maximum flow when searching for the best demand

patterns, and maximizing the maximum flow when searching for the worst demand patterns.

The experiment will be performed with hourly total demands from T to 552T (i.e., 552 cases)

for both best and worst demand patterns.

4.2 Results

The five optimization methods, Linear Programming (LP), Dynamic Programming (DP),

Greedy Algorithm (GR), Genetic Algorithm (GA), and Tabu Search (TS), are used to

generate the extreme traffic demands in the case study. The corresponding results, i.e.,

maximum flow across links for different total demands, are shown in Fig. 2.

Fig. 2a shows the results from LP and DP (note that DP is used only for finding the worst

demand patterns). It shows that LP and DP yield exactly the same maximum flows for all

cases. Since the traffic assignment model adopted here is an independent linear model

(Equation (2)) and LP and DP are exact optimization methods, their results are the truly

optimal solutions. We use them as reference in evaluating the accuracy of the other methods.

Moreover, we randomly generate 50 demand patterns for all 552 cases, and the averages of

the corresponding maximum flows are plotted in Fig. 2a. Obviously, in almost all cases the

randomly generated demand patterns are neither best nor worst demand patterns. It further

highlights the importance of this research, as the use of a randomly generated demand patterns

could bring incorrect results (e.g., overestimating or underestimating the capacity of the

network) in network design and evaluation.

The results from GR, GA and TS are shown in Fig. 2b, 2c, and 2d, respectively. GR finds the

optimal solutions in all worst demand pattern cases, but in best demand pattern cases some

errors exist when the total demand is between 255T and 530T. The results of GA are generally

satisfactory when searching for the best demand patterns with some errors around 270T and

530T; on the contrary, when searching for the worst demand patterns, significant errors exist

15th Swiss Transport Research Conference April 15-17, 2015

 __

19

in most cases (from 48T to 450T). TS has the opposite behavior as GA: it performs well in

most worst demand pattern cases, but it also shows some errors in a few cases (e.g., 101T); in

the best demand pattern cases, however, significant errors exist in almost all cases except

when the total demands are over 525T.

Fig. 3a and 3b cross-compare the accuracy of GR, GA and TS in terms of relative error. Note

that LP and DP are not included since they are used as reference. The boxplot in Fig. 3a

shows that when searching for the best demand patterns, GR and GA have less variations of

relative errors (σ2
GR = 0.02 and σ2

GA = 0.04) than TS (σ2
TS = 0.34). Moreover, 75% of the

cases using GR and GA have relative errors under 0.3, while less than 25% of the TS cases

can reach similar accuracy. In other words, GR and GA are generally more accurate than TS

in generating the best demand patterns in the case study, with GR showing a slightly higher

accuracy than GA.

The boxplot in Fig. 3b shows that when searching for the worst demand patterns, GR

obviously outperforms GA and TS without any error. With TS, 75% of the cases have relative

errors under 0.25, although there are few cases with extreme errors between 0.05 and 0.22.

With GA, less than 25% of the cases have relative errors under 0.05, and the maximum

relative error is 0.18. Therefore, GR is the most accurate method in generating the worst

demand patterns in this case study, followed by TS, and GA in the last place.

Figure 2 Maximum flows across links for different total demands in worst and best cases

obtained via (a) linear programing and dynamic programming; (b) greedy

algorithm; (c) genetic algorithm; (d) tabu search.

(a)

15th Swiss Transport Research Conference April 15-17, 2015

 __

20

(b)

(c)

(d)

15th Swiss Transport Research Conference April 15-17, 2015

 __

21

Figure 3 (a) Relative errors in finding the best demand patterns by GR, GA and TS; (b)

Relative errors in finding the worst demand patterns by GR, GA and TS.

(a)

(b)

Table 1 compares the computational cost of the five methods based on average number of

evaluations of the objective function per case, and the average running time per case.

Obviously, GA and TS require the most computational cost, while GR requires the least

computational cost. Hence, the ranks of the five methods in terms of efficiency are GR > LP ≈

DP >> TS > GA.

15th Swiss Transport Research Conference April 15-17, 2015

 __

22

Table 1 Computational Cost of the Five Optimization Methods

Method Average number of evaluations of

the objective function per case

Average running time per case (s)

LP Not relevant* 0.27

DP 13248 0.23

GR 277 0.13

GA 600000 900

TS 50000 216.2

*This is because CPLEX does not evaluate the objective function many times to optimize the

problem.

15th Swiss Transport Research Conference April 15-17, 2015

 __

23

5. Conclusions

In this paper, we introduce and implement five optimization methods, i.e., Linear

Programming (LP), Dynamic Programming (DP), Greedy Algorithm (GR), Genetic

Algorithm (GA), and Tabu Search (TS), to generate the extreme demand patterns that

minimize / maximize the maximum flow across links in an abstract grid network. The

following conclusions are made based on our findings in the case study.

In the demand pattern generation, the traffic assignment model used is the shortest path, given

its simplicity and short computational time. Plus, that allows LP and DP to be the most

accurate methods for generating extreme demand patterns. LP can find both the optimal best

and optimal worst demand patterns, while DP only works for finding the optimal worst

demand patterns. The main limitation of LP and DP is that they cannot be used with other

traffic assignment models. Moreover, in the case of LP the solution method depends on the

use of a commercial software. In any case, LP and DP provide in the test case the optimal

results. This allows us to assess the goodness of the other methods.

GR is the only method besides the two exact methods LP and DP in this study that finds the

optimal worst demand patterns in all cases. Although it has some errors in finding the best

demand patterns, the overall accuracy is still acceptable. Moreover, GR is the most efficient

method among the five methods, and it requires the least number of evaluations of the

objective function. This makes it very attractive if other traffic assignment methods (e.g.,Ge et

al. 2014) are considered in the generation phase, although the global optima is not necessarily

guaranteed. Also, the algorithm implementation is extremely easy.

The two metaheuristic methods GA and TS perform differently in the case study. GA has high

accuracy in generating best demand patterns, but the accuracy in generating the worst demand

patterns is not satisfactory. On the contrary, TS works relatively well for generating worst

demand patterns, but it has significant errors when generating best demand patterns.

Moreover, GA and TS generally require more computational cost than the other methods.

However, since GA and TS do not require linear constrains and objective functions, they can

also solve problems that adopt dependent traffic assignment models. When working with

dependent traffic assignment model, GA and TS are expected to be more accurate than GR

when a sufficiently big number of iterations are employed. However, this will certainly

further increase the computational cost, and limit their usage with computationally cheap

problems.

To sum up, based on the overall performance (i.e., accuracy, efficiency, and constrains in

application), GR is the best method in this research so far. It is possible that GA and TS can

perform better when computational cost is negligible, but if efficiency is taken into account, it

15th Swiss Transport Research Conference April 15-17, 2015

 __

24

is more feasible to use GR to solve the problem. Future research will be devoted to develop

the evaluation phase of the algorithm. The extreme demand patterns obtained in the first phase

will be evaluated with more accurate traffic assignment methods. Also, the methodology will

be applied to a bigger grid network.

Aknowledgements

The authors are very grateful to Mr. Javier Ortigosa from ETH Zurich, for providing us the

grid network and traffic assignment model used in the case study.

15th Swiss Transport Research Conference April 15-17, 2015

 __

25

6. References

Bellman, R. (1954) The theory of dynamic programming, Bulletin of the American

Mathematical Society, 60 (6) 503-516.

Blum, C., and A. Roli (2003) Metaheuristics in combinatorial optimization: Overview and

conceptual comparison, ACM Computing Surveys (CSUR), 35 (3), 268-308.

Bureau of Public Roads (1964) Traffic assignment manual, Washington DC: US Department

of Commerce, Urban Planning Division.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (2001) Introduction to algorithms,

2, Cambridge: MIT press.

Dijkstra, E. W. (1959) A note on two problems in connexion with graphs, Numerische

Mathematik, 1, 269–271.

Du, D. Z., and K. Ko (2011) Theory of computational complexity, 58. John Wiley & Sons.

Eiben, A. E., and Smith (2003) J. E. Introduction to evolutionary computing, Springer.

Frank, M. and P. Wolfe (1956) An algorithm for quadratic programming, Naval Research

Logistics Quarterly, 3 (1-2) 95-110.

Ge, Q. and M. Menendez (2014) An Efficient Sensitivity Analysis Approach for

Computationally Expensive Microscopic Traffic Simulation Models, International

Journal of Transportation, 2 (2) 49-64.

Ge, Q, J. Ortigosa, and M. Menendez (2014) Traffic demand pattern generation for a grid

network based on experiment design. Paper presented at the 14th Swiss Transport

Research Conference, Ascona, May 2014, Switzerland.

Gendreau, M. and J. Potvin (2005) Tabu Search. In Search Methodologies. Burke, E. and G.

Kendall. Springer.

Glover, F. (1977) Heuristics for Integer programming Using Surrogate Constraints, Decision

Sciences, 8 (1) 156-166.

Glover, F. (1986) Future paths for integer programming and links to artificial intelligence,

Computers and Operations Research, 13 (5) 533-549.

Glover, F., and G. A. Kochenberger (2003) Handbook of metaheuristics. Springer.

Glover, F. (1990) Tabu Search - Part II, ORSA Journal on Computing, 2 (1), Operation

Research Society of America.

Gora, P. (2009) Traffic Simulation Framework - a cellular automaton-based tool for

simulating and investigating real city traffic. Recent Advances in Intelligent Information

Systems, 642-653.

Holland, J. H. (1973) Genetic algorithms and the optimal allocation of trials, SIAM Journal on

Computing, 2 (2) 88-105.

15th Swiss Transport Research Conference April 15-17, 2015

 __

26

Kirkpatrick, S., C. D. Gelatt Jr., and M. P. Vecchi (1983) Optimization by Simulated

Annealing, Science, 220 (4598) 671-680.

IBM ILOG CPLEX V12.1: (2009) User's Manual for CPLEX, International Business

Machines Corporation.

Land A.H., and A.G. Doig (1960) An authomatic method of solving discrete programming

problems, Econometrica, 28 (3) 497-520.

Martello, S., D. Pisinger, Sand P. Toth (1999) Dynamic programming and strong bounds for

the 0-1 knapsack problem, Management Science, 5 (3) 414-424.

Martí, R., and G., Reinelt (2011) The linear ordering problem: exact and heuristic methods in

combinatorial optimization. Springer.

Ortigosa, J., and M. Menendez (2014) Traffic performance on a quasi-grid urban structures,

Cities, 36 18-27.

Pedersen, N.J. (2011) Dynamic Traffic Assignment. A primer, Transportation research

circular Number E-C154. Transportation Research Board of the national academies.

Scott, D., D. Novak, L. Aultman-Hall, and F. Guo (2006) Network robustness index: A new

method for identifying critical links and evaluating the performance of transportation

networks, Journal of Transport Geography, 14 (3) 215-227.

Taherdangkoo, M., M. Paziresh, M. Yazdi, and M. H. Bagheri (2013) An efficient algorithm

for function optimization: modified stem cells algorithm, Central European Journal of

Engineering, 3 (1) 36-50.

The MathWorks (2013), Inc. MATLAB R2014a Global Optimization Toolbox - User's Guide.

