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Abstract

Macroscopic fundamental diagrams (MFD) are typically estimated for sub-regions in cities,
where the zoning conventionally follows the directive of homogeneity in the road network and
traffic. Existing network partitioning algorithms fail to work for MFD estimation with stationary
sensor data as their link speed and link density measurement are biased by the location of the
sensor. However, in this paper, we present an approach for approximative network partitioning
for MFDs from stationary sensors.
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1 Introduction

More and more field experiments show that when aggregating single road measurements of

flow and density in an urban network, a smooth and well-defined relationship between average

propose a Monte-Carlo simulation-like partitioning approach that approximates homogeneous
regions. The algorithm generates a set of several possible partitioning outcomes, estimates for
each outcome the MFDs, evaluates each possible partitioning outcomes’ homogeneity, and then
suggests the partitioning outcome with the lowest heterogeneity as the algorithm’s solution.
The algorithm is only approximative because the shape of the homogeneous neighborhoods
depends on the spatial coverage of the stationary sensors and their distribution within the length
of the links considered. Thus, by design, the solution is always inferior to existing link-based

approaches (e.g., Ji and Geroliminis, 2012, Saeedmanesh and Geroliminis, 2016, Ji et al., 2014)

if these methods are applicable. Otherwise our proposed algorithms provides a reasonable

answer to the partitioning problem.

This paper is organized as follows. The next section describes the partitioning algorithm in
detail. Then, we apply the proposed algorithm to large scale data sets of London and Zurich.
This paper then ends with a discussion of the contribution of this methodology as well as its

limitations.
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2 The Partitioning Algorithm

This partitioning algorithm is, in particular, designed for stationary traffic sensors, but is also

applicable to floating car data and link based measurements as well. We discuss the MFD

2.1 MFD estimation

We estimate MFDs from stationary traffic sensors by averaging link flows and densities weighted

network average flows and densities are calculated by Eqn. ‘1 and density in Eqn. 2.

S qi (D1
qurp () = ——— (1)
MFD Zle li
k ) = M )
MFD Zle li

An important issue with stationary traffic sensors is that kyrp (¢) is sensitive to the sensor

location and ky;rp (¢) is only unbiased if detectors are uniformly distributed within the length of

this, we require the exact location of each sensor i with its location on the monitored lane /;

measured by the distance to the downstream traffic signal p; and calculate each sensor’s relative
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position to the traffic signal r; as simple as in Eqn. 3.

ri= - 3)

To then obtain an unbiased estimate of kyrp (f), the distribution of r; across all sensors must be
analyzed in order to divide M sensors according to their relative position into J groups. Each
group should at least contain a couple of sensors. Then Eqn. 4 and 5: provide the mathematical
formulation for the corrected and unbiased MFD estimation.

1 qi (1;

qurp (1) = = 4)
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Last, the space-mean speed in the MFD v,,zp (f) can then be calculated using the fundamental

equation of traffic flow, i.e. vyrp (¥) = gurp () [kprp (7).

2.2 Partitioning

The proposed algorithm consists of three steps. In the first step, a set of ® possible partitioning
outcomes is randomly generated. Based on the number of sensors S (links) in the network as
well as the expected number of up to H homogeneous regions, the required size of ® leading
to a acceptable partitioning solution has to be estimated. In principle, the Stirling numbers of
the second kind provides the upper most estimation of @, but as the regions should be compact
in size and contiguous, ® can be magnitudes smaller than this upper bound. Before the MFD

estimation, all randomly generated possible partitioning outcomes should be assessed to exclude
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all sets with unrealistic, unfeasible partitioning outcomes or where regions with too few sensors

do not allow MFD estimation.

In the second step, for all sets of partitioning outcomes taken into account, we now estimate

the MFDs according to Eqns. 4 and 5. In the MFD estimation, we then calculate the level of

method, we estimate MFDs not only with a full sample of sensors, but also estimate MFDs with
a re sampling without replacement at 50-90 % of the entire number of sensors in the region and
estimate by how much the capacity on average increases with lower sample size as a mean of
heterogeneity in the network. Arguably, the more heterogeneous a region is, the more likely it is
to have a small number of sensors provide a large deviation from the mean of all measurements

which is revealed from this method.

In the third step, we evaluate for each partitioning outcome the overall level of heterogeneity in
all regions together. We can determine a curve defined by the re-sampled MFD capacity as a
function of the sample size. For simplicity, our objective function for the partitioning is the area
below such curve of all sub-regions’ heterogeneity a. The solution of the algorithm is then the

outcome with the smallest area of all regions’ .

3 Empirical Application

3.1 General

We will now discuss the application of our algorithm in an empirical context. First, the spatial
information of all sensor locations is obtained. Second, we generate several sets of possible
partitioning outcomes by randomly creating contiguous regions or clusters. Third, we then

estimate MFDs for each contiguous region in each of the possible partitioning outcomes. In

most homogeneous partitioning outcome.

The algorithm results in a partitioning solution where the network is divided into = neighbor-

hoods. This partitioning solution is identified by having the lowest total heterogeneity over
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all neighborhoods. In contrast to existing partitioning algorithms, this algorithm does not
find the solution by iteratively changing the shape of neighborhoods, but by a Monte Carlo
method simulating A possible partitioning outcomes and then choosing the optimal partitioning

outcome.

Consider an urban road network where the streets are monitored with in total L loop detectors.
Each detector i is identified by its coordinates x; and y;. Each lane per street is covered only by
one detector. For each detector, the length /; of the monitored lane and the position with respect
to the downstream traffic signal p; is known. To then account for the placement bias of loop
detectors we introduced the measure of relative position to the traffic signal r; as simple as in
Eqn. 3.

Each partitioning outcome is randomly generated using a simplified k-means clustering approach.
We start by considering the locations of all sensors and selecting randomly B € [B,n; Biax]
sensors in the network from which we start to cluster. Allowing B to vary creates more variation
in the simulation of partitioning outcomes. All random partition outcomes are then compared to

one another and only unique outcomes are kept.

As each neighborhood requires a certain minimum size, certain shape and a certain minimum
number of sensors to estimate the MFD, we suggest to consider only those randomly generated

partitioning outcomes that satisfy the three mentioned conditions.

3.2 Data

Before applying in the next Section our proposed methodology, we briefly discuss the preparation
of the loop detector data sets from London (UK) and Zurich (CH). Loop detectors report
flow ¢; (#) and occupancy o; (f). Where flow carries information directly useful for the MFD
estimation, the measured occupancy is only a proxy for the link density and speed. The

occupancy measurements can be transformed into density using the detector and (average) car

has an unknown distribution, the transformation gets even more complicated. Therefore, we
use a two-step routine to calibrate the MFDs. In the first step, we calibrate each detector to an
expected free flow speed at its location in order to reduce the bias from different detector and
car lengths. The expected free flow speed at the upstream intersection (r = 1) iS V4., and the

expected free flow speed at the downstream intersection (r = 0) 1S Vx4 For simplicity, we
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assume a linear relationship, where we obtain Eqn. 6 which must be solved for the calibration

scalar c;.

mtaX (% (l) /Oi (t)) =C (Vmax,ds + i (Vmax,us - Vmux,ds)) (6)

In empirical contexts, one might prefer not the maximum of the speed distribution, but the 90
or 95"-percentile to avoid outliers. Here, we set Vimaxds = 30km/h and vy, s = 40km/h. In
the second step, we then estimate the MFD in the usual approach with Eqns. 4 and 5 and than
calibrate the free-flow speed in the MFD v,,rp with the free-flow speed obtained from the same
time period from the Google directions API v4p;. The resulting calibration equation for kyrp (t)

then follows from Eqn. 7.

ki (r) = 20 Jarr )

Ci VMFD

3.3 Preliminary Results

We create for every city 10000 randomly generated clusters. For the city of Zurich, B,,in and
B,,ax range from 5 to 12, respectively. The minimum number of loops required per cluster are
40. In order to evaluate the algorithm, we show the best four partitioning outcomes. Figure 1
shows the partitioning outcomes, where one colour corresponds to one cluster. We can see that
the partition outcomes found all have the four clusters, which are very similar to each other.
Note, that this also true for the next best partition outcomes (not shown here for readability.
This indicates that our proposed partitioning is indeed robust. Another key thing to note is that
all partitions identify topographical boundaries, such as the lake of Zurich or the hill range to
the north west of the city. Here the algorithm finds the correct topographical borders, without
any additional information. More interestingly the four clusters found more or less follow the
boundaries of the control regions, that the city has defined for its traffic management strategy.

We can see this as a further confirmation of our algorithm.

The same analysis is performed on the data of the inner city of London (limits are chosen to
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(a) Best partitioning for Zurich. (b) 2nd best partitioning for Zurich.
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(c) 3rd best partitioning for Zurich. (d) 4th best partitioning for Zurich.

Figure 1: The best four partitioning outcomes for the city of Zurich. The white dots represent
the location of the loop detectors.
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(a) Best partitioning for London.
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(c) 3rd best partitioning for London.
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(b) 2nd best partitioning for London.

clusters.
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(d) 4th best partitioning for London.

Figure 2: The best four partitioning outcomes for the city of London. The white dots represent

the location of the loop detectors.

correspond to the congestion charge zone). Again, we see that the four best clusters are similar

to each other in Figure 2. The detailed interpretation of the result is on-going work.

In order to evaluate how different the randomly generated partitioning outcomes are from each

other, let us consider Figure 3. Here, we show, for every loop detectors its relation with every
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Figure 3: The connectivity of different partitioning outcomes: Each detector is connected to
another one, if they are both in the same cluster. The more likely it is for them to
appear in the same cluster the stronger their connection is shown.

other loop detector with respect to all considered partitioning outcome for the city of Zurich.
In other words, the strength of a line connecting two loop detectors indicates for how many
partitioning outcomes these detectors belong to the same cluster. From this graph, we see that
the partitions generated cover the network well. This means that the partitions are very different
from one another, thereby exploring the space well, finding many different possible partitioning

outcomes.

4 Discussion

In this paper, we propose an approximative network partitioning for the MFD estimation. We
propose to partition urban road networks into homogeneous sub networks by a Monte-Carlo-like
partitioning algorithm. The algorithm is in particular useful for MFDs estimated from stationary

traffic sensors when existing partitioning approaches are not applicable. For such sensors, a
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strong bias on the density (and speed) measurements is expected. Based on a heterogeneity index,
which is independent of the sensors’ positions, we detect the most suitable network partition.
As this approach draws the solution from a finite number randomly generated outcomes, the
solution might not be optimal and is thus only approximate and inferior to existing approaches

when they are applicable.

Using empirical data from Zurich and London, we show that the method is capable of finding
homogeneous regions in a large cities. The results are promising as they show how the clusters
with the lowest heterogeneity indices are very similar to each other. The proposed method is
flexible, does not require much input and yields geographically contiguous clusters. Furthermore,
the number of partitions is not pre-defined, while a reasonable range thereof is an input of the

algorithm.

It is clear that this approximative partitioning algorithm bears certain limitations. The algorithm
is based on a Monte-Carlo approach, involving a large number of randomly generated possible
clusters. This is not a problem from a computational perspective; the generation of such clusters

is relatively fast. Nonetheless, future research should investigate ways that directly partition a

network in a single shot, similar to the methods available for FCD based partitioning.
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