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Abstract

Major disruptions, such as the unavailability of railway tracks due to unexpected events (e.g.,
adverse weather conditions), occur regularly in railway networks. In this research, we address
the timetable rescheduling problem arising in case of such a disruption. When designing the
so-called disposition timetable, a compromise between the following aspects needs to me made:
deviation from the undisrupted timetable (both from the operator’s and the passengers’ point of
view), low operational cost, and acceptable passenger service. We propose a heuristic framework
that quantifies these aspects, in which the timetable is optimized using an Adaptive Large
Neighborhood Search meta-heuristic, and a passenger assignment model evaluates the timetable
in an iterative manner. The operators of the rescheduling heuristic are inspired from real-life
recovery strategies (such as train cancellations, delays, reroutings and bus or taxi additions),
but also from optimization methods (e.g., feasibility restoration operators). Using a heuristic to
solve the rescheduling problem allows for an efficient investigation of its multiple dimensions,
as we show on a realistic case study based on the S-train network of Canton Vaud, Switzerland.
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1 Introduction

Major disruptions, such as the unavailability of railway tracks due to unexpected events (e.g.,
rolling stock breakdown, adverse weather conditions), occur regularly in railway networks. Due
to its complexity, the recovery problem is usually broken up into three consecutive phases:
timetable rescheduling, rolling stock rescheduling and crew rescheduling. In this research, we
focus on the issue of timetable rescheduling, as the integrated problem cannot be solved in any
reasonable time. We consider large-scale disruptions related to the unavailability of one (or
more) tracks between two (or more) stations for a known time period. We therefore look at
the rescheduling problem from a macroscopic point of view, disregarding details such as track
assignments in stations or signalling.

When a disruption occurs in a railway network, the original timetable needs to be updated to
a so-called disposition timetable. The latter needs to be conflict-free in terms of operational
constraints (e.g., no two trains can be scheduled on the same resource at the same time) and as
convenient as possible for the passengers. The objective of the railway operator is to minimize
the operational costs, while the aim of the passengers is to receive the best possible level of
service. The two goals are usually incompatible: the best possible service for the passengers
may also be the most expensive option for the operator. This inadequacy is the key motivation
for our work: constructing disposition timetables that take into account passenger satisfaction,
while keeping operational costs low. Furthermore, the deviation from the undisrupted timetable
is considered as a common objective to be minimized by both the passengers and the operator.

In Binder et al. (2017b), we formulated the multi-objective railway timetable rescheduling
problem as an Integer Linear Program. It minimizes the passenger inconvenience and imposes
upper bounds (using epsilon-constraints) on the operational cost and the deviation from the
undisrupted timetable. The model was validated on a case study inspired from the Dutch
Railway network. Small to medium-sized instances could be solved to optimality in reasonable
computational time using CPLEX. However, the number of passengers the model can handle is
limited, as every passenger adds another layer of decision variables to the problem. Also, the
substantial number of rescheduling options for every train limits the size of solvable problems.

In order to overcome the shortcomings of Binder et al. (2017), we propose a new solution
algoritm for this problem. An Adaptive Large Neighborhood Search (ALNS) meta-heuristic
is implemented to construct the disposition timetable in an iterative manner. Neirhborhood
operators remove/add trains from/to the timetable at every iteration of the algorithm. The
operators of the rescheduling heuristic are inspired from real-life recovery strategies (such as
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train cancellations, delays, reroutings and bus or taxi additions) and from optimization methods
(e.g., feasibility restoration operators). The algorithm keeps track of non-dominated solutions
using an archive of solutions.

Using this heuristic to solve the rescheduling problem allows for an efficient investigation of its
multiple dimensions, as we show on a real case study based on the morning peak hour of the
S-train network of Canton Vaud, Switzerland. The exploration of the three-dimensional Pareto
frontier allows to analyze the trade-off between the objectives and to quantify the quality of the
disposition timetable according to the objectives.

The remainder of this paper is structured as follows. Section 2 recalls the description of the
multi-objective railway timetable rescheduling problem, which was initially introduced by
Binder et al. (2017b). In Section 3, we present in detail the novel solution algorithm we propose.
Section 4 reports first results of the computational experiments on the case study. Finally,
Section 5 concludes the paper and provides directions for further research.

2 Problem description

In the passenger railway service, a timetable is defined as the set of arrival and departure times of
every train at each station where it stops. In the event of a disruption in the network, a so-called
disposition timetable needs to be implemented by the railway operator. The latter is thus faced
with the challenge of obtaining a timetable that reflects a compromise between the following
objectives: minimization of passenger inconvenience, of operational costs and of the deviation
from the undisrupted timetable.

The problem addressed in this paper is to generate a set of “good” disposition timetables, and to
quantify the trade-off between the objectives in order to assist railway operators in the design
of such timetables. The multi-objective timetable rescheduling framework we present in this
section builds upon the work of Binder et al. (2017b). For the sake of completeness, we recall
here its main features and assumptions. We begin by describing the macroscopic infrastructural
model representing the operational side of the problem. The formal definition of the disruption,
and of the associated recovery decisions, is given thereafter. We then explain the assumptions
on passenger behavior that lead to our passenger travel choice model and to the passenger’s
assignment on the railway network. We conclude this section by presenting the mathematical
formulation of the problem as a space-time graph, which allows us to formally define the objetive
functions.
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2.1 Infrastructural model

Time is discretized into n + 1 time intervals of length τ (typically, one minute) and we introduce
the set of time steps H = {0, τ, 2τ, . . . , nτ}, where nτ is the considered planning horizon. We
model the railway network at a macroscopic level. The infrastructure is represented by a set of
stations s ∈ S and a set of tracks Q ⊆ S × S connecting the stations. A track (s, s′) ∈ Q is an
uninterrupted railway track linking s to s′ directly, without passing in any other station. Each
station s is characterized by the presence or absence of a shunting yard. We denote by S R ⊆ S

the subset of stations with a shunting yard, and by R the set of shunting yards. Every shunting
yard rs ∈ R is associated with exactly one station s ∈ S R.

We define two stations s, s′ ∈ S to be neighbouring if (s, s′) ∈ Q and (s′, s) ∈ Q. Between
two neighbouring stations, the running time t(s, s′), in minutes, and the distance d(s, s′), in
kilometers, are known and equal for all trains. Trains cannot switch tracks between stations
and overtakings occur only within stations (i.e., a platform in a station can be reached from
any incoming/outgoing track). Each track can be used in one direction at the time, or it can be
assigned to opposite directions alternatively. A certain headway is respected if two consecutive
trains are running in the same direction on the same track. In case the track is used in opposite
directions, a set of conflicting movements is defined to ensure proper separation of the trains.

Two different types of trains are considered: original trains and emergency trains. The set
of original trains K1 contains the trains that are operated in the undisrupted timetable. Their
schedule is an input to the rescheduling model. The set of emergency trains K2 represents
trains that are located in shunting yards, ready to be scheduled if needed. All emergency trains
begin and end their journey at a shunting yard, and nr denotes the number of emergency trains
available in shunting yard r. The set of all trains is denoted by K = K1 ∪ K2, and all trains in K

are characterized by their capacity qk, defined as the maximal number of on-board passengers.

2.2 Disruption and associated recovery decisions

We define a disruption in the network as the unavailability of at least one whole track between
neighboring stations. Multiple tracks can become unavailable at the same time, and at different
locations in the network. We assume that the length of the disruption is known in advance, and
that it is less or equal to the considered time horizon. Hence, we also consider what happens
after the end of the disruption (i.e., once all tracks can be used again).
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In order to recover from the disruption, we consider the five following decisions (the three first
ones concern original trains):

Cancellation A train may be fully or partially canceled. A partially canceled train is only
operated on a subset of the stations of its original route and canceled afterwards. Observe
that a full cancellation is a special case of a partial cancellation.

Delay The arrival or departure of a train at a station may be delayed up to a maximal amount of
time. A train may also be delayed only for a part of its route. We do not allow trains to
run earlier than in the undisrupted timetable, as this is usually avoided in practice because
passengers might miss their planned train.

Rerouting A train may be rerouted through another path than the originally planned one.
Emergency train At every station with a shunting yard, a limited number of emergency trains

is available. These may be scheduled as needed.
Emergency bus If the track between two neighboring stations is disrupted, an emergency bus

may be scheduled to connect the two stations directly.

2.3 Passenger travel choice

Passenger demand is assumed to be known, in the form of an origin-destination (OD) matrix.
The latter describes the number of passengers entering the system at a given origin station,
at a certain time, and who wish to travel to a given destination station. The availability of
such data becomes more and more frequent with the gradual introduction of smart cards in
public transportation networks. Based on the OD matrix, a passenger p is denoted by a triplet
(op, dp, tp), where op ∈ S is the origin station, dp ∈ S the destination station, and tp ∈ H the
desired departure time from the origin. Note that, as we assume deterministic train travel times
in our approach, a passenger can equivalently be characterized by the desired arrival time at the
destination. We adopt the former representation in the following. The set of all passengers is
denoted by P.

For every passenger, we consider the set Ω(op, dp) of all paths linking the origin station op to the
destination station dp. A passenger path is a sequence of access, in-vehicle, waiting, transfer and
egress movements (refer to Section 2.4 for a definition in terms of arcs in a space-time graph).
In order to distinguish different paths, we associate a generalized cost with every alternative (i.e.,
path) and assume that each passenger group chooses the one with the lowest generalized cost.
Similarly to Binder et al. (2017a), we assume that the price of the trip is equal among all paths
for a given passenger, and we focus on homogeneous demand (thus disregarding socio-economic
characteristics differentiating the passengers). The generalized cost of path ω ∈ Ω(op, dp) for
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passenger p therefore depends on the following attributes:

• In-Vehicle Time (VT p
ω): time, in minutes, spent by the passenger in one (or more) train(s)

along the path,
• Waiting Time (WT p

ω): time, in minutes, spent by the passenger waiting between two
consecutive trains at a station along the path (does not consider the waiting time for the
first train),

• Number of Transfers (NT p
ω): number of times the passenger needs to change trains along

the path,
• Early Departure (EDp

ω = max(0, tp − t)): time difference (in minutes) between the desired
(tp) and the actual (t) departure time from origin, if early,
• Late Departure (LDp

ω = max(0, t − tp)): time difference (in minutes) between the actual
(t) and the desired (tp) departure time from origin, if late.

Based on the aforementioned description for a given passenger p, the generalized cost of
alternative ω is defined as follows:

Cp
ω = VT p

ω + β1 ·WT p
ω + β2 · NT p

ω + β3 · EDp
ω + β4 · LDp

ω, (1)

where β1, . . . , β4 are the relative weights of the attributes described above. Cp
ω is in minutes and

expresses the generalized travel time of passenger p along path ω ∈ Ω(op, dp). As commonly
done in the literature, the weights of the various elements of the generalized travel time are
defined relative to the in-vehicle time of the path. We use the values reported in Table 3, obtained
from the literature.

2.3.1 Passenger assignment model

Obtaining accurate passengers flows in a public transportation network where passengers
compete for the limited capacity of the trains is a challenging task. When the number of
passengers attempting to board a train exceeds its available capacity, it has to be decided
eventually which passengers can board the train and which cannot. There are two main paradigms
to take this decision:

System optimum Passengers are assumed to collaborate in order to minimize the overall
inconvenience (i.e., generalized travel time) of all passengers.

User equilibrium Passengers are assumed to be selfish actors that attempt to minimize their
personal inconvenience.
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Although a system optimal passenger assignment yields a better experience for everyone on

average, public transportation users are usually not willing to accept a longer personal travel
time for a theoretical “greater good”. In this paper, we therefore assume passengers to be selfish
and independent and to maximize their personal utility, given by Eq. (1). We use the passenger
assignment model introduced by Binder et al. (2017a), where an exogenous ordering of the
passengers is defined in order to assign the passengers incrementally on the network.

2.4 Mathematical formulation as a space-time graph

The timetable on which the passengers are assigned is mathematically represented by a directed
space-time graph G(V, A). The set of nodes V = N ∪ NO ∪ ND consists of three different
types of nodes. Starting from an empty graph, we add a space-time node (s, t, k) ∈ N for each
arrival/departure event of train k ∈ K at/from station s ∈ S at time t ∈ H. For instance, if train
k′ ∈ K leaves station s1 ∈ S at time t1 ∈ H, stops at station s2 ∈ S from time t2 ∈ H to t3 ∈ H

and finishes its trip at station s3 ∈ S at time t4 ∈ H, four space-time nodes are added: (s1, t1, k′),
(s2, t2, k′), (s2, t3, k′) and (s3, t4, k′). In addition, NO and ND are the sets of time-invariant origin
and destination nodes of the passengers. We denote by s(o) and s(d) the station associated with
node o ∈ NO and d ∈ ND, respectively.

There are six types of arcs in the graph:

• Driving arcs model the movements of trains between stations. From the timetable, we
define, for every train k ∈ K, the set of driving arcs Ak

Dri. A driving arc connects a departure
event at one station (s, t, k) ∈ N to an arrival event at the following station (s′, t′, k) ∈ N,
with t′ = t + t(s, s′). By repeating this procedure for every train in the timetable, we
construct the set of driving arcs ADri = ∪k∈KAk

Dri.
• Waiting arcs model trains waiting at a station for passengers to board or alight. We define

from the timetable, for every train k ∈ K, the set of waiting arcs Ak
Wai. A waiting arc

connects an arrival event at a station (s, t, k) ∈ N to a departure event from the same station
(s, t′, k) ∈ N, with t′ = t + w(s), where w(s) is the waiting time at station s. By repeating
this procedure, we construct the set of waiting arcs AWai = ∪k∈KAk

Wai.
• Access arcs model passenger p arriving at the origin. They are given by the set Ap

Acc =

{(o, (s, t, k)) ∈ NO × N |s = s(o) = op}. Note that, by definition, passenger p can therefore
take any train that departs from his origin station.

• Egress arcs model passenger p leaving the system at destination. They are given by the
set Ap

Egr = {((s, t, k), d) ∈ N × ND|s = s(d) = dp}.
• Transfer arcs model passengers transferring from one train to another in a station, with
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Table 1: Arc weights and capacities.

Name Start node End node ca cp
a qa

Driving (s, t, k) (s′, t′, k) c · d(s, s′) t′ − t qk

Waiting (s, t, k) (s, t′, k) 0 β1 · (t′ − t) qk

Access op (s, t, k) - β3 ·max(0, (tp − t)) + β4 ·max(0, (t − tp)) 1
Egress (s, t, k) dp - 0 1
Transfer (s, t, k) (s, t′, k′) - β2 + (t′ − t) ∞

Penalty op dp - nτ ∞

a minimal transfer time m and a maximal transfer time M. The set of transfer arcs is
constructed in the following way: ATra = {((s, t, k), (s, t′, k′)) ∈ N × N |∀s ∈ S ,∀k ∈

K,∀k′ ∈ K \ {k},∀t, t′ ∈ H : m ≤ t′ − t ≤ M}.
• Penalty arcs model passengers not succeeding to find a path from origin to destination.

They are given by the set APen = {(o, d) ∈ NO × ND}.

The set of arcs is given by A = ADri∪AWai∪ (∪p∈PAp
Acc)∪ (∪p∈PAp

Egr)∪ATra∪APen. With each arc
a, a capacity qa and two weights (cp

a and ca) are associated. The capacity of driving and waiting
arcs is given by the capacity of the associated train (i.e., the maximum number of passengers that
can be in the train at the same time), qk. Access and egress arcs have a capacity of one, as they
are passenger-specific. Transfer and penalty arcs have infinite capacity. The cost of using an arc
a for a train (ca), or for a passenger p (cp

a), are listed in Table 1. We assume that the operational
cost is proportional to the distance travelled by the trains. Therefore, only driving arcs have an
operational cost ca different from zero (c is the cost of running a train, per kilometer). Passenger
arcs are weighted according to the generalized travel time defined by Eq. (1). The cost of a path
in the graph for a passenger is obtained by summing the weights cp

a of the arcs in the path. Note
that driving and waiting arcs are weighted differently if used by a train or a passenger.

2.5 Objective functions

The operator and the passengers have different goals in railway operations. Passengers would
prefer a direct train from their origin to their destination, arriving exactly at their desired arrival
time. Considering the operational cost of this solution, it is obviously impossible to provide
such a service to every passenger. Hence, a trade-off between these two objectives needs to
be found. In case of disruptions in railway operations, we also need to take into account the
deviation from the undisrupted timetable. Considering this “cost” is necessary in order to avoid
solutions where the schedule of the entire network is overhauled because of a local disruption.
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This is beneficial both for the passengers and the operator. Also, once the disruption is resolved,
it is easier and quicker to come back to the undisrupted timetable if the disposition timetable is
not too different. Also, the deviation cost captures the fact that our model for operational cost or
passenger dissatisfaction might not be comprehensive, i.e., if we had true representations for the
latter, there would be no need for a deviation cost. Operational cost, passenger inconvenience
and deviation from the undisrupted timetable are considered as three objectives to minimize.

The three objective functions are defined as follows. As detailed in Section 2.3, passenger

inconvenience (zp) is given by the generalized travel time of the passengers. The operational

cost of the timetable (zo) is the running cost of original trains as well as emergency trains. The
deviation cost (zd) represents the deviation from the undisrupted timetable and is a weighted
sum of the different rescheduling possibilities: cancellations, reroutings, delays and the cost of
adding an emergency train (the respective weighting factors are δc, δr, δd, δe).

3 Solution algorithm

The multi-objective railway timetable rescheduling problem (MO-RTRP) defined in the previous
section has been formulated as an Integer Linear Program in Binder et al. (2017b). The authors
illustrate the problem on a realistic case study and solve it to optimality on several instances. The
size of solvable instances, however, remains limited, mainly because every additional passenger
adds another layer of decision variables to the problem.

In this section, we propose a new solution algorithm for the MO-RTRP. It is based on Adaptive
Large Neighborhood Search (ALNS), a heuristic proposed by Ropke and Pisinger (2006) to
solve the Pickup and Delivery Problem with Time Windows. It has also been used recently in
railway timetable scheduling (see, e.g., Barrena et al. (2014), Robenek et al. (2017)). ALNS
is a type of large neighborhood search in which a number of fairly simple operators compete
in modifying the current solution. At every iteration of the algorithm, the operators add and
remove trains to the timetable. We use simulated annealing as the search guiding meta-heuristic,
as it seems to be the preferred approach in the ALNS literature.

The pseudo-code of the ALNS framework is shown in Algorithm 1. The sections referenced in
the algorithm indicate where the different concepts are explained in further detail. The algorithm
assumes the existence of an initial solution. A solution s is defined as a timetable, i.e., the
departure and arrival times of all trains at all stations. The initial solution does not need to be
feasible, hence the undisrupted timetable is used as an input. In the context of multi-objective
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optimization, it is common to define dominance relations among solutions in order to consider
the trade-offs between the differents objectives (see Section 3.1 for formal definitions). The
algorithm produces an archive of non-dominated solutionsA.

Input :Initial solution s

Initial (final) temperatures T start
i (T end

i ), i ∈ {p, o, d}
Set of neighborhood operators Π

ρ1 > ρ2 > ρ3 ≥ 0
Output :Archive of non-dominated solutionsA

1 Ti ← T start
i , i ∈ {p, o, d},A ← {s}, n← 0

2 while Ti > T end
i , i ∈ {p, o, d} do

3 n← n + 1
4 Select neighborhood operator π ∈ Π (Section 3.2)
5 Apply π to s, and obtain s′

6 Assign passengers on s′ (Section 2.3.1)
7 Evaluate zi(s′), i ∈ {p, o, d} (Section 2.5)
8 if s′ can be archived (Section 3.1.1) then
9 Add s′ toA (Section 3.1.1)

10 s← s′

11 Update the score of π by ρ1 (Section 3.2)

12 else
13 if s′ is accepted by the SA criterion (Section 3.1.1) then
14 s← s′

15 Update the score of π by ρ2 (Section 3.2)

16 else
17 Update the score of π by ρ3 (Section 3.2)

18 Update the temperatures Ti according to the annealing schedule (Section 3.1.2)
19 Periodically, update weights of all operators and reset scores (Section 3.2)
20 Periodically, select s randomly inA (Section 3.1.3)

21 return A
Algorithm 1: ALNS framework.

3.1 Multi-objective simulated annealing

Kirkpatrick et al. (1983) initially proposed the meta-heuristic known as simulated annealing (SA).
Its characteristic feature is a probabilisitic criterion for the acceptance of worsening solutions
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in the search for a global optimum. In contrast with simple descent heuristics that only accept
solutions which improve the value of the objective function, this allows to avoid that the
procedure gets trapped in a local optimum. As SA is a well-known heuristic, we will focus
here on its extension to a multi-objective problem, based on the work of Suppapitnarm et al.

(2000).

3.1.1 Archiving and acceptance criterion

In order to address the multi-objective aspect of the problem, we define the concepts of dom-
inance and Pareto optimality. Let S be the set of all solutions of the MO-RTRP, and s1, s2

two particular solutions. We say that s1 dominates s2 (equivalently, s2 is dominated by s1)
if zi(s1) ≤ zi(s2), i ∈ {p, o, d} and ∃i ∈ {p, o, d}|zi(s1) < zi(s2). In other words, s1 is not
worse than s2 in any objective and s1 is strictly better than s2 in at least one objective. We
denote this property by s1 ≺ s2. A solution s∗ ∈ S is said to be Pareto optimal if it is not
dominated by any other solution: @s ∈ S |s ≺ s∗. The set of all Pareto optimal solutions is
P∗ = {s∗ ∈ S |@s ∈ S : s ≺ s∗}.

The derivation of the entire set P∗ is beyond the scope of this paper. Instead, we maintain an
“archive”A of non-dominated solutions in Algorithm 1, as an approximation of P∗. We begin
by adding the initial solution to the archive (line 1). Then, at every iteration, the current solution
s′ is a candidate for archiving (line 8). The following cases need to be considered:

a) s′ dominates at least one solution inA,
b) s′ neither dominates nor is dominated by any solution inA,
c) s′ is dominated by at least one solution inA.

In the two first cases, s′ is added to the archive (lines 9–11). Additionally, in case a), all solutions
dominated by s′ in A are removed from the archive. In the last case, s′ is not added to the
archive (lines 12–17) andA is not modified.

Given this archiving procedure, we define the following acceptance criterion for the current
solution s′. If s′ is archived, it is automatically accepted (line 10). If not, it is accepted with
probability

p =
∏

i∈{p,o,d}

min
{

exp
(
−

zi(s′) − zi(s)
Ti

)
, 1

}
. (2)

This acceptance probability is the product of individual acceptance probabilities for each
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objective, with its associated temperature Ti. It is therefore not necessary to scale the objectives
with respect to each other to form a composite objective function. Note that the individual
acceptance probability, exp((zi(s′) − zi(s))/Ti), may be greater than unity (if the difference is
negative). We therefore take the minimum between the calculated value and one.

3.1.2 Temperature update

In SA, the “temperature” of the system is a control parameter that indicates how likely it is that
a worsening solution is accepted in the search process. For high values of Ti in Eq. (2), virtually
all new solutions are accepted, irrespective of the sign of the numerator. Conversely, only small
increases in the objective function zi are accepted for small values of Ti. Thus, the search is
initiated with high values for the temperature, in order to allow for a broad exploration of the
search space, and to escape local minima. The temperature is then gradually decreased as the
search converges to a (hopefully global) minimum.

We use the cooling schedule proposed in Suppapitnarm et al. (2000) to update the temperatures.
The temperatures Ti are initially set to a large value. Hence, virtually all solutions are accepted
in this phase. After a pre-determined number of iterations N1, each temperature Ti is set to
the value of the standard deviation of the respective objective function, σ(zi), computed over
accepted solutions. After this warm-up phase, the temperatures are lowered after a given number
of iterations N2, or a given number of acceptances, N′2, with N′2 = 0.4N2, whichever comes first,
according to the following formula:

T ′i = αiTi,

where T ′i are the new temperatures and

αi = max
{

0.5, exp
(
−

0.7Ti

σi

)}
.

σi is the standard deviation of the values of zi, computed over solutions accepted at temperature
Ti. The counter N2 is then reset to zero.

3.1.3 Return-to-base strategy

In order to explore more intensively the search space close to the Pareto frontier, the random
selection of a solution in the archive, from which to recommence the search, is implemented.
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We decide the rate at which to come back to a solution from the archive in the following way.
In the warm-up phase before the iteration count hits N1, we do not perform any return-to-base
moves, as the goal is to explore the search space as freely as possible at that time. Thereafter,
the rate of return to solutions of the archive is increased in the following manner. Let NB

i be the
number of iterations to be executed prior to the ith return-to-base. We assume that this number
decreases, according to NB

i = rBNB
i−1, i = 2, 3, 4, . . . , where rB is a parameter between 0 and 1.

We assume a lower bound for NB
i ,∀i of 10 iterations. Suitable values of the parameters found by

Suppapitnarm et al. (2000) are rB = 0.9 and NB
1 = 2N2.

The choice of the solution in the archive is performed in a random manner. Note that this might
not be a particularly efficient approach, as the search is more likely to return to well-explored
parts of the search space, where there are already many archived solutions. A selection process
as suggested in Suppapitnarm et al. (2000) may be implemented instead.

3.2 Neighborhood operators

Neighborhood operators are used in the ALNS framework in order to modify the current solution.
We use the following operators (some of them are inspired from Barrena et al. (2014)):

Cancel trains completely This operator selects ν trains in K and cancels them completely.
Cancel trains after a given station This operator selects ν trains in K and cancels them after

their arrival in station s on their path. The last station in the train journey might differ
from one train to the next.

Delay trains completely This operators selects ν trains in K and delays them on their com-
plete journey by µ < µmax minutes.

Delay trains after a given station This operators selects ν trains in K and delays them by
µ < µmax minutes after their passage in station s.

Reroute trains between neighboring stations This operator selects ν trains in K and reroutes
them on a different path between the two neighboring stations s and s′.

Add an emergency train This operator schedules an emergency train, starting its journey
from station s at time t ∈ H and travelling on a pre-defined train line.

Add an emergency bus This operator schedules an emergency bus service between two
neighboring stations s and s′.

Operator choice is governed by a roulette-wheel mechanism. We associate a weight wπ with every
operator π ∈ Π. Given the set of operators Π, operator π is chosen with probability wπ/

∑
π′∈Pi wπ′

(line 4). The operator weights are updated using information from earlier iterations. The idea is

12
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to keep track of a score sπ for every operator. This score measures the recent performance of
the given operator; a higher score corresponds to a better performance. The ALNS algorithm is
divided into segments of J iterations. The score of all operators is set to zero at the beginning
of every segment. Then, at every iteration, the score of the selected operators is updated. We
distinguish three cases: If the last iteration of the algorithm

• resulted in a new solution added to the archive, the operator is rewarded with a score
increase ρ1 > 0;

• resulted in a solution that was not added to the archive, but was accepted by the SA
criterion, the operator score is increased by ρ2 < ρ1;

• resulted in a solution that was neither added to the archive, nor accepted by the SA
criterion, the score of the selected operator is not increased (ρ3 = 0).

At the beginning of the algorithm, all weights are set to one. Then, at the end of every segment,
the weights are updated using the recorded scores in the following manner. After segment j, the
weight of operator π in segment j + 1, w j+1

π , is computed as follows:

w j+1
π = (1 − η)w j

π + η
sπ
nπ
,

where η is the reaction factor that controls how quickly the weight adjustment responds to
changes in the effectiveness of the operators and nπ is the number of times operator π was used
in the previous segment (if nπ = 0, we assume that the weight of operator π remains unchanged
in segment j + 1).

3.3 Infeasibility

We allow the algorithm to reach infeasible solutions, in order to explore the search space more
efficiently. Two types of infeasibilities are considered:

Headway-related infeasibility A solution is infeasible if a minimal headway h between two
consecutive trains on a track (s, s′) is not respected. In case both train run in the same
direction, the minimal headway is h. In case they travel in opposite directions, the minimal
headway is t(s, s′) + h.

Disruption-related infeasibility A solution is infeasible if at least one train is scheduled on
a track that is unavailable because of the disruption. Not that we therefore initialize the
algorithm with an infeasible solution, as we use the undisrupted timetable as an initial
solution.

13
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In Algorithm 1, before selecting the neighborhood operator, we count the number of infeasi-
bilities of the current solution. If the number is strictly positive, we restrict the roulette-wheel
mechanism to select among the first five operators. The chosen operator is then applied on
the train causing the first infeasibility. The parameters of the operator (µ, ν, s) are then chosen
to attempt to remove the infeasibility. We apply this procedure until all infeasibilities are
resolved.

4 Computational experiments

4.1 Case description

We illustrate our methodology on the network of regional S-trains in canton Vaud, Switzerland,
during the morning peak hour. The timetable data used in this case study has been downloaded
directly from the official website of the Swiss National Railways (SBB), www.sbb.ch, for the
year 2016.

LAUREN

MOR

ALL

COS

VAL

YVE

VEV MON

VIL

PUI

PAL

PAY S1
S2
S3
S4
S5
S7
S9

S30

Figure 1: Network of S-trains in canton Vaud, Switzerland (2016).

The reduced network of S-trains is presented in Fig. 1. We consider the 13 main stations in this
network, i.e. S = {LAU,REN,MOR, ALL,COS ,VAL,YVE,VEV,MON,VIL, PUI, PAL, PAY}.
The timetable of the morning peak hours, between 5:00am and 9:00am, is used for this case
study. There are 8 bidirectional lines: S1, S2, S3, S4, S5, S7, S9 and S30. We include all trains
with a departure time from the beginning of the line between 5:00am and 9:00am. Table 2 reports
the first and last station of every train line, along with the departure time from the first station of

14

www.sbb.ch


Efficient exploration of the multiple objectives of the railway timetable rescheduling problem May 2017

Table 2: List of S-train lines in canton Vaud, Switzerland (2016).
Line From To Departure times

S1 YVE LAU 05:28 06:28 07:28 08:28
LAU YVE 05:54 06:54 07:54 08:54

S2 VAL VIL 05:10 06:10 07:10 08:10
VIL VAL 05:23 06:23 07:23 08:23

S3 ALL VIL 06:07 07:07 08.07
VIL ALL 05:49 06:51 07:51 08:51

S4 ALL PAL 05:37 06:37 07:37 08:37
PAL ALL 06:34 07:34 08:34

S5 YVE PAL 05:57 06:57 07:57 08:57
PAL YVE 06:06 07:07 08:07

S7 VEV PUI 06:09 07:09 08:09
PUI VEV 06:36 07:36 08:36

S9 LAU PAY 05:25 06:24 07:24 08:24
PAY LAU 05:40 06:40 07:40 08:40

S30 PAY YVE 05:30 06:02 06:30 07:02 07:30 08:02 08:30
YVE PAY 05:04 06:04 06:33 07:04 07:33 08:04 08:33

the line. Overall, there are 65 S-trains considered in the morning peak hours. SBB is currently
operating Stadler Flirt train units on lines S1, S2, S3, S4 and S5; and Domino train units on the
other lines. Stadler Flirt train units have a capacity of 160 seats and 220 standing people, while
Domino units can accommodate 188 sitting and 100 standing people. We consider two different
disruption scenarios, corresponding to two different levels of disruption “severeness”:

• Disruption VEV–MON, where both track between stations VEV and MON are unavailable
from 5:00am to 7:00am.

• Disruption LAU–REN, where both track between stations LAU and REN are unavailable
from 5:00am to 8:00am.

We consider a deterministic passenger demand, derived from SBB’s annual report of 2015
(Swiss Federal Railways (2015)). Not all data required is available, so we rely on realistic
assumptions and approximations to generate synthetic passenger data. We consider a total of
14,920 passengers in our case study. The exact procedures and assumptions used to obtain this
number can be found in Appendix A of Binder et al. (2017a). The generalized travel time of the
passengers is computed using the weights given in Table 3. The cost of the penalty arc is the
time horizon (four hours). We impose a minimal transfer time m of four minutes and a maximal
transfer time M of fifteen minutes.

All of the computational experiments were performed on a computer with a 2.4 GHz Intel Core
i7 processor and 8 GB of RAM. The algorithms were implemented in Java. On average, one
iteration of Algorithm 1 runs in about 0.2 seconds.
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Table 3: Values of weighting factors in the passengers’ generalized travel time.

Parameter Value Unit Reference

β1 2.5 [min/min] Wardman (2004)
β2 10 [min/transfer] de Keizer et al. (2012)
β3 0.5 [min/min] Small (1982)
β4 1 [min/min] Small (1982)

4.2 Results

Figs. 2 and 4 show the approximated Pareto frontiers for the two considered disruptions. The
three-dimensional frontiers are projected on the respective axes, and the third objective appears
in greyscale.

For the first disruption, the zo-zp projection shows that the same level of passenger inconvenience
can be achieved at several different operational cost. This can be explained by the fact that the
neighborhood operators may relie too much on randomness and therefore introduce unnecessary
trains in the timetable, which are not interesting for passengers to board. Also, it can be
observed that, for a given level of zd, substantial improvements in passenger inconvenience
can be achieved by only slightly increasing the operational cost. The zo-zd projection indicates
a clear inverse-proportional relationship of the values of operational cost and deviation: high
values of operational cost correspond to low values of deviation, and vice versa. The high weight
put on cancellations in the definition of the deviation cost and the definition of operational cost
as proportional to travelled distance explain this fact. The passenger inconvenience decreases
as the operational cost and the deviation from the undisrupted timetable increase, as expected.
Finally, the zp-zd projection shows the same findings, from a different angle.

The severeness of disruption LAU–REN, compared to disruption VEV–MON, can be observed
in the following ways:

• The lowest possible level of zd is twice as high for disruption LAU–REN.
• For the same level of zo and zd, the passenger inconvenience is higher.
• The operational cost of non-dominated solutions is lower for disruption LAU–REN, as no

“interesting” trains can be scheduled on the highly disrupted network.
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Figure 2: Pareto frontiers for disruption VEV–MON.

(a) zo-zp projection (zd in greyscale).
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(b) zo-zd projection (zp in greyscale).
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(c) zp-zd projection (zo in greyscale).
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Figure 4: Pareto frontiers for disruption LAU–REN.

(a) zo-zp projection (zd in greyscale).
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(b) zo-zd projection (zp in greyscale).
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(c) zp-zd projection (zo in greyscale).
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5 Conclusion

Motivated by the need for a passenger-centric framework for the railway timetable rescheduling
problem in case of severe disruptions, this paper presented a hybrid methodology that takes into
account the viewpoint of the train operator and of the passengers when designing a disposition
timetable. The problem is solved using a rescheduling meta-heuristic that generates operationally
feasible timetables. The proposed methodology is applied on a sample network and gives
satisfactory results in reasonable computational time. Every iteration of the heuristic takes less
than one second, thus making it practical for the evaluation of several timetables. We present
approximations of the Pareto frontier of the problem and analyze the trade-off between the
different objectives.

The multi-objective railway timetable rescheduling problem is a hard problem and this work
proposes a novel heuristic that drastically reduces the computational time needed to solve it. The
use of operators inspired from practice allows train operators to easily implement the framework
in order to evaluate the trade-off between the multiple objectives when designing a disposition
timetable. Further research will focus on the definition of additional operators, and on the
inclusion of our model in a broader framework to solve the complete recovery problem.

6 References

Barrena, E., D. Canca, L. C. Coelho and G. Laporte (2014) Single-line rail rapid transit
timetabling under dynamic passenger demand, Transportation Research Part B: Method-

ological, 70, 134–150.

Binder, S., Y. Maknoon and M. Bierlaire (2017a) Introducing exogenous priority rules for
the capacitated passenger assignment problem, Technical Report, TRANSP-OR 170209,
Transport and Mobility Laboratory, Ecole Polytechnique FÃ c©dÃ c©rale de Lausanne.

Binder, S., Y. Maknoon and M. Bierlaire (2017b) The multi-objective railway timetable
rescheduling problem, Transportation Research Part C: Emerging Technologies, 78, 78–
94.

de Keizer, B., K. Geurs and G. Haarsman (2012) Interchanges in timetable design of railways: A
closer look at customer resistance to interchange between trains, paper presented at the 40th

European Transport Conference, Glasgow.

19



Efficient exploration of the multiple objectives of the railway timetable rescheduling problem May 2017

Kirkpatrick, S., C. D. Gelatt and M. P. Vecchi (1983) Optimization by simulated annealing,
Science, 220 (4598) 671–680.

Robenek, T., S. Sharif Azadeh, Y. Maknoon and M. Bierlaire (2017) Hybrid cyclicity: Combining
the benefits of cyclic and non-cyclic timetables, Transportation Research Part C: Emerging

Technologies, 75, 228–253.

Ropke, S. and D. Pisinger (2006) An Adaptive Large Neighborhood Search Heuristic for the
Pickup and Delivery Problem with Time Windows, Transportation Science, 40 (4) 455–472.

Small, K. A. (1982) The scheduling of consumer activities: Work trips, The American Economic

Review, 72 (3) 467–479.

Suppapitnarm, A., K. A. Seffen, G. T. Parks and P. J. Clarkson (2000) A simulated annealing
algorithm for multi-objective optimization, Engineering Optimization, 33 (1) 59–85.

Swiss Federal Railways (2015) SBB: Facts and Figures 2015, Technical Report. Bib-
tex:swiss_federal_railways_sbb:_2015.

Wardman, M. (2004) Public transport values of time, Transport Policy, 11 (4) 363–377, October
2004.

20


	Introduction
	Problem description
	Infrastructural model
	Disruption and associated recovery decisions
	Passenger travel choice
	Passenger assignment model

	Mathematical formulation as a space-time graph
	Objective functions

	Solution algorithm
	Multi-objective simulated annealing
	Archiving and acceptance criterion
	Temperature update
	Return-to-base strategy

	Neighborhood operators
	Infeasibility

	Computational experiments
	Case description
	Results

	Conclusion
	References

