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Abstract

When facing several alternatives, people are often assumed to choose the alternative which
maximizes their utilities. This concept is widely known as random utility maximization (RUM).
In transportation research, one of the most famous modeling techniques based on this idea, e.g.
for modeling mode choice, is the multinomial logit (MNL) approach.

Recently there is a growing interest in an alternative modeling approach, random regret
minimization (RRM). In RRM, an individual, when choosing between alternatives, is assumed to
minimize anticipated regret as opposed to maximize his/her utility. There are three variants of
RRM, the classical CRRM, the pRRM, and the P-RRM. There is also another alternative
approach called relative advantage maximization (RAM) turning the idea around and focusing on
the gains.

We compare MNL with the four mentioned alternatives. The data used are stated choice data sets
collected by the IVT, ETH Zurich which comprise of mode choice, location choice, parking
choice, carpooling, car sharing, etc experiments. We compare the performance of those five
models by their model fit (Final LL, hit rate, and prediction). We also present a comparison of
their VTTS, travel time and cost elasticities.

Keywords

Context-dependent models — Random Regret Minimization — RRM variants — Relative
Advantage Maximization
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1. Introduction

When facing several alternatives, it is reasonable to assume that people tend to choose an
alternative which maximizes their utilities. This concept is widely known as random utility
maximization (RUM), when the model allows for perception differences. In transportation
research, one of the most famous modeling technique for this is multinomial logit (MNL) (Ben-
Akiva and Lerman, 1985; McFadden, 1973). Recently there is a growing interest in
implementing an alternative modeling approach called random regret minimization (RRM)
(Chorus et al., 2008; Chorus, 2010). In RRM, an individual when choosing between alternatives
is assumed to minimize anticipated regret as opposed to maximizing his/her utility. RRM is a
context-dependent modeling approach since the decision to choose one alternative depends on
the relative performance of the chosen alternative’s attributes against other alternatives’
attributes. This modelling technique has been implemented for route choice (Chorus, 2012a;
Chorus and Bierlaire, 2013; Chorus et al, 2013a), travel information acquisition choice, parking
lot, shopping location (Chorus, 2010), automobile fuel choice (Chorus et al, 2013b; Hensher et
al. 2013), willingness to pay for advanced transportation services, and salary and travel time
trade-off (Hess et al, 2014).

RRM, as a context-dependent modeling alternative to RUM, has several variants, the classical
one (Choru, 2010), the GRRM (Chorus, 2014), the uRRM (Van Cranenburgh et al. 2015), and
the PRRM (Van Cranenburgh et al. 2015). There have been many attempts that compare the
performance of RRMs compare to RUM. Chorus et al. (2014) listed 43 empirical studies
comparing RUM and RRM from 2010-2014. Regarding model fit, 15 times RRM outperform
RUM and 15 times the other way around. Other 13 empirical studies show neither of these two
modeling approaches outperforms each other. Chorus et al. (2014) also listed 7 out of 43
empirical studies that measured hit rate, which is a percentage of observation correctly predicted
by the model, and shows that RRM outperforms RUM in three cases. In two cases the RUM hit
rate is higher, while for other two cases both models perform equally well.

Leong and Hensher (2015) compare the value of travel time savings (VTTS) from the results
of RUM, RRM, Hybrid RRM, and their new context-dependent alternative model, relative
advantage maximization (RAM). Leong and Hensher (2015) show that the difference in mean
VTTS between RUM-RRM and RUM-Hybrid RRM is small but statistically significant for the
seven route choice data sets from Australia and New Zealand. Chorus and Bierlaire (2013)
compare RUM and RRM elasticities for the case of route choice and found that travel time
elasticities of RRM model are nearly 10% greater compared to RUM. Similarly, for a route
choice case, Thiene et al. (2012) showed that for most attributes RRM model elasticities were
about 10% greater than the RUM model. For the case of preference of alternative fuel car use,
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Hensher et al. (2013) compared RRM and RUM elasticities and found a substantial difference
in the elasticities with the RRM being higher.

Other than RRM, there is another context-dependent modeling approach that recently has been
introduced, RAM (Leong and Hensher, 2015). There have not been many empirical studies
comparing the performance of RAM with RUM or RRMs except for route choice models
comparison by Leong and Hensher (2015). They found that RAM produces better model fit and
obtaining more precise model outputs such as VTTS.

It appears that most empirical studies tested the difference of RUM and other context-dependent
modeling approaches in term of model fit. Few exceptions compared them in terms of
prediction accuracy, VTTS, and demand elasticities. From most of the cases mentioned above,
we cannot say for sure which modeling approach is better. Different data sets and contexts
might produce different results and biases.

Therefore, the objective of this paper is to compare RUM, RRMs, and RAM comprehensively
in term of model fit, prediction accuracy, VTTS, and demand elasticities. By comparing those
different approaches, we might find which model gives the best fit, which modeling approach
accurately predicts the choice compared to other approaches. Hopefully, we can contribute to
the greater body of RRM and RAM literature through the comparison of Swiss data sets.

In section 2, we discuss the alternative modeling approaches to RUM, their properties, and
variants, followed by section 3 where we describe the data sets. In section 4 we present the
result of our estimation for different modeling approaches including prediction accuracy. In
section 5 we discuss the VTTS followed by section 6 where we discuss the demand elasticities
and hit rates. Finally, in Section 7 the conclusions are drawn.

2. Alternatives to RUM

2.1 Random regret minimization

Random regret minimization (RRM) was first introduced by Chorus et al. (2008) as a model of
travel choice. According to Chorus at al. (2008) in RRM, individual bases his/her choice
between alternatives wishing to avoid a situation where a non-chosen alternative turns out to be
more attractive than the chosen one, causing regret. Thus, the individual when choosing
between alternatives is assumed to minimize anticipated regret as opposed to maximize his/her
utility. Chorus (2010) admitted that this first RRM approach has two limitations. Therefore, he
improved the technique to alleviate those limitations with a new RRM-approach. This new
RRM approach (Chorus, 2010) is now widely known as Classical RRM (Van Cranenburgh and
Prato, 2016).
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In the Classical RRM (CRRM) framework, for a person g, the regret associated with an
alternative 7 is obtained given by the following formula (Chorus, 2012a):

RR, =R, +¢c,=q, +22In(1+ exp [ﬁk -(X,q. —Xk,q)])+ &4 (1)

j#i k

Where, RR;, : random regret for an alternative 7 for person g

R,, :systematic regret for alternative /7 for person g

g, :unobserved regret for alternative / for person g

a, :alternative specific constant
B, estimable parameter associated with generic attribute X,
X . X g values associated with generic attribute X, for, respectively, person g

choosing alternative 7 over competitor alternative ;.

Similar to RUM formulation of choice probabilities (McFadden, 1973), for the classical RRM
framework the error term in Eq. 1 is assumed to be identically and independently distributed

(i.i.d) Extreme Value Type | distribution with a variance of z°/6. In the RRM setting, the
formulation for the choice probabilities is:

0 -r,) )
zeXp (_ R/q)
Ii{

The next variant of RRM idea proposed by Chorus (2014) is called Generalized-RRM (GRRM).
This model generalizes the classical RRM by replacing the 1 inside the logarithm function with
a regret-weight parameter y . Van Cranenburgh et al. (2015) introduced a different version of
RRM called uRRM. In this type of RRM, a scale parameter (p) enters the model as an additional
degree of freedom which allows for flexibility of the regret function level attribute. The uRRM
generalized the CRRM by allowing to estimate the variance of the error term. The formula for
URRM is as follows (Van Cranenburgh et al. 2015):

RRIFM =g, + RV 4 g =, + ZZIn(1+ exp[ﬁ—uk : (X,q. X0 )D +&, (3)

j#i k
where &, ~i.i.d.EV(0, 1)

The formulation for the choice probabilities is as follows:

PI_SRRM _ /eXp (_ HRIZRRM ) (4)
> exp(-pRi )

ief
j=1
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The latest version of RRM is also introduced by Van Cranenburgh et al. (2015), P-RRM. The
P-RRM is a limiting case of the uRRM model. Classical RRM model and any other RRM
variants postulate that both regrets and rejoices are experienced. According to Van Cranenburgh
et al. (2015), the P-RRM yields the strongest regret minimization behavior possible within the
RRM framework since it postulates no rejoice which is the opposite of regret.

The formula for systematic regret of the P-RRM model (Van Cranenburgh et al., 2015) is as
follows:

Zmax(o, Xy~ X) if B, >0
RI™M =, +> B X[ where X[ B =1/ (5)
k

Kiig kig Zmin(O, Xy~ Xyy) if B, <0

J#I

XP—RRM

The computation of the X-vector (X, )is linear and can be done prior to the estimation.

There is a prerequisite that the signs of the taste parameters are known prior to the estimation.
Once the X-vectors are obtained, the estimation of the P-RRM model is similar to the estimation
of a linear additive RUM model. The formulation of the choice probabilities is:

Pj:;’—RRM _ /eXp (_ Ril;iRRM ) (6)
ZeXp (_ R/Z—RRM )

ieJ
j=1

2.2 Relative advantage maximization

Similar to RRM, relative advantage maximization (RAM) also compares the chosen alternative
with competing alternatives. However, there is a key difference in the way in which RAM
explicitly takes into account the disadvantages and advantages of an alternative. The advantages
of alternatives are expressed as a ratio of the sum of advantage and disadvantage.

Leong and Hensher (2015) formulate the disadvantage of the person g choosing alternative 7

over competitor alternative j for an attribute &, denoted D, with this formula.

Dyyq = In(1+exp lﬂk '(Xk/q _inq)J) (7

Leong and Hensher (2015) assume that disadvantages and advantages are symmetrical, that is
if the advantage of the person g choosing alternative 7 over j with respect to attribute & is

the corresponding disadvantage of the person g choosing alternative j over 7 with respect to

the same attribute, then the formula is:

Akijq = Dk/'iq = In(l+ eXp lﬂk : (in - Xk/'q )J) (8)
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Now the definition of 4, is a binary advantage of the person g choosing alternative 7 over ;,

and the definition of D

4o 1S @ binary disadvantage of alternative j over 7 . The formula for both

are as follows:
A, = ;Ak,./q and D, = ;Dk,,q (9)

The relative advantage of the person g choosing alternative 7/ over j according to Leong and
Hensher (2015) is as follow:

A
o= ——— (20)
Ai/q + DI’/'q

The observed component of utility for the person g choosing an alternative 7 is written as linear

combination of MNL. The formula for systematic utility is as follows:

anAM = 0[1- +Zﬂk’Xk’1'q +ZRAl'jq (11)
k' ief

J#i

With X, referring to a context-independent attribute 4" for person g choosing an alternative

i, the RAM model allows for a combination of context-independent preferences and context-
dependent preferences.

In this paper, we compare the standard RUM model (MNL) with the classical RRM (Chorus,
2010), and the uPRRM as well as the P-RRM (Van Cranenburgh et al., 2015). We also compare
those approaches with the new RAM approach (Leong and Hensher, 2015). Although the RAM
approach allows for incorporation of context-independent attributes, for this paper, we only use
context dependent generic attributes & .

3. Data Description

Chorus (2010) shows that for binary choice situations, the RRM reduces to the linear-additive
RUM. Therefore, in this paper, we select data sets where respondents face at least three
alternatives. Table 1 shows the information regarding the data sets used, while the description
of the data sets can be found in the next sub-section. The data sets that we use for this study are
stated choice data sets, and one RP data set collected in Switzerland. Since RRM is choice set
dependent, meaning that choosing an alternative is influenced by the presence of other
alternatives in term of their attribute values, therefore for this study we only use a parsimonious
model formulation, using two generic attributes i.e.: travel time (TT) and travel cost (TC). We
add alternative specific constants for the labeled data sets.
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Table 1 Data sets used

Data set Location  Publication Sample Obs.  Choice set composition

Swiss Residents of Bierlaire et al. 623 5607 Train, Swissmetro, car

Metro Switzerland  (2001)

Influence of Residents of Weis et al. 631 6301 Location A, location B, none of

parking Switzerland  (2012) these

Influence of Residents of Weis et al. 585 5853 Parking A, parking B, none of

parking Switzerland  (2012) these

Influence of Residents of Weis et al. 168 1666 Walk/bike, car, transit

parking Switzerland  (2012)

Car-sharing Residents of Ciari and 735 4350 Carsharing, car, transit
Switzerland  Axhausen (2012)

Carpooling  Residents of Ciari and 511 3975 Car, carpooling as driver,
Switzerland  Axhausen (2012) carpooling as passenger, transit

RP mode Residents of Schmutz (2015) 33942 33942 Walk, bike, car, transit

choice Switzerland

3.1 Swissmetro

The Swissmetro was a major innovation proposed for the Swiss transport system. Abay (1999)
conducted revealed preference (RP) and stated preference (SP) survey of long-distance road
and rail travelers. The details of the data sets can be found in Bierlaire et al. (2001) and
Axhausen (2013). For long distance travel, there are three alternatives: Train, Swissmetro (SM),
and car. For this paper, we only selected SP data where respondents had all three choice
alternatives. Thus SP data where there are only two alternatives (Train and SM) are omitted. In
total, 5607 observations from 1192 respondents were used for modeling.

Table 2 presents the descriptive analysis of this data set. We present minimum and maximum
value, the mean and standard deviation for each attribute used to measure the VTTS in section
5. The minimum travel time for each of the mode is varied within one hour. The maximum
travel time, is the longest for car, being 26 hour. The minimum cost for train and SM is zero for
those who have an annual season ticket (General abonnement (GA)).
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Table 2 Descriptive analysis of the Swissmetro data used

Data Set Attributes Observations  Minimum Maximum Mean  St. Dev.

Swiss Metro  Train TT (min) 5607 43 1022 17218 70.54
Train TC (CHF) 5607 0 576 94.23 62.48
SMTT (min) 5607 19 796 87.51 48.89
SM TC (CHF) 5607 0 768  113.95 76.38
Car TT (min) 5607 32 1560  148.66 79.77
Car TC (CHF) 5607 8 520  94.94 47.21

3.2 Influence of Parking

Weis et al. (2012) assessed the effect of parking availability on travelers’ behavioral responses.
They assumed that in addition to the trade-off between travel time and fuel or transit cost,
parking search times and cost have a substantial impact on travelers’ decision. Therefore, they
conducted a stated choice study of parking, location, and mode choice to assess those choices.
The detail of the study is explained in Weis et al. (2012; 2013). We use the data sets to run the
models on three different choice sets: location choice, parking choice, and mode choice.

For the location choice, there are two alternative locations and one “none of these” option, thus
three choices alternatives. Hess et al. (2014) using two different data sets, willingness to pay an
advance public transport in Netherlands and tradeoff between salary and travel time in Sweden,
showed that with only two alternative choices the model fits result of RUM and RRM is the
same. However, with the addition of the opt-out alternative (none of these options), the model
fit of RRM is better than RUM. Therefore, in this research, we also estimate RUM and RRMs
(as well as RAM) for data sets with an opt-out alternative. In total 6301 observations from 631
respondents were used. For the parking choice, there are three alternative choices: parking A,
parking B, and the opt-out alternative. In total 5853 observations from 585 respondents were
used.

Finally, we also estimate mode choice model. There are four mode choice alternatives: walk,
bicycle, car, transit. For longer distance travel, walk and bicycle might not be available.
Moreover, during the experiment, none of the respondents faced all four available alternatives
together. Therefore, for this paper, we only take short distance trips where respondents are
facing three choices: walk or bike, car, and transit. In total, only 1666 observations from 168
respondents were used.

Table 3 presents the descriptive analysis of these three data sets. For the location of parking,
we can see that the second location is slightly more expensive and also takes longer time. For

8
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parking alternatives, we can see the minimum cost of zero that is for those who already have a
parking pass. Finally, for mode choice, the zero cost for transit is for those who have a GA, and
we assume that travel costs for walk and bike are zero. As for the car fuel cost, zero cost is
possible for those who already have a parking space and travel a very short distance.

Table 3 Descriptive analysis of the parking data used
Data Sets  Attributes Observations Minimum Maximum Mean St. Dev.
Influence  Location A TT (min) 6301 9 64 29.48 15.68
of parking | +tion A TC (CHF) 6301 15 14.0 5.10 2.86
(Location) ' ' ' '
Location B TT (min) 6301 7 64 29.67 15.84
Location B TC (CHF) 6301 15 14.0 5.12 3.00
Influence  Parking A TT (min) 5835 8.0 39 22.41 11.80
of parking - . 1ing A TC (CHF) 5835 0.0 20 5.60 5.24
(Parking) g ' ' '
Parking B TT (min) 5835 8.0 39 22.05 11.77
Parking B TC (CHF) 5835 0.0 20 5.52 5.22
Influence  Walk TT (min) 1666 4.0 170.0 59.25 37.22
of parking . .
(Mode Bike TT (min) 1666 1.0 45.0 15.79 9.89
choice) Car TT (min) 1666 3.0 50.0 20.25 8.57
Car TC (CHF) 1666 0.0 22.4 7.14 6.35
Transit TT (min) 1666 3.0 108.0 23.84 15.07
Transit TC (CHF) 1666 0.0 7.4 2.08 1.28

3.3 Car-Sharing and Carpooling

Two SP experiments were conducted to estimate the potential of carpooling in Switzerland. In
order to gain insight about user perception regarding innovative modes, the SP part was
composed of two different experiments, one of them including car sharing as an alternative.
The details of the survey are available in Ciari and Axhausen (2012; 2013a; 2013b).

For the experiment, which includes car sharing, there are three alternative modes: car sharing,
car, and transit. In total, 4350 observations from 735 respondents. In the other experiment, there
are four alternative modes: carpooling as a driver (CPD), carpooling as a passenger (CPP),
transit, and car. In total, 3975 observations from 511 respondents were used. Note that car is
the only alternative that available across all 3975 observations, however since all observation
have three available alternatives, we include 3975 observations in the model.
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Table 4 presents the descriptive analysis of these two data sets. For car-sharing data set, the
zero cost for transit is for those who have a GA. As for carpooling data set, we have zero travel
time and travel cost for all alternatives except the car. That is because, for some observation,
the CPP, CPD, and transit are not available. For those who have a GA, we set the travel cost
for transit to zero.

Table 4 Descriptive analysis of car sharing and carpooling data used

Data Sets  Attributes Observation Minimum Maximum Mean St. Dev.

Car-sharing Car sharing TT (min) 4350 3.20 308.40 36.85 38.02
Car sharing TC (CHF) 4350 0.83 439.67 41.45 49.32
Car TT (min) 4350 3.20 318.00 40.79 37.34
Car TC (CHF) 4350 0.55 747.40 44.83 63.49
Transit TT (min) 4350 3.20 418.80 62.00 50.66
Transit TC (CHF) 4350 0.00 244.80 14.20 20.76

Carpooling CPP TT (min) 3975 0.0 297.6 31.59 36.08
CPP TC (CHF) 3975 0.0 435 3.19 4.61
CPD TT (min) 3975 0.0 258.0 18.33 31.66
CPD TC (CHF) 3975 0.0 37.5 2.38 4.24
Car TT (min) 3975 4.8 297.6 43.21 38.71
Car TC (CHF) 3975 0.1 171.0 7.75 11.14
Transit TT (min) 3975 0.0 372.0 45.83 54.58
Transit TC (CHF) 3975 0.0 244.8 10.25 18.98

3.4 RP mode choice

Schmutz (2015) used data from the Swiss Microcensus 2010 for his study. The Mobility and
Transport Microcensus is a survey conducted every five years that provides detailed
information on mobility behavior of the Swiss residents. The official data set includes around
300,000 stages, 210,000 trips and 65,000 tours starting and ending at home. In the work of
Schmutz (2015), only travel behavior part of the main survey for travel on one appointed day
per individual have been used. Schmutz (2015) presents MNL models for five levels of
aggregation: stage, sub-tour, tour, trip, and day plan. In this paper, we only use the trip data set.

The alternatives for mode choice are walk, bike, car, and transit. After some filtering, where we
only use observations that have all four alternatives available and reasonable walk and bike
travel time for all observations, we obtain 33942 observations. The details of the data set can
be found in Schmutz (2015).

10
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Table 5 presents the descriptive analysis of the RP data used. The zero cost for transit is for
those who have GA.

Table 5 Descriptive analysis of the RP data used

Data Sets  Attributes Observations Minimum Maximum Mean St. Dev.

RP _mode Walk TT (min) 33942 5.4 719.9 188.11 147.44

choice  gie TT (min) 33942 20 2400 6271 49.15
Car TT (min) 33942 4.0 253.0 21.13 11.75
Car TC (CHF) 33942 1.0 140 2.06 1.53
Transit TT (min) 33942 6.0 830.0 55.92 36.48
Transit TC (CHF) 33942 0.0 34.0 5.05 4.10

4. Model Estimation

4.1 Estimation Result

For the Swissmetro data set, other than generic attributes, travel time and travel cost, we added
alternative specific constants (ASC) for each mode to the utility function/regret function, and
we normalize the Swissmetro ASC to zero.

The location choice and parking choice are non-labelled data sets. Therefore, we do not include
ASCs. We use a similar method as in Hess et al. (2014) for the opt-out alternative case. In the
first and second utility/regret function we multiply time and cost parameters with respective
attributes. Then we include the third utility/regret function where there is only one parameter
“none” to be estimated. For mode choice, only car and transit are available across 1666
observations. For those who have the walk alternative, there is no bike alternative and vice
versa. We added four ASCs, and we normalize transit ASC to zero.

For the case of car sharing, we normalize the transit ASC to zero in our utility/regret function.
As for the carpooling case, only car alternative is available across 3975 observations. Therefore,
we normalize ASC car to zero in our model. Finally, for RP mode choice we normalize the
ASC transit to zero.

All models are estimated using PythonBiogeme (Bierlaire, 2016). The results for MNL, CRRM,
1 RRM, PRRM, and RAM for seven data sets are presented in Table 6 below. For brevity, we
only present generic attributes and the scale parameter for uRRM.

11
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Table 6 Estimation results
‘DataSets Attri-‘ MNL ‘ C RRM ‘ URRM ‘ P RRM ‘ RAM
bute
est t-stat est t-stat est t-stat est t-stat est t-stat
Swiss Time -001 -109 -001 -17.8 -001 -93 -001 -84 -0.08 9.3
Metro Cost -001 -161 -001 -168 -0.01 -166 -0.01 -162 -0.08 -10.0
(N=5607) 121 43
F-LL -4382.490 -4539.672 -4373.356 -4418.252 -4239.245
AIC 1.5646 1.6207 1.5617 1.5774 1.5136
BIC 1.5694 1.6254 1.5677 1.5821 1.5183
Parking  Time -0.06 -31.5 -004 -314 -0.04 -222 -003 -282 -0.83 6.0
location  Cost -0.18 -19.8 -0.13 -206 -0.14 -183 -010 -194 -1.85 5.8
choice u 6.22* 1.0
(N=6301) F-LL -5063.745 -4993.869 -4988.037 -5010.554 -5293.729
AIC 1.6082 1.5861 1.5845 1.5914 1.6812
BIC 1.6114 1.5893 1.5888 1.5946 1.6844
Parking  Time -013 -323 -009 -306 -010 -200 -009 -27.2 -2.25 2.4
choice Cost -0.16 -183 -0.15 -231 -0.18 -11.8 -0.14 -21.9 -3.71 2.9
(N=5835) . 3.34%% 17
F-LL -3160.084 -2933.602 -2930.057 -2925.971 -3964.244
AIC 1.0842 1.0065 1.0057 1.0039 1.3598
BIC 1.0876 1.0100 1.0102 1.0074 1.3632
Parking  Time -0.05 -141 -008 -17.9 -0.07 -99 -007 -101 -2.43 35
mode Cost -0.14 -112 -008 -101 050 23 048 53 -0.68 -8.2
choice i 1.17 2.3
(N=1666) F-LL -1366.330 -1321.320 -1349.922 -1349.337 -1414.494
AIC 1.6463 1.5922 1.6278 1.6259 1.7041
BIC 1.6625 1.6085 1.6473 1.6421 1.7203
Car Time -0.02 -164 -002 -162 -002 -17.1 -002 -170 -0.19 9.0
sharing Cost -001 -85 -001 -7.1 -001 -7.0 -001 -69 -0.20 6.6
(N=4350) o 012 183
F-LL 1583.012 1636.519 1680.706 1681.501 1926.19
AIC 1.8352 1.8229 1.8132 1.8125 1.7563
BIC 1.8410 1.8287 1.8205 1.8184 1.7621
Car Time -001 62 -001 -59 -001 -84 -001 -86 -0.10 7.6
pooling Cost -0.05 -53 -003 -43 -003 -42 -003 -43 -0.64 5.6
(N=3975) 4 0.09 139
F-LL -3950.835 -3949.359 -3929.118 -3922.169 -3832.877
AIC 1.9904 1.9896 1.9799 1.9759 1.9310
BIC 1.9983 1.9975 1.9894 1.9838 1.9389
RP mode Time -0.02 -162 -001 -122 -001 -128 -001 -115 -0.17 95
choice Cost -0.14 -138 -006 -168 -0.07 -150 -0.06 ~-181 -150 7.6
(N=33942) 2.59 9.1
F-LL -15417.741 -15410.937 -15382.139 -15459.477 -14990.85
AIC 0.9088 0.9084 0.9067 0.9112 0.8836
BIC 0.9100 0.9096 0.9082 0.9125 0.8849

Note:* = not significant; ** = 10% significant

12



17" Swiss Transport Research Conference May 17-19, 2017

For all models, the parameter of time and cost are significant with the expected sign (negative).
However, we need to be careful in interpreting these parameters. In MNL, a parameter estimate
refers to increase or decrease in the utility of an alternative caused by a one-unit or one standard
deviation increase in an attribute’s value. Therefore in the case of our MNL models, the increase
by a standard deviation of travel time and travel cost of an alternative decrease the utility of that
alternative.

In the RRM context, a parameter estimate reflects the potential increase or decrease in regret
associated with comparing a considered alternative with another alternative in term of one unit
increase in an attribute’s value. In short RRM is context dependent. Whereas in RUM, the
attribute of other alternatives is irrelevant, in RRM attribute of others alternatives can influence
the increase/decrease the regret of the chosen alternative. For RAM context, a parameter
estimate in RAM context reflects the potential increase or decrease in relative advantage
associated with comparing a considered alternative with another alternative in term of one unit
increase in an attribute’s value.

We present the model fit comparison in Table 6 that consists of log-likelihood, Akaike
information criterion (AIC) and Bayesian information criterion (BIC). Looking at AIC and BIC,
we found that RAM outperforms other models in the case of Swissmetro, car sharing, car
pooling, and RP mode choice. We also found that uRRM outperforms other models in the case
of parking location and parking mode choice, while PRRM outperforms other models in the
case of parking choice.

Regarding the comparison of MNL and CRRM in term of model fit, we found that only two
times MNL outperforms CRRM in the case of Swissmetro and car pooling. This result
underlines the literature result, that none of the models are clearly superior in all cases.

4.2 Prediction Accuracy

Hit rate can also be one of the indicators measuring the goodness of fit of a choice model. Hit
rate refers to the fit between actual choice observed from the data and the predicted choice
obtained by using the model itself. The higher the hit rate the closer we can say that our model
represents reality. In Table 7, we present the prediction accuracy of five modeling approaches
across seven data sets. In the first five columns, we present the hit rate of five models. In another
column, we present percentage of observations where all models produce the same outcome
regardless the observed choice are. This column followed by another column where we show
the percentage of observations which all models correctly predict the outcomes.
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Table 7 Prediction Accuracy

Hit rate All models  All models
predict the predict the
Data Sets MNL CRRM  pRRM PRRM  RAM same right

outcome outcome
Swiss Metro 68.50%  68.50% 68.50%  68.50%  69.10% 91.14% 64.38%
(N=5607)
Parking 67.80%  68.00% 68.00% 68.00%  67.30% 94.02% 65.40%
location choice
(N=6301)
Parking choice 81.10%  81.70% 81.90% 81.30%  80.10% 88.47% 78.01%
(N=5835)
Parking mode  65.49%  61.16% 61.22% 61.34%  62.30% 67.65% 47.84%
choice
(N=1666)
Car sharing 59.20%  59.80% 60.00% 60.10%  60.70% 82.76% 52.69%
(N=4350)
Car pooling 49.26%  49.08% 49.74%  49.74%  51.30% 81.91% 43.00%
(N=3975)
RP mode 87.30%  87.30% 87.30% 87.30%  87.40% 99.48% 87.10%
choice
(N=33942)

We found two data sets where the hit rate is above 80% in the case of parking choice (SP
unlabeled data) and RP mode choice. In other three data sets, Swiss metro, location choice, and
parking mode choice, the hit rate is approximately 60%. As for the car pooling data sets the hit
rate of all models are below 50% except for the RAM model. RAM model, in general, shows
the highest model fit except for the case of the parking data sets. Overall we can say that RUM
is outperformed by other approaches in all data sets in term of hit rate.

It is interesting to see the distribution of the prediction rate where all models predict the same
outcome. For the most of our data sets, the prediction rate is above 80%, more specifically for
three data sets, the prediction rate is above 90%. The highest prediction rate can be found in the
case of RP mode choice which is almost 100%. The lowest prediction rate is in the case of
parking mode choice; this might be due to the difference in the choice set, some have no walk
alternative while the rests have no bike alternative.

The prediction rates for all models predict the right outcome can be seen in the last column. All
the percentage is slightly below the hit rate of all the five modeling approach for each respective
data set. The substantial difference between the percentage of all models predict correctly, and
the hit rate can be found in the case of parking mode choice. This might be due to some
observations facing zero alternative for a particular mode (walk or bike). The same reason might
be applied to the car pooling data set wherein the case of car pooling not all of the observations
facing all four alternatives.
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4.3 Probability Plot

In this section present the probability of each alternative predicted by the five models. At the
y-axis is the probability range from 0 to 1. At the x-axis is the observations. There are six lines
in the figure each represent each modeling approach, and also one line represent the observed
choice, with 0 means the alternative is not chosen, and 1 means the alternative is chosen. To
plot this graph, we grouped together the observed choice, and the predicted choice from five
modeling approaches for an alternative 7. Then we sorted them based on the observed choice
followed by MNL predicted choice as the base. That means the observation-n in x-axis for the
alternative 7 is not necessarily the same as observation-n in x-axis for an alternative j.

In Figure 1 we can see the probability plot for Swissmetro data set. For the train alternative, we
can observe for those who did not choose a train, the probabilities of choosing train are very
low which as expected. However, the probabilities of choosing train for those who chose train
are very low which means that none of those people will be predicted to choose the train.
Interestingly the probability for CRRM is higher than the other modeling approach.

Figure 1 Swissmetro probability plot
Train Swissmetro
1.0 1.0 )
0.8 0.8
0.6 0.6
0.4 0.4
0.2 1 I 0.2
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——Observed — MNL CRRM uURRM —PRRM ——RAM ——Observed —MNL CRRM uRRM —PRRM —RAM

Car

——Observed —MNL CRRM pRRM —PRRM —RAM

For the Swissmetro alternative, we can see that for those who chose Swissmetro, the
probabilities plot is as expected even though there are some observations which have low
probabilities. However, for those who did not choose Swissmetro, there are a number of
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observations which have high probabilities. This might be the reason why the hit rates for
Swissmetro are only around 68%. For car alternative, the probabilities for those who did not
choose a car is as expected, however, for those who choose a car, the probabilities for more
than half of them are quite low.

Since parking location and parking choice both are unlabeled data set, the probability plot of
each alternative might not tell much information; we decide not to show the probability plot. In
Figure 2, we show the probability plot for Parking mode choice. Those who are facing walk
alternative are not facing bike alternative and vice versa. Therefore we can see zero probability
for all observations on the left side of walk and bike alternative. Unlike in Figure 1 where the
probabilities of uRRM and PRRM are mostly similar to RAM, here the probabilities of uRRM
and PRRM are varied. For all of four alternatives, the probabilities plot are as expected, even
though there are some cases where we find high probabilities on the non-chosen side for car
and transit.

Figure 2 Parking mode choice
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In Figure 3 we present the probability plot for car sharing data set. The probabilities plot for car
alternative is as expected, however for the train alternative especially those who chose the train,
the probabilities are quite low. Interestingly if we look at the car-sharing alternative, we can see
that the probabilities for PRRM for some observations, in the non-chosen and chosen case, are
quite high. It is also interesting that the probabilities for those who chose car sharing are very
low.
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Car sharing

Figure 3
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We plot the probabilities for car pooling in Figure 4. Car is the only alternative which was faced

by all observations, which explains the zero probabilities in the left side of the other three

alternatives.

Car pooling

Figure 4

Car pooling as driver
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In our car pooling plot, we can see that for all alternatives except car, the probabilities are not
that high for the chosen alternative side.

Finally, we present the probability of our RP mode choice data set in Figure 5. It is interesting
to see that there is no high probability for walk and bike. We can also see that for transit
alternative especially the chosen side, the probability to choose transit are not high. We can see
high probabilities to choose a car which most of them above 0.5.

Figure 5 RP mode choice
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4.4 Non-trading Behavior

Non-traders refer to respondents in stated preference survey who always make the same choice
decision regardless of the available alternative’s attributes. In our SP data sets, we have found
some percentage of non-traders which is shown in Table 8. In this section, we show how many
percents of non-traders can be predicted from our five modeling approaches.

In the case of Swissmetro, the non-traders of train alternative is only 2.09% which only 13
people. The five modeling approaches can not predict those for this alternative. This is
understandable since in Figure 1 we can see that the probabilities for choosing train are very
low. For Swissmetro alternative, we can see that there are 21.67% Swissmetro non-traders
which is about 135 people. From this number, MNL and uRRM can correctly predict the non-
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traders by 83.70%, which is about 113 people. For car alternative, PRRM can give a higher
prediction rate.

We do not present the non-labelled data set as it does not matter which alternative is chosen.
Overall looking at the table, we might say that there is no modeling approach better than the
others for all contexts. There is a case where MNL outperforms other, but that is also happening
for RRMs and RAM.

Table 8 Non-trading prediction

Observed Percentage non-traders predicted from observed non-traders

Data Sets Alter-native
non-traders

MNL CRRM  pRRM  PRRM RAM
Swiss Metro Train 2.09% 0% 0% 0% 0% 0%
(sample=623) g\ issmetro 2167%  83.70%  76.30%  83.70%  82.96%  77.78%
Car 6.10%  28.95%  28.95%  28.95%  34.21%  39.47%
Parking mode  Walk 595%  10.00%  70.00%  70.00%  10.00%  20.00%
E?:rLC;e:lGS) Bike 7.14% 100%  833%  8.33% 0%  83.33%
Car 536%  2222%  11.11%  11.11%  11.11%  11.11%
Transit 9.52% 0%  625%  6.25%  6.25%  18.75%
Car sharing Car sharing 2.31% 0% 0% 0% 0% 0%
(sample=735) 2544%  8128%  77.01%  7166%  70.59%  58.29%
Transit 2190%  21.74%  22.98%  24.84%  24.84%  36.65%
Carpooling  Car 822%  5238%  5238%  52.38%  5476%  52.38%
(sample=511) b driver 137%  1429%  1429%  1429%  14.29% 0%
cp sar,  33%% 333  333%  333%  333%
passenger
Transit 2.94% 0% 0% 0% 0% 0%

5. Value of Travel Time Savings

The value of travel time savings (VTTS) is an important concept for travel demand analysis. It
measures how much money (e.g.CHF) a person is willing to pay for a unit reduction in travel
time (e.g. an hour). The VTTS for the MNL model can be obtained from Eq.12 below

oV, |18TT
vrTs, "™ =60x—2 "7 — g « Brr

. —60x (12)
a I/iq /aTCu] ﬂTC

Where V,, represents systematic utility for an alternative 7 for person g, 77, represents travel

time associated with a person g choosing an alternative 7 , and 7C,, represent travel cost
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associated with a person g choosing an alternative 7 . The parameters of travel time and travel
cost are represented by S, and S respectively. Since RUM is not context dependent, the

VTTS for an alternative is not influenced by other alternatives as in the case of RRM. The
methods to measure VTTSs for context-dependent choice models are described below.

5.1 Method to measure context-dependent choice VTTS

5.1.1 CRRMVTTS

To measure the VTTS for CRRM we need to derive the systematic regret of the person g

choosing the alternative 7 with respect to attribute X, . The derivation is shown in Eq. 13

kiq

below, with more details in Appendix 1.

OR, _ _,Bk'EXplﬁk'(Xk/q_kaq)J - B
8Xk1'q _zze/: 1+eXpLBk '(Xk/q_inq)J _g‘ 1 +1
s o expl_ k- (Xk/q _Xk[q )J (13)
— B
zze/:eXpl ﬁk ( kig qu) +1

Eq. 13 enters the VTTS formula as shown in Eq. 14 below, which also presented in Chorus
(2012b).

T, —TT, 1
WTS'CRRMZGO 8R /(3TT —60x z,¢1 'BTT/(eXp[ IBTT( )] )

‘a oR, 10TC,, >~ B /el By -(1C, - TC,, )}+1) .

Eq. 14 implies that VTTS measures will generally change when choice set changes in terms of
alternatives. Changes in attributes of competing for an alternative as well as changes in
attributes of the chosen alternative will influence the VTTS.

5.1.2 pPRRM VT

The derivative of the systematic regret of the W\RRM model is shown in Appendix 2. The
formula for deriving the uRRM VTTS is shown in Eq. 15 below.

B B
D el i (e TR B
R are, = o0 )
T s e e[l 7,
7

VITSE ™ =60

J#i
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5.1.3 PRRMVTTS

Van Cranenburgh and Prato (2016) derive the derivation of the systematic regret for PRRM

model with respect to attribute X, as shown in Eq.16 below:

g i (16)
0 if B, <0and x,, >x,, or B, >0and x,, <x,,

oR, |=PBr >1if g, <0and x,, < x,, or B, >0and x,,, > x,,

aniq -

Since we only have two generic attributes and we already know in advanced that our parameter
estimates are both negatives, then we use the upper left part of Eq.16. Thus part of Eq.16 enter
Eq.17 for deriving the PRRM VTTS

vrrs, o _gox Rul 0Ty _gq, <y an
. oR,107C,  —pw 31
g"Z/I;ﬁTC,q

X PRRM

Let us recall the properties of PRRM as shown in Eq.5, X ;" is obtained by the summation of

X

min(O,X & ,q.q) in the case of a negative parameter. Therefore in the condition where the

iq -
chosen alternative is outperformed by the competing for an alternative, the derivative of
systematic regret with respect to travel time or travel cost will become zero. If that is the case,

we will have an infinite VTTS for the respected person and respected alternative.

514 RAMVTTS

Leong and Hensher (2015) have already derived an equation for measure RAM VTTS, as
shown in Eq. 18:

6141'/'q a1)1'/'11
Dl” - it
Z yq a TTIq yq a TT;q
2
rAM a I/M[;AM /8 TT;q _ J#i [Aqu + Dijq] (18)
VTTSl.q —GOXRAM——BOX
ov, " loerc, 04, 0Dy,
Dijq Af/q
5 oTC,, oTC,,
2
J#i [Ai/'q +D i/'q]

The derivation of advantage and disadvantage of the person ¢ choosing alternative 7 over ; is
in Eg. 19 below:

04, ﬂk oD, _ﬂk

vq n q

= and = (19)
aniq eXplﬁk '(ijq _inq)J+1 aniq eXpl_ﬂk '(ij _inq) +1
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5.2 VTTS result and discussion

In this subsection, we present the result of VTTS, mean value and standard deviation for each
alternative for the five models in Table 9.

Table 9 Value of travel time savings (CHF/hour)
Data Sets  Alter- MNL CRRM URRM P RRM RAM
native

Mean St.d Mean St.d Mean Std Mean Std Mean Std

Swiss Train 150.91 28.7 84.66 119 70.59 69.1 38.92 235
(I\:Iue:tg%m) SM  66.10 0 5651 247 4862 116 5190 187 3502 259
Car 13418 1149 7863 348 3045 37.6 11294 164.0
Eﬁg‘f(':g%'\lofgggf) 19.60 0 1929 46 1850 11 2177 104 3240 929
(Plf‘lrzkgggsc)h‘"ce 46.63 0 4210 86 3661 41 388 115 7+10© g*104
Parking  Walk 10131 246 9956 294 11619 192 1685  33.7
Q}%‘?ge Bike o , B8 100 5501 161 8726 306 8642 1805
(N=1666)  Car 3858 17.0 39.18 158 4319 212 147.31 369.3
Transit 5454 235 5360 212 6417 331 3355 628
Car sharing CS 91.88 180 59.60 37.9 9544 465 84.97 118.8
(N=4350) o 104.04 0 9522 172 6820 708 8685 526 9500 1854
Transit 159.26 105.2 9*10° 5*10'? 16.81  53.8 117.54 239.3
Car pooling Car 1414 16 1924 125 1946 87 1506 313
(N=3975)  pp 1427 20 5517 6775 3367 112 1056 112
CPP 289 O 1488 26 5405 2%107 2065 107 1206 162
Transit 1421 19 2390 166 2148 7.1 4101 753
RPmode  Walk 1942 45 1534 29 3313 43 171 10
8@52942) Bike , 1129 14 1108 03 1630 63 484 15
Car 738 20 929 14 018 10 336 15
Transit 905 21 1003 14 601 22 816 73

For unlabelled SPs it does not make sense to present values for the two alternatives as the order
in the choice experiment (left or right alternative) does not matter and it is quite random.
Therefore we only present the mean VTTS from two alternatives.

The VTTSs results are in the expected range except for some strange results in the case of
parking choice data for RAM model and also puRRM transit alternative for car sharing data set.

To do a better depiction of the VTTSs distribution, we plot the VTTS by choice situation for
each alternative with a box plot. At the x-axis, we present the four context-dependent models.
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At the y-axis, we present the VTTS in CHF per hour. The reference line attached to the y-axis
represents MNL VTTS.

For the Swissmetro data set, the depiction of VTTS can be seen in Figure 6. We can see for
train case, the CRRM and uRRM VTTS are mostly above MNL VTTS. For the Swissmetro
case, the VTTS of other modeling approaches is below the MNL. Finally, for car VTTS, we
can see that for the CRRM, and pRRM VTTS are mostly above MNL. The VTTS for PRRM
is below MNL VTTS. In Car alternative, we can see many and quite substantial outliers for the
car alternative.

Figure 6 Swissmetro VTTS (CHF/hour)
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For the unlabeled data sets with an opt-out alternative, the depiction of VTTSs for location
choice and parking choice can be seen in Figure 7. For these unlabeled cases, the RAM VTTS
distribution is very high.

Figure 7 Location and parking choice VTTS (CHF/hour)
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In Figure 8 we present the plot of parking mode choice VTTS. For all alternatives, the VTTS
for PRRM and RAM are below MNL.
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Figure 8 Parking mode choice VTTS (CHF/hour)
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In Figure 9 we present the plot of car sharing VTTS. There are many outliers for RAM for three
alternatives. For car sharing and car alternative, the VTTS are below MNL for all modeling
approaches. Only in the case of transit, we can see that the uRRM VTTS is substantially higher
than MNL.

Figure 9 Car sharing VTTS (CHF/hour)
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The VTTS for car pooling data set can be seen in Figure 10. The distribution for CRRM for Car
and car pooling as passenger alternatives are very low. For the same alternatives, the MNL
VTTS is below all the other modeling approaches VTTS. For car pooling as driver and transit
alternatives, we can see a high distribution of VTTS in four modeling approaches.
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Figure 10 Car pooling VTTS (CHF/hour)
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Finally, in Figure 11, we present the VTTS for RP mode choice. For Walk and Bike alternatives,
only RAM VTTS is below MNL. For car alternative, we can see that all modeling approaches
VTTS are below MNL. For transit alternative, we can see that uRRM VTTS is above MNL
while other approaches’ VTTS are below MNL.
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Figure 11
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6. Travel Time and Cost Elasticities

Direct elasticities measure is another way to compare the behavior implication of RUM and
RRM. The direct elasticities derive from the RUM and RRM model shows the relationship
between a percentage change in the magnitude of the attribute and the percentage change in the
probability of choosing an alternative based on respected attribute. To measure the direct
elasticities of RUM model, we can use the formula from Ben-Akiva and Lerman (1985) shown
in Eq. 20.

E/qu = ;XPiq '% = (l_Piq)'ﬂk 'inq

kig iq

(20)

In the following subsection, we show how to measure direct elasticities for three variant RRM
models.
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6.1 RRM Elasticities

Hensher et al. (2013) derive for the first time an equation to measure RRM (CRRM) elasticities
as shown in Eq. 21. This equation according to Van Cranenburgh and Prato (2016) can also be
used to measure PRRM and also pRRM.

OR. / OR.
Einki =~ -+ ZP/'q ) = 'inq (21)
7 aniq ;i/l aniq
=

6.1.1 CRRM elasticities

The formula to measure the direct elasticities for CRRM (as discussed in Hensher et al. 2013)
is as follow.

| ORG™ L ORT™ _
Eiqu =\~ anjq +§ g " aniq -inq =
et
L - By | (22)
f’l_ +
% lepl__ﬂk'(Xk/q_inq)J+1
! B,

- + ‘X
;eXp[_ﬂk'(ijq_inq) +1 / Y "
e 2P )

;ilz EXp[ﬂk'(ij _inq)J+l
A i

6.1.2

URRM elasticities

From Appendix 1, we find that the derivative of uRRM with respect to attribute X, as shown

B
aR,‘uRRM J /u
8X ol - ie
e exp(—m[xk/q—xqu]]+l
J=1 H

(23)

In order to measure URRM direct elasticities, we derive the formula from Eq. 21 and Appendix

2 to get Eq. 24 below.
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E HRRM 8 R ,f;RRM / a R .

o | +ZP" A Xy
1qX ig aniq i'e/' 79 a inq q
]
B
/
/ B exp(_k[xk,q_x,ﬂ.q]]u
B P J= H X
- Z ﬂ + kig
2 exp [—k[Xk/q —inq]]+l B
j=1 u J U
b
ie k
;Z exp (/u [ijq ~ Xig U +1

6.1.3 PRRM elasticities

We can use the same formula as Eqg. 16 to derive PRRM direct elasticities. Van cranenburgh
and Pato (2016) already derived the formula as shown in Eq. 25 below.

PRRM OR, J OR.
E'x- =T - +zP/q' = 'inq
X kig a kig li/l aniq
o
where R _ —ﬁkgl if Xy, <X g O _ {ﬂk it X, > X (25)
kig 0 if Xio > Xiia aniq 0 if Xijg < Xiig

6.1.4 RAM elasticities

We derive the formula to measure RAM elasticities in Appendix 3, as follows:

oP, X, oInp,

ram _ YTag  Ckiq _ o aRAf/‘q_ip_ % X, (26)
X kig aniq Eq oX kig kig oX kig ic] 7 oX kig e

J#I

j=1

ORA,
The derivation for ——ZZ can be seen in Leong and Hensher (2015) to measure RAM VTTS as
kiq

ORA
shown in Eq. 18. While the derivation of —Z% is as follows:
kig
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aA/'iq . oD Jiq
ORA,, " oX,, T 0X,, @7
- 7
anfq [Aiiq +D /Iq]

The derivation of advantage and disadvantage of choosing alternative j over alternative i is
similar to Eq. 19 as shown below:

04 _ D and s _ P (28)
aniq exp l_ ,Bk ' (ijq - inq)J+1 anfq EXp lﬁk : (ijq - inq)J+1

Substituting Eq. 28 to Eq. 26, the formula to derive direct elasticities of RAM is as follows:

RAM
quq a kig ; " aX kig =
=
D. aAI’/'q . aDi/'q D. - 6A1’iq Ny aDI’/’ti
i Ilq aX kig 7 aX kig Z " aX kig 7 aX kiq (29)
’i{ [Allq +D I/q] J i{ [Allq +D '/'ti]z
j'=1 5:1
= 'X i
04, oD, a
D. . Jiq _Aj_q . Jjiq
Lo o, T ax,
+| = Z P/'q [ q ]2 q
jill /14 /lq
j=1

6.2 Travel Time Elasticities

We present the measurement of travel time elasticities across five models and seven data sets
in Table 10. In the first column, we present the alternatives followed by the MNL measurement
and RRMs in the next column. As we all know that RRM is the alternative model to the well-
established RUM, therefore in the next column we present the difference between RUM and
four other context-dependent models. All figures presented here is the mean elasticities of the
sample.

The sign of all the time elasticities measurement is as expected which means that a percentage
increase in travel time will have an effect on an average of some percentage reduction in the
probability of choosing a respected alternative.

From the Swissmetro data set, we can see that travel time for Swissmetro alternative is nearly
inelastic across all models. That means 10% increase in travel time for Swissmetro on average
will not give substantial impact in the reduction of Swissmetro probability. But that is not the
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case for train alternative, for MNL model, the 10% increase of travel time for a train on average
will give a result of 20% reduction of train choice probability. In the context of RRM, the 10%
increase of train travel time, takes into account the level of travel time associated with car travel
time and Swissmetro travel time. The 81.9% difference with RRM being higher than MNL
might suggest that the idea that the wrong choice may have been taken amplifies the response
away from normal RUM based elasticity.

Table 10 Travel time elasticities
Alternatives MNL CRRM pRRM PRRM RAM Percent Percent Percent Percent
difference difference difference difference
MNL- MNL- MNL- MNL-
CRRM  pRRM  PRRM RAM
Train 203 -369 -1.88 -403 -1.34 -81.9% 74%  -986%  34.0%
Swissmetro -046 -0.74 -0.37 -0.16 -0.40 -59.2%  20.3%  65.6% 14.2%
Car -1.37  -255 -1.21 -2.28 -1.00 -86.3% 11.7%  -66.9%  26.6%
Location choice  -1.13 -1.23 -0.19 -1.60 -0.55 -8.8%  83.0% -41.2%  51.6%
Parking choice ~ -1.15 -1.26 -0.20 -1.60 -0.52 9.2%  82.9%  -38.9% 54.8%
Walk -1.88 -2.54 -0.74 -3.43 -093 -353%  60.7% -83.0%  50.3%
Bike -1.96 -2.77 -0.80 -3.88 -0.94 -409%  59.2% -97.4%  51.9%
Car 235 -9.77 -5.54 -10.58 -0.72 -316.8% -136.2% -351.1%  69.5%
Transit 063 -1.10 -0.93 -2.74 -0.81 -749%  -46.9% -3353% -29.1%
Car Sharing 066 -1.65 -1.41 -1.92 -0.57 -150.2% -114.1% -191.0%  13.8%
Car -0.72 -1.69 -1.45 -3.69 -0.65 -136.3% -102.0% -415.1% 8.6%
Transit -0.75 -0.80 -6.35 -0.93 -1.13 -6.8% -744.0%  -23.7%  -49.8%
Car -0.52 -0.57 -451 -0.55 -0.63 9.6% -770.1% 55%  -20.6%
gf{vzfo"”g 098 -1.24 -11.91 -2.04 -0.86 -26.7% -1119.1% -108.7%  12.4%
g:;szﬁggr”g 019 -025 -3.61 -051 -0.29 -26.8% -1768.3% -163.4%  -47.8%
Transit -0.11 -025 -415 -0.88 -0.52 -132.0% -3695.4% -703.4% -374.1%
Walk (RP) -0.13 -0.22 -3.25 -0.43 -0.43  -69.4% -2420.6% -234.5% -230.5%
Bike (RP) -0.30 -0.86 -15.31 -1.56 -0.28 -181.8% -4940.9% -412.7% 6.8%
Car (RP) -415 -6.16 -2.25 -7.98 -0.68 -48.6%  458% -92.4%  83.6%
Transit (RP) -1.37  -1.29 -0.55 -1.76 -1.07 6.0% 59.6%  -28.5% 22.2%
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In general, across all data sets and alternatives, we can see a substantial difference between
MNL and CRRM with CRRM being higher. From the behavioral perspective, this might
suggest that the potential regret one might have been experienced had the wrong choices being
made amplifies the behavioral response.

In the next column, we can see that the time elasticities difference between MNL and pPRRM
are substantially higher with MNL being highest overall. Van Cranenburgh et al. (2015) note
that when the scale parameter is arbitrarily large, then the attribute level regret function are
almost linear, and hardly yield difference between the regret generated by a loss and the rejoice
generated by equivalent gain. In Table 6 we have seen that our scale parameter is mostly higher
than 1. In this situation, the hRRM might yield the same choice probabilities as the linear-
additive RUM model.

The next column shows the difference between MNL and PRRM. PRRM is a special case of
HRRM where it postulates no rejoices, just pure regret. Therefore, it makes sense that across all
data sets and alternatives we can see a higher difference compare to the difference between
RUM and CRRM. Since it is pure regret, we might say that the potential regret one might have
been experienced had the wrong choices being made without any rejoices, substantially
amplifies the behavioral responses.

Finally, we can see the column for the RAM model; it is interesting that across all alternatives
and data sets, the RAM models are inelastic. RAM is opposite of RRM where instead of
measuring regret, it measures the relative advantage or the ratio of rejoice over total regret plus
rejoice. Therefore, it makes sense that we see a difference in elasticity between MNL and RAM
with MNL being higher. We might say that for the case of Swissmetro alternative, the 117.8%
difference might suggest that the right choice might have been taken amplifies the behavioral
responses.

We present the plot of each data set time elasticities for each alternative in Figure 12-17. For
Swissmetro data sets, Figure 12, the distribution for all alternatives particularly Swissmetro is
not too high. We can see some outliers for all modeling approaches.
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Figure 12 Swissmetro time elasticities
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For location and parking choice, Figure 13, we can see high distribution in MNL, CRRM, and
PRRM. For parking mode choice, Figure 14, we can see low distribution in all modeling
approaches except for CRRM in walk alternative. For car sharing data set, Figure 15, we can
see high distribution in PRRM modeling approach. On the contrary for car pooling data set,
Figure 16, the PRRM modeling approach time elasticities distribution is the lowest compared
to other modeling approaches. For RP mode choice, Figure 17, we can see that only car
alternative time elasticities distribution are mostly similar for all models. For transit, the time
elasticities distribution is quite high, higher than bike distribution. We only found one strange
case for MNL elasticity which is very high.

Figure 13 Location and parking choice time elasticities
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Figure 14 Parking mode choice time elasticities
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Figure 15 Car sharing time elasticities
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Figure 16 Carpooling time elasticities
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6.3 Cost Elasticities

We present the average of cost elasticities across four models and six data sets in Table 11.
Overall the travel attributes are less elastic compared to traveling time attributes. Only in
CRRM and PRRM, we can see the travel cost are elastic. We can also see a similar pattern with
the travel time elasticity where CRRMs overall higher than MNLs and PRRMs are overall
higher than CRRMs. RAM s are overall lower than the MNL.

Table 11 Cost elasticities

Alternatives MNL CRRM pRRM PRRM RAM  Percent Percent Percent Percent
difference difference difference difference
MNL- MNL- MNL- MNL-
CRRM MRRM PRRM RAM

Train -1.01 -1.03 -0.85 -0.64 -1.29 -2.0% 15.6% 36.3% -27.8%
Swissmetro -0.59 -0.69 -0.52 -1.06 -0.69 -18.4% 10.7% -81.0% -17.9%
Car -0.79 -0.91 -0.69 -0.89 -0.74 -15.8% 12.8% -13.5% 6.4%

Location choice  -0.57 -0.63 -0.10 -0.77 -0.28 -12.2% 82.1% -35.9% 51.2%

Parking choice  -0.57  -0.65 -0.10 -0.79 -0.25 -12.6% 82.1%  -37.1% 56.2%

Car 066 -1.09 -034 -147 -0.66 -63.6%  48.4% -121.0% 0.3%
Transit 068 -1.14 -036 -156 -0.71 -682%  47.1% -130.8%  -5.5%
Car Sharing 078 -0.84 -0.72 -1.09 -022  -8.3% 7.7%  -40.1%  71.5%
Car 022 -018 -0.16 -022 -0.18  19.4%  30.0% 26%  18.9%
Transit 047 -052 -487 -079 -092 -10.8% -9452%  -69.0%  -97.9%
Car 036 -042 -395 -0.67 -049 -16.9% -1001.0% -87.2%  -35.6%
gf{\g?o"”g 012 -013 -091 -0.03 -027  -22% -644.2%  78.4% -122.6%
gaagsiggé'r”g 023 -020 -2.23 -032 -023 107% -874.4% -37.8%  -2.4%
Transit 008 -012 -1.15 -0.17 -032  -52.9% -1392.1% -119.8% -316.7%
Car (RP) 008 -0.09 -0.86 -0.06 -025 -13.7% -1007.7%  26.5% -223.8%
Transit (RP) -0.43 -0.86 -10.22 -1.06 -0.25 -100.5% -2292.1% -147.8% 40.6%

We present the plot of each data set cost elasticities for each alternative in Figure 18-23. For
Swissmetro data set, Figure 18, the cost elasticities distribution is quite low for all models and
all alternatives. For location and parking cost elasticities, Figure 19, the distribution of PRRM
and RAM is the lowest, which is also the similar case for transit alternative for parking mode
choice in Figure 20. For car sharing, Figure 21, the distribution for cost elasticities are quite
low except for PRRM which is opposite case for car pooling in Figure 22. For RP data set,
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Figure 23, the cost elasticities for car alternative are quite low for all alternatives. However, the
cost elasticities for transit are quite high except for RAM case.

Figure 18
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Figure 19 Location and parking cost elasticities
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Figure 20 Parking mode choice cost elasticities
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Figure 21 Car sharing choice cost elasticities
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Figure 22 Carpooling choice cost elasticities
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7. Conclusion

There have been many empirical studies which compare the performance of RUM with context-
dependent alternative modeling approaches such as RRM. In many cases, several empirical
studies reported the better goodness of fit of RRM compares to RUM. However, there are also
similar numbers of other empirical studies which reported that RUM maodel fit is better than
RRM. Apparently, there has not been a consistent result of which modeling approaches is better
than another. While most previous empirical studies reported model fit, few of them presented
the prediction accuracy, VTTS and also demand elasticity to compare those modeling
approaches.

Our goal is to comprehensively compare five different modeling approaches, RUM, CRRM,
HRRM, PRRM, and RAM using Swiss data sets. We presented model fit, prediction accuracy,
prediction plot, non-traders, VTTS and demand elasticity across five modeling approaches and
seven data sets. With only two generic attributes, time and cost, we found in our model that the
parameters of those attributes are significant with expected sign.

Our comparison of MNL and CRRM underlines the literature results that none of the two
approaches, RUM and RRM are confirmed to be superior in all cases. In term of prediction rate,
our results in many cases show that RUM and RRM hit rate is almost similar. Surprisingly the
hit rate of the new RAM model is slightly higher than others especially for labelled data and
RP data. We found interesting result that more than 80% all models predict the same outcome.
This indicates that whatever model we use, we might ended up obtaining the same outcome. If
we want to use the model which has higher model fit, then we might be able to use these
comparisons, but in term of prediction, it might be a different case.

For the VTTS, we find that for MNL the result is the same for all alternatives. But for the case
of other four models we can obtain different VTTS. We found some under-estimated value in
the case of RP mode choice, where the VTTS is too low. We also some cases that show VTTS
very high for example 9%10*° CHF/hour. These strange results require further examination. In
term of time and cost elasticities, the sign is as expected. But we found that in many cases the
different between MNL and other models are substantially high. For regret case, this might be
due to the potential regret that will be faced by the person choosing that alternative. Similar
explanation might be applied to RAM.

There are some limitations of this study. First, we only use two generic attributes for all our
models. While it might give a better comparison, but we can not capture other significant factors
that influence the decision. Second, we have tried to be as comprehensive as possible in which
we include both labeled and unlabeled data sets in our presentation. However, the unlabeled
data sets that we have are the one where we have an opt-out alternative. We do not have an
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unlabeled data set where there are three alternatives with three generic attributes. For future
study, it would be better to add more RP data so that we can better compare and draw more
conclusion. Since the modeling approaches that we presented here are a context-dependent
model, different choice sets and different context might produce different results. Therefore
more empirical results are necessary.
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9. Appendix

9.1 Appendix 1 Derivation of CRRM

In this appendix, we present comprehensively how to derive the systematic regret of CRRM in
order to measure VTTS and elasticities. The derivation of RRM elasticities has previously
shown in Hensher et al. (2013) as well as in Van Cranenburgh and Prato (2016). The derivation

of systematic regret for an alternative /7 for person g with respect to attribute X, is shown

below:
oR,™ _ 3 S L+ e (B, [x,, - %0 )= In(L+exp (B, [x,, — x40 )
b qu o inq P k I kjg kig P inq k I kjg kiq
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(Appendix 1.1)

_ Z =B -exp (/6[( [Xk/'q - inq]) _ Z (_ B -exp (ﬂk [Xk/'q - ijq]))/eXp (ﬁk [ijq _inq])
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The formula to measure direct elasticities for RRM is as follows:
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(Appendix 1.2)

As mentioned by Van Cranenburgh and Prato, the formula in Appendix 1.2 can be used to
measure elasticities for all RRMs. The formula to measure systematic regret for an alternative

J for person g with respect to attribute X, is shown below:
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9.2 Appendix 2 Derivation of JRRM

The derivation of systematic regret for an alternative 7 for person g with respect to attribute
X

xig 1S Shown below:

ORL™ 5

1 R A 5 oot e (3 |

aniq X kiq ic]
i i

_ 1 0 Bel, _
B Z B ]] OX g (“exp[ H b X“"]D

21+ exp(l:ijq ~ Xiig
0
0+exp(€:‘[ijq—inq]J- (%[XW—XWU

7,
5 5 Y;
[1] + eXP (; [X kiqg — X kig ]} an,-q

_ Z OX 14 ox _ Z

;i{ 1+ exp (ﬂk [Xk/'q - inq]j ji{ 1+ exp (ﬂk [Xk/'q - inq U
u u
EXP(%[XI(M - inq]j ' %Lajk‘ [Xk/q]_ (%i[inq]J Xp(%[Xk/q - inq]j ' %(0 -1)
_ Z iq iq — Z

i 1+exp [% [X kig — X kiq]J i l+exp ("if [X kig ~ Xkiq ]J

L lmleen] Z(—f;.(exp(f; o | 2 o |
R I (L (T | e e

_Be b
=2 ™ 2 B "
o 3, +1 Hlexp [‘ f[Xk/q - kaq]] +1
exp [ [X kig — X qu]j

(Appendix 2.1)

The formula in Appendix 1.2 can be used to measure URRM elasticities. The derivation of
systematic regret for an alternative j for person g with respect to attribute X, is shown

below:
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ORMFRM 0

/9
aX kig 6X kig
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(Appendix 2.2)

Van Cranenburgh and Prato (2016) have shown a formula to measure PRRM elasticities
therefore in this paper we do not present the measurement for PRRM elasticities.

9.3 Appendix 2 Derivation of RAM

Leong and Hensher (2015) have shown the derivatives of the systematic utility of RAM in order
to measure VTTS.

The derivation of systematic utility for an alternative 7 for person g with respect to attribute
X

xig 1S Shown below:
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Ay, 04, 4. G(A,/.q +D f/q)
RAM A D Ai/'q +D ijq Ai/q
0 Viq _ Z ijq + ijq _ Z oX kiq oX kiq
ox kig ji/l ox kig ;ill (Ai/'q +D I'J'q)2
a, 2 p Oy Oy D
B Z jq aniq jq aniq 7q aniq 7q anjq
;i/l (Ai/'q +D qu)2
p, 2 _y P
iiq iiq
— Z aniq aniq
;i/l (Ai/'q + Di/'t;/)2
CRRM
where 04y Ry _ Bi
oX kiq ox kig exp (,Bk lX g Xk]-qJ)-f- 1
CRRM
ang 2P _ ORS™ .y
oX kig ox kig EXp (_ B [X kg — X kqu) +1

The formula to measure direct elasticities for RAM is as follows:
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(Appendix 3.1)

(Appendix 3.2)

The derivation of systematic utility for an alternative ;j for person g with respect to attribute

X

«ig 1S ShOwn below:
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