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Abstract

Control of large-scale urban traffic presents a significant challenge. Usually, traffic states are
assumed to be measured without any noise in the literature on control of large-scale urban
networks (LSUNs). This is an unrealistic assumption from the application point of view, since
in a real setting measurements are affected by noise to varying degrees. As it is impossible to
have noise-free measurements, traffic management schemes for LSUNs require development
of state estimation methods for filtering out this noise to obtain reliable information on the
traffic states. Moving horizon estimation (MHE) stands out as a state estimation method suitable
for traffic applications with nonlinear system dynamics, constraints on the state, and access to
demand profiles. A moving horizon of past measurements is considered in MHE, where the state
estimation problem is cast as an optimization problem which is solved repeatedly in real-time.
We develop in this study an MHE scheme for LSUNs, with a prediction model based on the
macroscopic fundamental diagram (MFD). To provide an application setting, a perimeter control
based MPC scheme is also developed, which works together with the proposed MHE scheme
for large-scale traffic management. Simulations of a two-region LSUN with congested traffic
conditions are included, where state estimation performance of the developed MHE scheme is
evaluated together with the control performance of the MPC. Results suggest that using MHE
leads to better performance.

Keywords
Moving horizon estimation, traffic state estimation, large-scale urban networks, macroscopic
fundamental diagram.
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1 Introduction

Modeling, estimation, and control of large-scale urban traffic networks present considerable
challenges. Inadequate infrastructure and coordination, low sensor coverage, spatiotemporal
propagation of congestion, and the uncertainty in traveler choices contribute to the difficulties
faced when creating realistic models and designing effective traffic estimation and control
schemes for urban networks. Although considerable research has been directed towards design-
ing efficient real-time traffic management schemes in the last decades, estimation and control of
heterogeneously congested large-scale urban networks remains a challenging problem.

Traffic modeling and control studies for urban networks usually focus on microscopic models
keeping track of link-level traffic dynamics with control strategies using local information. Based
on the linear-quadratic regulator (LQR) problem, traffic-responsive urban control (TUC) (Diakaki
et al., 2002) and its extensions (Aboudolas et al., 2010, Kouvelas et al., 2011) represent a
multivariable feedback regulator approach for network-wide urban traffic control. Although TUC
can deal with oversaturated conditions via minimizing and balancing the relative occupancies
of network links, it may not be optimal for heterogeneous networks with multiple pockets
of congestion. Inspired by the max pressure routing scheme for wireless networks, many
local traffic control schemes have been proposed for networks of signalized intersections (see
Varaiya (2013), Kouvelas et al. (2014), Wongpiromsarn et al. (2012), Zaidi et al. (2015)), which
involve evaluations at each intersection requiring information exclusively from adjacent links.
Although the high accuracy of microscopic traffic models is desirable for simulation purposes,
the increased model complexity results in complications for control, whereas local control
strategies might not be able to operate properly under heavily congested conditions, as they
do not protect the congested regions upstream. Another disadvantage of sophisticated local
controllers is that they might require detailed information on traffic states, which are difficult to
estimate or measure.

Literature on traffic state estimation mainly focuses on freeway networks: A mixture Kalman
filter based on the cell transmission model (Daganzo, 1995) is proposed in Sun et al. (2003).
In Wang and Papageorgiou (2005), an extended Kalman filter is proposed for real-time state
and parameter estimation for a freeway network, the dynamics of which is described by the
METANET model (Messner and Papageorgiou, 1990). Mihaylova et al. (2007) develops a parti-
cle filtering framework for a second order freeway traffic model that is efficiently parallelizable.
Yuan et al. (2012) reports the superiority of Lagrangian state estimation formulations over the
Eulerian case using extended Kalman filters for the Lighthill-Whitham and Richards (LWR)
model. There is also some literature on urban traffic state estimation: Pueboobpaphan and
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Nakatsuji (2006) design an unscented Kalman filter based on a kinematic wave model modified
for urban traffic. A combined approach via integrating the Kalman filter with advanced data
fusion techniques is taken by Kong et al. (2009) for urban network state estimation. Nantes
et al. (2016) propose a data fusion based extended Kalman filter for urban corridors based on
the LWR model. Interestingly, even though there is considerable literature on model-based state
estimation for freeways, there are very few works on comparable techniques for urban road
networks.

An alternative to local real-time traffic control methods is the two layer hierarchical control
approach. At the upper layer, the network-level controller optimizes network performance via
regulating macroscopic traffic flows through interregional actuation systems (e.g., perimeter
control), whereas at the lower layer the local controllers regulate microscopic traffic movements
through intraregional actuation systems (e.g., signalized intersections). The macroscopic fun-
damental diagram (MFD) of urban traffic is a modeling tool for developing low complexity
aggregated dynamic models of urban networks, which are required for the design of efficient
network-level control schemes for the upper layer. It is possible to model an urban region
with roughly homogeneous accumulation (i.e., small spatial link density heterogeneity) with an
MFD, which provides a unimodal, low-scatter, and demand-insensitive relationship between
accumulation and trip completion flow (Geroliminis and Daganzo, 2008).

The concept of MFD with an optimum accumulation was first proposed by Godfrey (1969),
and its existence was recently verified with dynamic features and real data by Geroliminis and
Daganzo (2008). Control strategies based on MFD modeling and using perimeter control type
actuation (i.e., manipulating transfer flows between neighboring regions) have been proposed by
many researchers for single-region (Daganzo, 2007, Keyvan-Ekbatani et al., 2012, Gayah et al.,

2014, Haddad and Shraiber, 2014) and multi-region (Haddad and Geroliminis, 2012, Aboudolas
and Geroliminis, 2013) urban areas. Application of the MPC technique to the control of urban
networks with MFD modeling also attracted recent interest. Geroliminis et al. (2013) design
a nonlinear MPC for a simple two-region urban network equipped with a perimeter control
system. Haddad et al. (2013) develop an MPC scheme for the cooperative control of a mixed
transportation network consisting of a freeway and two urban regions. Hajiahmadi et al. (2015)
generalize the two-region MFD network model of Geroliminis et al. (2013) to that of an R-region
network, and propose hybrid MPC schemes for an urban network equipped with both perimeter
control systems and switching signal timing plans. Ramezani et al. (2015) develop a model
capturing the dynamics of heterogeneity and design a hierarchical control system with MPC on
the upper level. More detailed literature reviews in MFD-based modeling and control can be
found in Saberi and Mahmassani (2012) and Yildirimoglu et al. (2015).
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Although there is considerable literature on traffic estimation (especially for freeway networks),
combined estimation and control for heterogeneously congested large-scale urban networks
remains an open problem. In this paper we propose integrated schemes for real-time optimization
based estimation and control for urban networks with MFD-based modeling. Specifically, a
moving horizon estimation (MHE) scheme is designed for a two-region urban network, which is
coupled with a model predictive control (MPC) with perimeter control actuation. Estimation and
control performances of the proposed scheme are evaluated via simulations with a congested
scenario under varying levels of uncertainty in demands and measurement noise. Results indicate
substantial improvement in control performance with the use of the proposed MHE scheme,
suggesting considerable value for practice.

2 Modeling of Urban Networks

Consider a heterogeneous urban road network R that can be partitioned into 2 homogeneous
regions, i.e., R = {1, . . . , nR} with nR = 2. Each region has a well-defined outflow MFD, defined
via GI(NI(t)) (veh/s), which is the outflow at accumulation NI(t). The demand for trips in
region I with destination J is QIJ(t) (veh/s), whereas NIJ(t) (veh) is the accumulation in region
I with destination J, and NI(t) (veh) is the total accumulation in region I, at time t; I, J ∈ R;
NI(t) =

∑
J∈R NIJ(t). Between the two regions 1 and 2 there exists perimeter controls U12(t) and

U21(t) ∈ [0, 1], that can manipulate the transfer flows. The dynamics of the 2-region MFDs
network is (Geroliminis et al., 2013):

Ṅ11(t) = Q11(t) + U21(t) · M21(t) − M11(t) (1a)

Ṅ12(t) = Q12(t) − U12(t) · M12(t) (1b)

Ṅ21(t) = Q21(t) − U21(t) · M21(t) (1c)

Ṅ22(t) = Q22(t) + U12(t) · M12(t) − M22(t), (1d)

where the MII(t) and MIJ(t) terms express the exit and transfer flows, which can be expressed as
follows:

MII(t) =
NII(t)
NI(t)

GI(NI(t)) ∀I ∈ R (2a)

MIJ(t) =
NIJ(t)
NI(t)

GI(NI(t)) ∀I ∈ R, J ∈ R \ {I}. (2b)

All trips inside a region are assumed to have similar trip lengths (i.e., the origin and destination
of the trip does not affect the distance traveled by a vehicle). Simulation and empirical results
(Geroliminis and Daganzo, 2008) suggest the possibility of approximating the MFD by an
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asymmetric unimodal curve skewed to the right (i.e., the critical accumulation Ncr
I , for which

GI(NI(t)) is at maximum, is less than half of the jam accumulation N jam
I that puts the region in

gridlock). Thus, GI(NI(t)) can be expressed using a third-order polynomial in NI(t):

GI(NI(t)) = AIN3
I (t) + BIN2

I (t) + CINI(t), (3)

where AI , BI , and CI are estimated parameters.

The inflow demand terms QIJ(t) are assumed to have uncertainty, which we model as follows:

QIJ(t) = max(DIJ(t) + WIJ(t), 0) ∀I, J ∈ R, (4)

where DIJ(t) expresses a known average demand profile and WIJ(t) is the associated demand
noise with zero mean and normal distribution, i.e., WIJ(t) ∼ N(0, σ2

W), with σ2
W specifying the

demand noise variance. Furthermore, it is assumed that the network is equipped with sensors
that can measure the accumulations NIJ(t), for which the measurement noise can be similarly
modeled as follows:

YIJ(t) = max(NIJ(t) + VIJ(t), 0) ∀I, J ∈ R, (5)

where YIJ(t) is the measurement on NIJ(t) whereas VIJ(t) is the associated measurement noise
with zero mean and normal distribution, i.e., VIJ(t) ∼ N(0, σ2

V), with σ2
V specifying the measure-

ment noise variance.

3 Estimation and Control of Large-scale Networks

3.1 Moving Horizon Estimation

We formulate the problem of finding the NIJ and WIJ values that minimize the discrepancy
between measurements and the prediction model, for a moving time horizon extending a fixed
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length into the past, as the following discrete time nonlinear MHE problem:

minimize
N, W

−1∑
k=−Ne

W(k)2
Q +

0∑
k=−Ne

Y(k) − N(k)2
R

subject to for k = −Ne, . . . , 0 :

Y(k) = Ỹ(t − k)

for k = −Ne, . . . ,−1 :

N(k + 1) = fe(N(k),U(k),D(k),W(k)),

(6)

where Ne is the estimation horizon, k is the time step, Q and R are weighting matrices on demand
and measurement noise, respectively, Ỹ(t) is the measurement taken at sampling instant t, Y(k),
N(k), U(k), D(k), and W(k) are the vectors containing all YIJ(k), NIJ(k), UIJ(k), DIJ(k), and
WIJ(k) terms, respectively, whereas fe is the time discretized version of Eq. (1).

3.2 Model Predictive Control

We formulate the problem of finding the UIJ values that minimize TTS as the following discrete
time economic nonlinear MPC problem:

minimize
N, U

T ·
Np−1∑
k=0

N(k)1

subject to N(0) = Ñ(t)

for k = 0, . . . ,Np − 1 :

N(k + 1) = fp(N(k),U(k),D(k))

0 ≤ NIJ(k) ∀I, J ∈ R

NI(k) ≤ N jam
I

Umin ≤ U(k) ≤ Umin,

(7)

where k and T are the time step and sample time, respectively, Np is the prediction horizon, t

is the current sampling instant in time and Ñ(t) is the state estimate computed by the MHE at
that instant, N(k), U(k), and D(k) are vectors containing all NIJ(k), UIJ(k), and DIJ(k) terms,
respectively, fp is the time discretized version of Eq. (1) (with the assumption that all WIJ terms
are 0, as these have zero mean but are unknown to the MPC), whereas Umin and Umin are the
bounds on the perimeter control inputs.
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Figure 1: Architecture of combined MHE-MPC scheme.

3.3 Integrated Moving Horizon Estimation and Model Predictive

Control

For the combined accumulation state estimation and perimeter control of large-scale urban
networks, we propose a scheme integrating MHE and MPC (see Fig. 1). In this scheme, the
MHE has access to information on noisy measurements YIJ of accumulation states NIJ, perimeter
control inputs UIJ, and average inflow demands DIJ, for a fixed time horizon (i.e., Ne) into the
past. Using these, at time t, the MHE computes the accumulation state estimate ÑIJ(t) by solving
the problem (6). The state estimate is then used by the MPC, together with information on
average inflow demand profiles DIJ for a fixed time horizon (i.e., Np) into the future, to compute
the perimeter control inputs UIJ(t) via solving the problem (7). The control inputs are applied to
the urban network, completing the feedback loop.

4 Case Studies

4.1 Simulation Setup

All simulations are conducted on a 2-region urban network (see ??), with the simulation model
given in Eq. (1) for representing the reality. The regions have the same MFD, with the parameters
AI = 4.133 · 10−11, BI = −8.282 · 10−7, CI = 0.0042, jam accumulation N jam

I = 104 (veh), critical
accumulation Ncr

I = 3.4 ·103 (veh), maximum outflow G(Ncr
I ) = 6.3 (veh/s), which are consistent

with the MFD observed in a part of downtown Yokohama (see Geroliminis and Daganzo (2008)).
Standard deviations of the demand and measurement noise are chosen as σW = 2 veh/s and
σV = 1000 veh, representing presence of substantial uncertainty, whereas the weighting matrices
of the MHE are chosen as Q = (1/σ2

W)I and R = (1/σ2
V)I, to reflect the fact that the stage cost
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terms related to the demand and measurement noises should be weighted inversely proportional
to the associated amount of uncertainty (that is, e.g., the measurements should be trusted more if
the measurement noise has a lower variance). Sample time is T = 60 s and the simulation length
is Texp = 200 (in number of discrete time steps), whereas estimation and prediction horizons
are chosen as Ne = Np = 20, specifying a horizon of 20 minutes and a simulation length of 200
minutes.

The metrics for evaluating the MHE and MPC schemes are root mean square of estimation

error (RMSEE) (veh) and TTS (veh·s), respectively, which are defined for a single simulation
experiment as follows:

RMSEE =

√√∑Texp

t=1

∑
I∈R
∑

J∈R (NIJ(t) − ÑIJ(t))2

n2
R · Texp

(8)

TTS = T ·
Texp∑
t=1

∑
I∈R

∑
J∈R

NIJ(t). (9)

4.2 Estimation and Control Performance under Congested Conditions

The network is empty at the beginning and experiences increasing inflow demands with time
(see Fig. 2). We compare three different cases, each with the MPC described with Eq. (7):
(a) MPC-1 has access to information on the actual traffic state NIJ, representing the case with
perfect measurements. (b) MPC-2 has access to state estimates ÑIJ computed by the MHE given
with Eq. (6), representing the case with combined MHE and MPC. (c) MPC-3 has access to
the measurements YIJ, representing the case of MPC without MHE. The results are given in
Fig. 3, which indicate that, expectedly, MPC-1 has the best performance owing to the perfect
measurements, while MPC-3 performs badly due to the noisy measurements and uncertain
demands. It is perhaps more interesting to note that MPC-2 performs fairly close to MPC-
1, suggesting that MPC is able to perform well even under situations with severe demand
uncertainty and measurement noise, if it is coupled with MHE.

4.3 Sensitivity of Estimation and Control Performance to Changes in

Uncertainty Levels

To study the effect of changing the levels of uncertainty present in the inflow demand profiles
and the intensity of measurement noise, a series of simulation experiments are conducted with
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Figure 2: Average and noisy inflow demand profiles of the congested scenario.
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Figure 3: Results of the congested scenario for MPC-1 (perfect measurement), MPC-2 (MPC
with MHE), MPC-3 (MPC without MHE): (a)–(d) Accumulations, (e)–(f) regional
accumulations, (g)–(h) regional outflows, (i)–(j) perimeter control inputs.

varying the associated standard deviation values, namely σW and σV , for the combined MHE-
MPC scheme. The results, given in Table 1 and Table 2, present the estimation (RMSEE) control
(TTS) performance for the various levels of uncertainty. These results indicate that although the
MHE is somewhat sensitive to changes in noise intensity, MPC is still able to perform well for
a wide range of uncertainty levels, suggesting substantial potential for practical applications,
where uncertainty in demand information and measurement noise are unavoidable.

5 Conclusion

In this paper we proposed a combined MHE-MPC scheme for the integrated estimation and
control of heterogeneously congested large-scale urban networks, the dynamics of which can
be described by MFD of urban traffic. We compared the proposed scheme with MPC schemes
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Table 1: Estimation performance (RMSEE) of the combined MHE-MPC scheme for various
values of σW and σV .

σW (veh/s) σV = 250 veh σV = 500 veh σV = 750 veh σV = 1000 veh
0.5 516.9 563.2 646.6 672.9
1 526.9 614.5 666.3 732.6
1.5 586.2 642.4 763.2 812.6
2 653.2 727.8 783.9 842.0

Table 2: Control performance (TTS, ×107) of the combined MHE-MPC scheme for various
values of σW and σV .

σW (veh/s) σV = 250 veh σV = 500 veh σV = 750 veh σV = 1000 veh
0.5 3.95 3.99 4.10 4.09
1 4.07 4.14 4.14 4.23
1.5 4.15 4.20 4.50 4.46
2 4.24 4.16 4.54 4.55

having perfect and noisy measurements, and found that the proposed MHE-MPC scheme is
able to perform very close to the case with perfect measurements. Further analysis related
to the performance sensitivity under varying levels of uncertainty indicated that although
estimation performance of MHE itself is somewhat sensitive to varying intensity of uncertainty,
the combined MHE-MPC scheme is able to perform well for a wide range of uncertainty levels.
Thus, the proposed MHE-MPC scheme shows substantial potential for practical applications in
traffic management systems for large-scale urban road networks.

Future work could include: (a) Evaluating the proposed MHE-MPC scheme via more detailed
simulation models to represent the traffic reality. (b) Comparison of the proposed MHE scheme
with existing traditional approaches (e.g., extended Kalman filter).
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