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Abstract

Many efforts have been carried out to optimize the traffic signal settings in cities. Nevertheless,
state-of-the-art and -practice strategies cannot deal efficiently with oversaturated conditions (i.e.
queue spillbacks and partial gridlocks), as they are either based on application-specific heuristics
or they fail to replicate accurately the propagation of congestion. An alternative approach for
real-time network-wide control is the perimeter flow control (or gating). This can be viewed as
an upper-level control layer, and be combined with other strategies (e.g. local or coordinated
regulators) in a hierarchical control framework. In the current work, a recently developed
perimeter control regulator is utilized for the upper-level layer. Another lower-level control layer
utilizes the max-pressure regulator, which constitutes a local feedback control law, applied in
coupled intersections, in a distributed systems-of-systems (SoS) concept. Different approaches
are discussed about the design of the hierarchical structure of SoS and a traffic microsimulation
tool is used to assess the impact of each approach to the overall traffic conditions. Preliminary
results show that integrating a network-level approach within a local adaptive framework can
significantly improve the system performance when spillback phenomena occur (a common
feature of city centres with short links).

Keywords
Urban traffic control; hierarchical control; macroscopic fundamental diagram (MFD); perimeter
control; distributed control; max-pressure.
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1 Introduction

In recent years, most big cities around the world become denser and wider, and due to the lack
of space for building new infrastructure, the problem of urban traffic management is steadily
gaining momentum. During the peak hours, traffic networks face serious congestion problems
and the performance of the infrastructure degrades significantly. Many efforts have been carried
out about the optimization of traffic signal settings. Nevertheless, state-of-the-art and -practice
strategies cannot deal efficiently with oversaturated conditions (i.e. queue spillbacks and partial
gridlocks), as they are either based on application-specific heuristics or they fail to replicate
accurately the propagation of congestion.

An alternative approach for real-time network-wide control, that has recently gained a lot of
interest in the literature, is the perimeter flow control (or gating). The basic concept of such an
approach is to partition heterogeneous large-scale cities into a small number of homogeneous
regions (zones) and apply perimeter control to the inter-regional flows along the boundaries
between regions. The inter-transferring flows are controlled at the intersections located along
the borders between zones, so as to distribute the congestion in an optimal way and minimize
the total delay of the system. Previous research (Kouvelas et al. (2017)), has shown that the
master-slave concept may arise, as some region can be “sacrificed” and led to congested states
in favour of other regions that are more “important” for the total performance of the system.
This can be viewed as an upper-level control layer, and be combined with other strategies (e.g.
local or coordinated regulators) in a hierarchical control framework.

In the current work we focus on the development of hierarchical control structures to tackle
the problem described above and we study different architecture designs. A recently developed
perimeter control regulator, which integrates model-based optimal control and online data-driven
learning/adaptation, is utilized for the upper-level layer. Another lower-level control layer
utilizes the max-pressure regulator, which has been also proposed recently and constitutes a
local feedback control law, applied in coupled intersections, in a distributed systems-of-systems
(SoS) concept. Different approaches are discussed about the design of the hierarchical structure
of SoS, i.e. mutual interactions between the two control layers, activation/deactivation of each
layer, mutually related objectives of the regulators, online versus offline selection of critical
intersection for the lower-level control layer.

A traffic microsimulation tool is utilized in order to assess the impact of each hierarchical control
design to the overall traffic conditions. An urban network is simulated with a realistic OD
matrix and different hierarchical control schemes are compared to the default signal settings
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that are currently used in the field. Each approach is also evaluated in comparison to a scenario
of local distributed control in all the intersections or standalone perimeter control. Simulation
investigations demonstrate the advantages of hierarchical control structures over different other
disconnected regulator schemes. Preliminary results show that integrating a network-level
approach within a local adaptive framework can significantly improve the system performance
when spillback phenomena occur (a common feature of city centres with short links). An
efficient multi-layer control design can significantly improve traffic congestion, leading to lower
delays and higher production for the system. This has positive economic and environmental
implications and large-scale cities are able to provide better quality of service to the users of the
infrastructure.

The next section presents the methodological part of this work. The hierarchical control
framework is described and each of the two levels is presented in details. The subsections
describe the upper level controller (i.e. perimeter regulator that is applied at the boundaries
between regions) and the lower level distributed controller (i.e. max-pressure) which is applied
to the intersections inside the network regions. Finally, the last section concludes the paper with
some closing remarks about this work.

2 Hierarchical traffic signal control

This section describes the hierarchical scheme that it is used in this work to control the intersec-
tions of an urban network. The scheme consists of two mutually exclusive but interactive layers.
The first upper layer (perimeter control) has more macroscopic characteristics, as it reflects the
modelling of the network as a multi-region systems and controls the flows that transfer among
the regions. The second one has a more microscopic flavour, as it models all the details of local
intersections and acts on a link level basis to prevent local congestion phenomena. Both layers
are applied simultaneously (with equal control cycles), and, although they do not exchange any
kind of information, they are correlated as they have similar objectives.

2.1 Notations

The arterial network is represented as a directed graph with links z ∈ Z and nodes n ∈ N. For
each signalized intersection n, we define the sets of incoming In and outgoing On links. It is
assumed that the offsets and the cycle time Cn of node n are fixed or calculated in real-time by
another algorithm. In addition, to enable network offset coordination, it is quite usual to assume
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that Cn = C for all intersections n ∈ N but this is not the case here as the coordination problem
is not considered. The signal control plan of node n (including the fixed lost time Ln) is based
on a fixed number of stages that belong to the set Fn, wherein v j denotes the set of links that
receive right of way at stage j ∈ Fn. Finally, the saturation flow S z of link z ∈ Z and the turning
movement rates βi,w, where i ∈ In and w ∈ On, are assumed to be known and can be constant or
time varying.

By definition, the constraint∑
j∈Fn

gn, j(k) + Ln = (or ≤) Cn (1)

holds for every node n, where k = 0, 1, 2, . . . is the control discrete-time index and gn, j is
the green time of stage j. Inequality in equation 1 may be useful in cases of strong network
congestion to allow for all-red stages (e.g. for strong local gating). In addition, the constraint

gn, j(k) ≥ gn, j,min, j ∈ Fn (2)

where gn, j,min is the minimum permissible green time for stage j in node n and is introduced in
order to guarantee allocation of sufficient green time to pedestrian phases. The control variables
of the problem are gn, j(k) and depict the effective green time of every stage j ∈ Fn of every
intersection n ∈ N.

2.2 Framework description

Figure 1 describes the basic principle of the hierarchical control framework. Basically, we
have two distinct controllers that act independently, without communicating of exchanging
information. At each control cycle (which is the same for both layers, e.g. 90 seconds) the
controllers receive all the required measurements from the system and apply their equations.
The two layers run in parallel and the decisions of each layer are not affected by the other. Each
layer has its own objectives that are related to the global (upper) or the local (lower) performance
of the network. They utilize different kind of input data (aggregated accumulations versus local
queue measurements) and the green times that are calculated are applied to different signalised
intersections. To this end, the intersections that are selected for the upper control layer (perimeter
control) are excluded from the set of intersections to be studied for the application of the lower
control method (max-pressure). The details of each regulator are explained in details in the next
sections.
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Figure 1: Write here the caption of the figure.
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2.3 Upper level controller

For the upper control level (i.e. regional perimeter control) a multivariable feedback PI regulator
from the literature is utilized. The regulator is introduced in Kouvelas et al. (2015, 2017) and
controls the transferring flows between the antagonistic regions in an optimal way (i.e. so as to
minimize the total delay of the system). Based on the distribution of vehicles in each region and
an objective criterion about the total performance of the system one can regulate the flows that
try to transfer from one region its neighbouring regions. The actuators are all the traffic lights
that are located in the boundaries between regions and this can create inter-regional queues that
affect the homogeneity of congestion. This is the reason that we apply here the lower level
controller, i.e. to homogenise the traffic and improve the queues and congestion inside each
region. Other works in the literature that utilize similar perimeter control structures can be found
in Keyvan-Ekbatani et al. (2012), Geroliminis et al. (2013), Aboudolas and Geroliminis (2013),
Ramezani et al. (2015).
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2.3.1 Regulator for perimeter control

To this end, the regional multivariable feedback PI regulator derived in Kouvelas et al. (2017)
reads in vector form

u(k) = u(k − 1) −KP [n(k) − n(k − 1)] −KI [n(k) − n̂] (3)

where k = 0, 1, 2, . . . is the discrete control time index, u(k) ∈ RM denotes the vector with
the control inputs (i.e. all transferring flows from any region i to all neighbouring regions j),
n(k) ∈ RN denotes the state vector of all region accumulations, and n̂ is the vector with the
set points for each region i. Finally, KP,KI ∈ R

M×N are the proportional and integral gains of
the regulator, which are computed by the solution of the corresponding discrete-time Riccati
equation of the system and then fine-tuned in real-time, as demonstrated in Kouvelas et al.

(2017).

2.3.2 Derivation of the green time durations

The state feedback regulator (3) is activated in real-time at each control interval T and only
within specific time windows based on the current accumulations n(k) (i.e. by use of two
thresholds ni,start and ni,stop

1 and real-time measurements). The required real-time information
of the vehicle accumulations n(k) can be directly estimated via loop detector time-occupancy
measurements. Furthermore, in cases where only sparse measurements are available, different
approaches to estimate MFD related state variables with real data are described in Leclercq et al.

(2014), Ortigosa et al. (2014) and Ampountolas and Kouvelas (2015).

Equation (3) calculates the fraction of flows u(k) to be allowed to transfer between neighbouring
regions. The obtained values are then used to derive the green time durations for the stages of
the signalized intersections located at the inter-regional boundaries. As described in Kouvelas
et al. (2017), for a given pair of sending and receiving regions, i, j, respectively, the ordered
transferring flow by the controller is ui j(k)Mi j(ni(k)) vehicles per time unit (where Mi j(ni(k))
denotes the MFD with the transferring flow from region i to region j). This flow is distributed to
the corresponding intersections proportionally to the saturation flows of the controlled links (i.e.,
typically, links with more lanes are anticipated to accommodate more flow). To this end, every
link z is required to transfer ui j(k)Mi j(ni(k))S z/S i j flow, where S z is the saturation flow of the
link and S i j the summation of all saturation flows related to the i → j movement. The green

1In practical applications usually ni,stop < ni,start is selected in order to avoid frequent activations/deactivations of
the controller.
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stage duration gz is given by gz(k) = ui j(k)Mi j(ni(k))Ci j/S i j, where Ci j defines the cycle time;
without loss of generality Ci j is assumed to be equal for all intersections included in the i→ j

movement (i.e. the equation can be readily modified if this assumption does not hold).

Note that the real transferring flows may be different than the ordered ones for different reasons
(e.g. low demand, spillback from downstream links); however, the regulator is robust to these
occurrences due to its feedback structure (i.e. the differences will be integrated into the measure-
ments of the following control cycles). Finally, in Kouvelas et al. (2017) the gain matrices KP,KI

and set-points n̂ of the controller are optimized in real-time by a learning/adaptive algorithm
based on real performance measurements, ensuing a more realistic set-up of the problem. In the
current work, we utilize the final regulator that is obtained after the solution of Riccati and the
fine-tuning process.

2.4 Lower level controller

In this section the max-pressure control for arterial networks is introduced. This decentralized
controller does not require any knowledge of the mean current or future demands of the network
(in contrast to other model predictive control frameworks). Max-pressure stabilizes the network
if the demand is within certain limits, thus it maximizes network throughput. However, it
does require knowledge of mean turn ratios and saturation rates, albeit an adaptive version
of max-pressure will have the same performance, if turn movements and saturation rates can
be measured. It only requires local information at each intersection and provably maximizes
throughput (Varaiya (2013)). Several variations of the basic method that can be applied in
real-time (depending on the available infrastructure) are presented.

2.4.1 Max-pressure

The state of each link xz(k) is defined by the number of vehicles waiting in the queue to be
served for each control index k (i.e. at the beginning of time period [kCn, (k + 1) Cn]. Given that
we are provided with real-time measurements or estimates of all the states we can compute the
pressure pz(k) that each link exerts on the corresponding stage of node n at the beginning of
cycle k as follows

pz(k) =

 xz(k)
xz,max

−
∑
w∈On

βz,wxw(k)
xw,max

 S z, z ∈ In (4)
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where xz,max is the storage capacity of link z (in vehicles). Storage capacity is used in the
denominator of equation 4 in order to take into account the length of the links, so that the
pressure of a short link with a number of vehicles waiting to be served is higher than the pressure
of a longer link with the same number of vehicles. The measurements (or estimates) xz(k),∀z ∈ Z

represent a feedback from the network under control, based on which the new pressures are
calculated via equation 4 in real-time.

The pressure of link z during the control cycle k is the queue length of the link (first term in
equation 4 within the brackets) minus the average queue length of all the output links (second
term in equation 4 within the brackets). Regarding the second term as the (average) downstream
queue length and the first as the upstream queue length, the definition of the pressure is simply
the difference between the upstream and downstream queue lengths. It should be noted, that in
the case where all output links are exiting the network (we assume that exit links have infinite
capacity, i.e., they do not experience any downstream blockage), the second term in equation 4
becomes zero. Hence, the pressure of the link is simply the queue length multiplied by its
corresponding saturation rate. Note that in this paper we select the second term to be always
equal to 0, i.e. we do not consider the downstream queues but only the upstream (demand)
queues. This is a variation of max-pressure that only looks at the queues of local intersections
and not the downstream destinations of the traffic streams.

If equation 4 is applied ∀z ∈ In the pressures of all incoming links of node n are calculated. The
pressure of each stage j of the intersection can then be computed as follows

Pn, j(k) = max

0,∑z∈v j

pz(k)

 , j ∈ Fn (5)

and this metric can be used to calculate the splits for the different conflicting stages of the
intersection.

2.4.2 Green time calculation

Given that the pressure of each stage has been computed by equation 5, the total effective green
time Gn that is available to be distributed in node n

Gn = Cn − Ln −
∑
j∈Fn

gn, j,min, n ∈ N (6)
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can be split to all stages in many different ways. One approach, is to select the stage with the
maximum pressure and activate it for the next control cycle Cn. This implies that all the available
effective green time Gn will be given to this stage. In the next cycle the queues of the system are
updated, the new pressures are calculated and the stage with the maximum pressure is selected
to be activated and so forth. This approach may not be the optimal one, as the control cycle
may be large and queues can grow unexpectedly at the links that are not activated. Alternatively,
max-pressure can be called several times within a cycle Cn. Every time the stage with the
maximum pressure is activated, however, the frequency of the measurements/control is now
higher. The frequency of max-pressure application to an intersection depends on two main
factors: (a) the available infrastructure and communications (i.e. the appropriate measurements
or estimates of queue lengths should be provided in real-time), and (b) an optimal frequency of
max-pressure application which needs to be investigated and defined (and could be dependent
on the special characteristics of each site).

Another approach that has been proposed in Kouvelas et al. (2014) is utilized here, is to call
max-pressure at the end of each cycle and split the green time Gn proportionally to the computed
pressure of each stage. That is, for each decision variable g̃n, j(k) (where g̃n, j depicts the green
time of stage j on the top of gn, j,min) the following update rule is applied

g̃n, j(k) =
P j(k)∑

i∈Fn

Pi(k)
Gn, j ∈ Fn (7)

Thus, the total amount of green time allocated for each control variable gn, j(k) for cycle k is
given by

gn, j(k) = g̃n, j(k) + gn, j,min, j ∈ Fn (8)

This procedure is repeated periodically (for every cycle) and requires minimum communication
specifications, as the local controller is called once per cycle. This local regulator is applied to
the lower level of the hierarchical control structure to the simulation results presented in the next
section.

3 Simulation experiments and preliminary results

This section presents some preliminary results for the application of the two-level hierarchical
framework to microsimulation. First of all an analysis is conducted to the data of all the
intersections of the network in order to define the critical ones that max-pressure is going
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to be applied. All the network contains 565 signalised intersections and the purpose of this
analysis is to select 10-15 intersections for each region that are the more critical. From an
implementation point of view it is considered too expensive and time consuming to control all
the intersection, and as a result a methodology is needed that can define the critical intersections
for each region.

3.1 Network description

In the current work, we use as a case study network a replica of the city center of Barcelona in
Spain. For this network, we have a well calibrated microsimulation model in Aimsun (Fig. 2),
which is used for the simulation experiments. The purpose of the study is to run different control
scenarios and investigate the effect of the controllers based on the statistics gathered from the
microsimulation engine and empirical observations from the simulations (e.g. network load,
traffic congestion, local gridlocks, etc.).

Figure 3 presents the test network partitioned in 4 homogeneous regions. For the partitioning
the algorithm presented in Saeedmanesh and Geroliminis (2016) has been used. The result is
to get 4 clusters (zones) that are as homogeneous as possible and with compact shapes. In this
multi-region system perimeter control can be applied to regulate the inter-transferring flows
between the regions. The methodology presented in the previous section is applied here. The
perimeter controller acts on the intersections located in the boundaries, which are noted with
circles in Fig. 4.

3.2 Selection of the critical intersections

In order to apply the lower level controller (max-pressure) the critical intersections of every
region need to be selected first. In order to do so, we need a methodology to rank the intersections
according to their importance and decide which are the most important. These intersections are
controlled then based on the max-pressure control scheme that was described earlier.

To this end we do an analysis of the simulation data for the fixed-time plan of the traffic lights.
This scenario is called no control (NC) and it reflects all the pre-timed signal plans of the city of
Barcelona. For this control scenario and for a realistic OD demand profile we run a replication
and collect all the detectors data for occupancy and flow measurements. This data is a replication
of what we can obtain in the real world and represent proxies of the network density and flow
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Figure 2: Microsimulation model of the urban test network in Aimsun.
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Figure 3: The test network partitioned in 4 regions to apply perimeter control.
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respectively.

Here, we utilize occupancy measurements by the detectors to estimate the number of vehicles
that exist in every link of the network and thus calculate a proxy of the queue length. By
summing up over all the input links of an intersection, we can perform an analysis of the level of
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Figure 4: Boundary intersections that the perimeter control is applied.

congestion as well as the homogeneity of each intersection (which is actually analogous to the
variance of the queues). If we perform this analysis to our data and we average over time we can
get a good flavour of the importance of each intersection and how critical it is to the propagation
of congestion in the network. The more congested an intersection is the more critical for the
overall congestion. Also, in order for the perimeter control to be more effective, the traffic
around an intersection needs to be as homogeneous as possible. A level of homogeneity is the
variance of the queues for all the incoming links.

Figure 5 presents the results of this analysis. The x-axis represents the variance of all the queues
around an intersection (averaged over time) and the y-axis the level of congestion for all the
input links to the studied intersection (averages over space and time). Every point in these graphs
represents an intersection, i.e. region 1 has 158, region 2 has 60, region 3 has 76, and region 4
has 227 intersections. These results refer to the whole simulation horizon of 6.5 hours. Figure 6
presents the same results but focusing only on the 1.5 hours of peak traffic and excluding the
beginning and end of simulation where the traffic loads are very low.

In these two plots we are looking for outliers, i.e. intersections with high variance of queues,
high level of congestion, or, alternatively with high values for both metrics.
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Figure 5: Write here the caption of the figure.
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3.3 The fixed-time case and other simulated scenarios

In this section the simulation results for the no control case are presented. As mentioned earlier,
for this control scenario, the actual fixed-time plans of the traffic control center of the city
are applied in all the intersections. Table 1 presents all the statistics that we obtain from the
simulation software for this scenario. These results need to be compared with all the other
control scenarios which are the following: (a) only max-pressure controller, (b) only perimeter
controller, and (c) the hierarchical scheme that combines both control approaches.
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Figure 6: Write here the caption of the figure.
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Table 1: Simulation statistics for the no control case.

Criteria Value Units

Average Delay 425.57 sec/km
Mean Speed 7.34 km/h
Mean Queue 6130.38 veh
Mean Virtual Queue 5662.32 veh
Total Travel Time 56742.25 h
Total Travelled Distance 404251.1 km
Vehicles Served 202428 veh
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4 Summary and Important Notes

A hierarchical framework has been presented which consists of two existing controllers in
the literature. The two controllers are combined in two different layers, the one applying a
macroscopic approach (perimeter control) and the other an approach at the microscopic level
(max-pressure controller). Another contribution of this paper is a methodology to select critical
intersections inside urban regions. Simulation data is studied and an analysis is performed about
the level of congestion as well as the homogeneity of local intersections. This methodology can
define which intersections are crucial about the global traffic conditions and the propagation of
congestion. The results of different control schemes remains to be compared via microsimulation
in order to assess the different approaches and evaluate the hierarchical framework. The
performance of local distributed control is compared to perimeter control between zones, as well
as to the combination of both distributed and centralized control.
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