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Abstract

We introduce new performance measures for multilayer networks, and in particular for those
which represent multimodal transportation systems based on the extended definition in multilayer
network of dynamical efficiency. Thanks to this definition, we are able to quantify the effect,
in term of average travel time and dynamical efficiency, that a multiple offer of transportation
solutions has on the congestion. In the multilayer networks considered in this paper, each layer
corresponds to a different transportation mean and it is characterized by a specific topology,
intra-velocity, and interlayer connections that take into account the average time cost to pass
from one mode to another. Moreover, we define multiplicity connection measures that highlight
the more convenient interchange stations and how the congestion interferes with them. Artificial
road networks and an extended dataset of real vehicular traffic of a big Chinese city has been
analyzed with this multilayer prospective.

Keywords
Efficiency measures, congestion propagation, transportation network performance, multimodal
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Introduction

One of the key challenges of the governance of a city has always been to improve the trans-
portation service for the community. Private cars, buses, trains, metro, taxis, even the new
smartphone applications offering on-demand private drivers: they all represent a solution for a
person to move from a place to another through the city. But each way, or combination of them,
requires a choice made by the user at the beginning of his/her trip. Based on the definition of
dynamical efficiency presented in Bellocchi and Geroliminis (2016), we extended the analysis
of network connectivity performance to a family of multilayer networks that represent urban
multimodal transportation system. While for single layer networks a huge amount of literature
has been written in order to quantify connectivity and centralities in urban roads (Latora and
Porta (2006), Porta et al. (2006), Latora and Marchiori (2007)), for the multimodal transporta-
tion networks, represented by multilayer networks, the existing definitions (for example in the
survey Kivelä et al. (2014), or in Gallotti et al. (2016)) seem to be computational costly and
not fully appropriate to catch and understand how congestion influences the travelers’ choices
and, consequentially, the infrastructure management. In particular, we found that the random
walk approach or the shortest paths among multilayer network does not represent the typical
urban path choice. The characteristics that we take into account to define appropriate measures
of efficiency and interlayer link centralities of such network are the limited number of modal
changes that a usual traveler makes during a daily trip and the different influence that congestion
has on average link speeds in different layers. A typical example, it might be the road network
in one layer, where vehicular traffic dramatically increases the total travel time, and a subways
system in the other layer, with much fewer nodes (stations) but serving at a constant speed,
that is not dependent on congestion. Another common transportation mean is the bus system
where the influence of the road congestion is often mitigated with some priority policies. For
these reasons, in our analysis we will consider always trips that involve not more than two
layers with the possibility of just one or two changes between them. We will show how this
assumption considerably simplifies the computation of the shortest paths in multilayer networks.
This simplified algorithm, based on elementary operation with the all shortest path matrix of
each layer of the network, provides a vector v[m,n]

i, j (t) for each couple of origin-destination (i, j)
at each time step t. Each coordinate (v[m,n]

i, j )k(t) correspond to the shortest time path between i

and j, starting from layer m to layer n changing in k. Thanks to this vector v[m,n]
i, j we can easily

identify the multilayer shortest time path, the more convenient station where to change from one
layer to another, but also the alternative paths (changing stations) close to the fastest solution.





      

Multiplex transportation efficiency measures

Given a spatial multilayer network composed by M layers m, G[m](N[m], E[m]) where N[m] and
E[m] ⊂ N×N are, respectively, the sets of the nodes and the links for each network m = 1, . . . ,M.
Our first objective is to find the shortest path among all pairs of nodes of the aggregate network
G(∪mN[m],∪mE[m]) keeping trace of the modes m used and of the intra- and inter-layers links
k[r,q] (in node k ∈ N from a layer r to a layer q) traversed by the multilayer shortest paths p(i, j, t)
from node i to node j at starting time t.

Matricial representation of multiplicity for couples of shortest paths

For simplicity of notation, in the following part we will refer to the case of two layered networks,
but the method it can be easily extended to the case of more than two layers.

Let us consider that we have the spatial length l[m]
(h,k) and average link speed function q[m]

(h,k)(t) for
each link (h, k) ∈ E[m], on layer m and time t.

In this condition, we can compute the all pairs shortest time paths matrix D[m] for each layer
m between nodes i, j ∈ N[m]. For example, for M = 2 and N[1] ≡ N[2] = N, we will have two
N × N matrix

D[1](t) = {d[1]
i, j (t)}i, j =

∑
(h,k)∈p(i, j,t)

l[1]
(h,k)

q[1]
(h,k)(t)

and

D[2](t) = {d[2]
i, j (t)}i, j =

∑
(h,k)∈p(i, j,t)

l[2]
(h,k)

q[2]
(h,k)(t)

.

In each coordinate (i, j) of matrix D[m](t) we have the travel time along the shortest time path at
time t in layer m. We notice the the diagonal elements of D[m](t) are all equal to 0. In particular,
row i of matrix D[m](t) is the vector of the travel time, along the shortest time path, in layer
[m] to go from location i to each other location j in the network G[m] while the column j is the
vector of the travel times from each location i to j. For each couple of layers [m, n], we define
v[m,n]

i, j (t) = {(v[m,n]
i, j )k(t)}k∈N as the vector of the travel time in the M-layered multiplex with a change

in location k (through k[m,n], called station in the following) from layer m to layer n. In this
case the computation of v[m,n]

i, j (t) results immediate and equal to the sum of the row i of D[m] and





      

column j of D[n], that is (v[m,n]
i, j )k = d[m]

i,k +d[n]
k, j . Similarly, (v[n,m]

i, j )k(t) = d[n]
i,k +d[m]

k, j . Finally, we define
ṽ[n,m]

i, j (t) = min{v[m,n]
i, j (t)} and s̃i, j(t) = min{si, j(t)} , where (si, j)k(t) = min{(v[n,m]

i, j )k(t),∀m, n ≤ M}.
The request shortest time path in multiplex is s̃i, j(t).

In this work, we will always consider that travelers will move through at most 2 transportation
modes among the M offered by the system. It means that they can go from an origin to a
destination using just one layer [m], or changing in a station k to layer [n] and, either finish
their trip through layer [n] or change in h to layer [m] and reach the final destination. For this
reason we will define all measures always referred to a couple of layer [m, n], or for the example,
we will use 1 and 2. This assumption reflects the majority of travelers’ behaviour in an urban
network and we believe it is pertinent enough. In any case, an extension which would consider
more layers and more changes is just matter of computation and it does not affect the definition
given in the second part of this paper.

We notice that in matrix D[m](t) we use the instantaneous travel time using the average link
speed computed at time t and not the experienced travel time, that is considering the change
in speed during the trip from a location to another in the network. However, substituting the
instantaneous travel time with the experienced travel time does not influence the mathematical
formulation of the measures that will be given in the next section, though can give them other
nuances to their physical meanings.

Case N[2] ⊂ N[1]

We want to show how the matricial method for computing shortest path among multilayer
networks can be used also in the case that the node are not the same for a couple of network.
Without loosing generality, we will denote layer 1 the one with more nodes respect to layer 2,
with N[2] ⊂ N[1]. This is the case, for example, when the choice of travel is between walking
(L[1]) and public transport L[2] (subways, bus), or car sharing system. In particular, we will
call the nodes k ∈ N[2] ⊂ N[1] present in both layers ‘stations’ and, with an abuse of notation,
they will indicate also the interlayer connections k[1,2] and k[2,1]. Let D[1,2]

i, j the tall matrix of
the shortest travel time between each node i of layer 1 and each station k of layer 2 and D[2,1]

i, j

the fat matrix of the shortest travel time between each station h and each node j. In particular,
if the graph is undirected then D[2,1] is equivalent to the transposed of D[1,2]

i, j . Let P be the
N[2] × N[2]-matrix of the instantaneous shortest travel times pk,h between station k and station h.
We have that the corresponding set of value vi, j of the case of 2 identical network is, more in
general, a matrix Vi, j ∈ <

N[2]×N[2]
, where in each entry (h, k) there is the travel time from i to j

using the line h − k in layer 2. The matrix Vi, j is composed summing the column j of D[2,1]
i, j and





      

Figure 1: The two general cases of trip using 2 different transportation modes considered in this paper. On the left,
the user starting the trip from Layer 1 arrive at his destination in Layer 2 changing at station k. On the
right, the user use Layer 2 only for the intermediate line h[2] − k[2] and then continues his trip until the
destination j[1]. This can be the case when both nodes i and j do not belong to Layer 2. The technique
to compute the relative vector v[1,2]

i, j is shown in Fig. 2 for the first and in Fig. 3 for the second case.

Figure 2: Example of fast computation of the vector v[1,2]
i, j = {(v[1,2]

i, j )k}k=1,...,N[2] of the shortest paths in a 2-layer
multiplex with 1 modal change in k.

row i of D[1,2]
i, j to each column h of P[2], that is (Vi, j)k,h = (D[1,2]

i, j )i,k + (P[2])h,k + (D[2,1]
i, j )h, j.

Multiplex dynamical efficiency

Analogously with the definition of dynamical efficiency in Bellocchi and Geroliminis (2016) for
a single layer, we define the measure of local multiplex dynamical efficiency as:

Ei(t) =
1

N − 1

N∑
j=1, j,i

s̄i, j

s̃i, j(t)
(1)

where s̄i, j is the shortest time path in the multiplex in free flow condition in all layers. The
multilayer network dynamical efficiency will be the average E(t) = 1

N

∑N
i=1 Ei(t) at each time

t.





      

Figure 3: Example of fast computation of the matrix V [1,2]
i, j = {(V [1,2]

i, j )h,k}h,k=1,...,N[2] of the shortest path in a 2-layer
multiplex with 2 opposite modal changes using line k − h of layer 2.

For each m = 1 . . . ,M, we denote with E[m]
i the dynamical efficiency considering only layer m,

that is

E[m]
i (t) =

1
N − 1

N∑
j=1, j,i

v̄[m]
i, j

ṽ[m]
i, j (t)

(2)

If we compare the local multilayer efficiency Ei(t) with the m-local efficiency, we can deduce
how much the congestion deteriorates the connectivity of node i on the multilayered structure
against the single layer case. For this scope we introduce the Network Efficiency Robustness

locally (for each node i) as

R[m]
i (t) =

E[m]
i (t)

Ei(t)
. (3)

and globally

R[m](t) =

∑N
i=1 E[m]

i (t)∑N
i=1 Ei(t)

=
E[m](t)
E(t)

. (4)

If we want to compare how much an user gains in terms of efficiency using the multilayered
structure of multiple layer A ⊆ M compared to the user who travel only layer m, we need to
introduce the measure

G[m]
i (t) =

1
N − 1

N∑
j=1, j,i

(1 −
s̃i, j(t)

ṽ[m]
i, j (t)

). (5)

We obtain the gain for location i that comes from the multimodality structure of the transportation





      

network. We notice that 0 ≤ G[m]
i (t) < 1 for each i ∈ N. When G[m]

i (t) = 0 means that the layer
m, at time t, is the fastest solution to reach all other destinations j in the spatial network respect
to all other modes solutions, that is s̃i, j(t) = ṽ[m]

i, j (t).

Station centralities

For a given OD pair (i, j), in a multimodality transportation network there will exist some
stations k that can be used more than others for the convenient change of mode for the multiplex
shortest time path p(i, j, t). For this scope, we quantify the station convenience into the following
aggregate station centrality measure

I(k, t) =

N∑
j=1, j,i

δk
i, j(t) (6)

where δk
i, j(t) = 1 when s̃i, j(t) = (si, j)k(t) and 0 otherwise. We can also distinguish for each layer

m = 1, . . . ,M and define

I[m,n](k, t) =

N∑
j=1, j,i

δ[m,n],k
i, j (t) (7)

as [m,n]-interchange station centrality, where δ[m,n],k
i, j (t) = 1 when s̃i, j(t) = (v[m,n]

i, j )k(t) and 0
otherwise. In particular, we have that I(k, t) =

∑M
m=1 I[m](k, t). An example of this measure is

plotted in Fig. 4, where it can be appreciate how this measure change based on the congestion
(see as road efficiency). This measure might be use also for many application like determine
the best location and size for interchange stations. to optimize the multimodality transportation
network.

Results

We tested the measures defined in the previous sections with a dataset of links speed estimations
for a whole weekly day in Shenzhen, China. This dataset is composed of GPS points of more
than 20k taxis operating in the downtown of the Chinese city, and the speed estimation is made
after a map-matching algorithm that provides links speeds every 5 minutes for a whole working
day (for more details on the data, please see in Ji. et al. (2014)). For layer 1 we consider the road
network with the link speed changing in time because of the vehicular congestion. In layer 2 we
used the same topological network but with a fixed speed for all links and the whole day. Layer 2





      

might be considered as a simplified version of an extended and traffic independent transportation
structure as can be a bus system with priority lane, subways system or moving walkways.

In Fig. 4 we can see the classical dynamical efficiency as defined in Bellocchi and Geroliminis
(2016) where the links are colored according to their efficiency value (where the free flow speed
has been set at 30 mph). The red spots indicate the interchange stations computed with the
algorithm defined in Formula 6. The size of the red spots is proportional to the value I(i, t) of
each node i at time t = 12am, 6am, 12pm, 6pm, 12am(+1day). It is remarkable that these maps
suggest the expected load at stations distributed among the city at different time and how it
depends on congestion configuration. Hypothetically, the station corresponding to the bigger
red spots are the interchange stations that optimize the multilayer dynamical efficiency when
just one transportation mode change is allowed. This measure highlight at which point becomes
more convenient to change from car (for example) to a public transportation. It might be an
indicative measure of parking spot size and control flow techniques.

Fig. 5 reports the values of the measures defined in 2 and 5 about efficiency and multidimensional
gain. In particular, in the top panel is reported the gain for layer 1 (in red) and layer 2 (in blue) for
the time period from 6AM to noon. It is appreciable the fact that at 7:30AM, when the morning
peak-hour congestion rises in the city of Shenzhen, the layer 1 start to lose efficiency and the
gain that it has from the fact to be embedded in a multilayer transportation network increases.
Viceversa, for layer 2, at 6AM, when the car traffic is still fluid, the gain from using the other
layer (cars) is high, then when the congestion becomes more severe the index G[2] decreases,
that means that respect to the optimal efficiency configuration offered by the multidimensionality
of the mobility service, the public transportation (congestion-free layer) becomes in the major
part of the city the best option. In the panel on the bottom the efficiency for each layer and the
multilayer efficiency (in yellow) are plotted. We notice that, even if the fixed speed of layer 2 is
relatively low (10 mph) its contribute to the total efficiency become important at the congested
period of the day (after morning peak-hour).

While Fig. 5 shows the global gain for each layer, in Fig. 6 is illustrated the colormap of
Shenzhen where the color of each link indicates how much each link gains in the layer 1 or
2, from the multiplicity of the network. AS one can expected, during the morning peak hour
the central part of Shenzhen is where a well-organized and adequate transportation system
can improve by far the total network dynamical efficiency. In Fig. 7 we reported the average
fraction of time spent on each layer among all the couples of shortest time paths along the day
(from 6AM to midnight) in the considered duplex. As expected, the public system becomes the
dominant transportation mean during the morning peak hour and, even more during the evening
peak hour, while the car network is preferable, certainly in free-flow conditions (e.g. during the





      

Figure 4: Each panel represents, at different times of the day, the efficiency for the road network (blue = high,
red =low) and the size of the red spot is proportional to the station centrality I. It can be seen how
congestion influence the expected load of each station and their spatial distribution.

night) but also at the lunch break.

Conclusion and future works

In this work, we defined some new performance measures for multimodal transportation system.
In particular, we study the case when the travelers are limited to choose at most two different ways
of transportation like, for example, car and bus, walking and subways or car and accelerating
walking ways (as prospected, for example, in Scarinci et al. (2017)). With these assumptions,
the authors provide a mathematical simplified algorithm to obtain the travel times, in evolving





      

Figure 5: On the top panel we report the multidimensional gain for layer 1 (blue line) and layer 2 (red line)
from 6AM to 12PM (07.11.2011), Shenzhen (China). Layer 1 represents the vehicular transportation
network and layer 2 the congestion-free layer (ex priority bus) with fixed link speed at 10 mph, 1/3 of
the free-flow speed of 30mph. The value G[m] is proportional to the gain of layer m has thanks to the
multi-dimensionality of the multilayer network. In this case with only two layers, it represents also how
much the other layer contribute to the global multilayer efficiency, then G[m] ≈ 0 the other layers are
almost irrelevant, higher value of G[m] is an indicator of how much in average an user gain to use the
two best modes than just mode m. On the bottom panel, the relative dynamical efficiency of Layer 1
(blue), Layer 2 (red) and the multilayer efficiency (yellow) are reported. In both plot, it appears that
in average it is more convenient from 7:30AM to have at disposition of the travelers the layer2 and,
even if layer 2 operates at a fixed speed of 10 mph, it improves the global efficiency of more than 20%
respect at the vehicular layer alone.

congested scenario, of all different solutions depending on the interchange layer connections.
Individualizing where and when it becomes convenient to change the transportation mode,
represents a fundamental indicator for traffic management engineering to parametrize and design
new infrastructures in an urban network in order to maintain all over the city a minimum rate of
mobility efficiency. Moreover, thanks to the dynamical efficiency computed for couple of layers,
it is possible to measure the effective robustness, in sense of congestion dependence, of each
layer and how much each of them gains from the multiplicity of the transportation offer. In this
sense, the authors quantify the effective participation in the transportation system efficiency of
each distinct mobility layer.

The results presented refer to some preliminary explorations of the defined measures and based
on an artificial bi-modal transportation system with a real road traffic data in one layer and
an artificial, but identical, network with fixed speed at 1/3 of the free-flow traffic speed in
the other layer. This simplified example already shows new aspects of the congestion and





      

Figure 6: In the first row of plots is reported the gain value G[1] for the Layer 1 (vehicular network). We notice
that the major contribution to the global multilayer efficiency is on the highway while the layer 2
(second row of plots) becomes essential for the efficiency from 7:30AM, especially in the congested
zones. In the second row of panels the color of the links is referred to G[2]. The abrupt change between
6AM and 7:30AM, already depicted in Fig. 5 is, here, clearly visualized at the local level on the map
with the net prevalence of warm color (reds) in the first panel and cold (blues) in the second.

Figure 7: Here is plotted the average fraction of time (from 0 to 1) passed in Layer 1 (blue) or Layer 2 (red) of
the best path in the multilayered network with 0 or 1 change allowed. The average has been calculated
among all couple (i, j) with i , j ∈ N for the period from 6AM to midnight. As one can appreciate
from this graph, is that both fro the morning peak hour and the evening peak hour the fraction of the
path passed on the public transportation (Layer 2) is higher then in private car. Interestingly, for the
lunch break is highlighted a precise interval when moving by car is, in average, more convenient then
by public transport.





      

suggests solutions for an optimized public transportation policy. However, future works with
real overlapped multimodal urban network (for example, the map of the urban bus system
and subways) and new traffic data can disclose hidden travel choice patterns and management
transportation solutions to contribute to solve the congestion in our cities.





      

References

Bellocchi, L. and N. Geroliminis (2016) Dynamical efficiency in congested road network, Swiss

Transport Research Conference.

Gallotti, R., M. A. Porter and M. Barthelemy (2016) Lost in transportation: Information measures
and cognitive limits in multilayer navigation, Science advances, 2 (2) e1500445.

Ji., Y., J. Luo and N. Geroliminis (2014) Empirical observations of congestion propagation
and dynamical partitioning with probe data for large-scale systems, Transportation Research

Record, 1–11.

Kivelä, M., A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno and M. A. Porter (2014)
Multilayer networks, Journal of complex networks, 2 (3) 203–271.

Latora, P. C. V. and S. Porta (2006) Centrality measures in spatial networks of urban streets,
Physical Review E, 73.

Latora, V. and M. Marchiori (2007) A measure of centrality based on network efficiency, vol. 12.

Porta, S., P. Crucitti and V. Latora (2006) The network analysis of urban streets: A primal
approach, Physica A: Statistical Mechanics and its Applications, 369 (2) 853–866.

Scarinci, R., I. Markov and M. Bierlaire (2017) Network design of a transport system based on
accelerating moving walkways, Transportation Research Part C: Emerging Technologies, 80,
310 – 328, ISSN 0968-090X.




	Introduction
	Multiplex transportation efficiency measures
	Matricial representation of multiplicity for couples of shortest paths
	Case N[2] N[1]

	Multiplex dynamical efficiency
	Station centralities

	Results
	Conclusion and future works
	References

