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Abstract

Estimations of the future mobility demand are highly valuable for policy makers, transportation
planners and the automotive industry. Knowing mobility patterns allows for targeted and
optimized decarbonization of the transport sector. This work provides a model order reduction
approach for clustering mobility demand according to characteristic population groups that
share similar travel behavior. Using Swiss household travel survey data and machine learning
algorithms, the methodology developed in this paper allows for extrapolating future mobility
demand based on socio-demographic information.
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1 Introduction

1.1 Context of the decarbonization of transport

The transport sector was responsible for 20.5% of global CO2-eq. emissions in 2014 (Inter-
national Energy Agency, 2014). According to the Kyoto system boundary, i.e. excluding
international aviation and maritime transport, the Swiss transport sector even accounted for
32.0% of the national CO2-eq. emissions in 2015 (Federal Office for the Environment, 2017).
Thus, the transport sector plays a crucial role in the transition to an ecologically sustainable
society. In the Paris Climate Agreement 2015, the participating nations have expressed their
commitment to substantially reduce their greenhouse gas emissions. To guide the evolution in
the desired direction, strategic planning is necessary.
From an abstract perspective, a decrease of greenhouse gas emissions can be either achieved by
reducing demand (vehicle kilometers (vkm)) or specific vehicle emissions (CO2 per vkm). While
the first depends on behavior, the latter is mainly driven by technology. The total emissions
result as a product of the two terms; zero emissions can only be reached if one term goes to zero.
As mobility is linked to productivity and crucial to sustain a functioning society and economy, it
has to be technological options to cut down the emissions to zero in a long-term perspective.
Changes in behavior will just gain time to postpone technological decarbonization.
Within this study, we address the technological aspect of decarbonization, in particular of Swiss
passenger cars. We do not analyze mode choice or traffic flows. A rather lean description of
mobility demand in form of the daily traveled distance (DTD) is sufficient. The DTD needs
to be known when assessing the potential of different drivetrain technologies to decarbonize
transport. It is a measure to represent energy consumption and autonomy range, i.e. the range
capacity without recharging or refueling, of a vehicle. One result of this study is a lean method
to derive these DTDs using Household Travel Survey (HTS) data. The investigated hypothesis is
whether it is possible to reduce mobility demand to a few explaining attributes which are robust
over time, ideally in a parameterized form.

1.2 Importance of daily trip distance distribution of a fleet for energy

system analysis

Reasonable substitutions of conventional transport technologies need to be able to provide the
same service, i.e. transporting a person or good from one point to another. There is the possibil-
ity to change the mode of transport, e.g. from car to train. However, if sticking to individual
mobility, technologies will not be accepted if the usage pattern cannot remain the same. Tamor





        

et al. (2015) showed this for electric vehicles: They defined a threshold of inconvenience as "the
number of days per year that a given electric vehicle (EV) range was insufficient for that day’s
driving". Below that threshold, customers accept EVs and switch to alternative technologies for
the few days where EVs cannot provide the customers’ mobility demand; above the threshold,
they refuse to use EVs (Tamor et al., 2015). An optimal substitution of conventional technologies
should not force the user to change the behavior for any day of the year.
From a technological perspective, not every drivetrain is a feasible technology for every mobility
demand pattern or every vehicle. In order to assess the potential of different technologies to
decarbonize transport on a national level, a bottom-up assessment of disaggregated mobility
demand is necessary. A common approach to define such disaggregated demand is to analyze
DTDs of all vehicles in a fleet. Given these DTDs and the technologies’ autonomy ranges, first
estimations on the decarbonization potential of different vehicle types can be drawn1: Figure 1(a)
relates on-board energy demand for propulsion and range for different vehicles, in a simplified
but reasonable manner. It shows required technology specifications for desired autonomy ranges.
The two hyperboles (81 and 270 kWh) represent the state-of-the-art in battery electric vehicles
for passenger cars and rigid trucks respectively, whereas there is no commercially available
electrified articulated truck yet. The red/ blue/ green area indicate typical values for the specific
energy demand of passenger cars/ rigid trucks/ articulated trucks. The intersection of the mean
values of these areas with the hyperbolic curves result in the autonomy range of each vehicle
type, i.e. the range that can be driven without recharging.
If related to the daily usage of these vehicle types (Figure 1(b)) we identify (I) the amount
of day trips which are feasible for EVs given a certain day trip range, and (II) the cumulative
share of performance (vkm) of day trips. The latter reflects the relative impact of trips on
carbon emissions, and thus, on their decarbonization potential. Taking the rigid trucks as an
example, 79.5% of all day trips can be electrified2, given the autonomy range of 270 km (taken
from Figure1(a)). However, in contrast to the found 79.5%, these trips account only for 53.9%
of the overall driving performance. This is due to a large number of short trips that can be
electrified but that do not contribute to decarbonization substantially. As mass and volume for
energy storage is limited on a vehicle, the electrification of transport is in particular a challenge
for long-distance trips. For freight transport, the challenge is even more severe since time for
recharging or refueling during a trip will directly have negative impact on the profitability of the
vehicle.

1As the results are based on an average day, we neglect intra-week and seasonal changes in mobility demand.
2The electrification potential of day trips sets a theoretical upper decarbonization limit. A single vehicle is

executing multiple day trips over a year. In order to electrify the respective vehicle, all day trip distances needed
to be below the autonomy range of 270 km.





        

(a) Relationship between range, energy demand per unit distance and the mechanical energy supplied to
the wheels (proportionally to the on-board energy capacity.). The 81 and 270 kWh lines represent the

state-of-the-art battery electric vehicles for passenger cars and rigid trucks respectively.

(b) Frequencies of observed day trip distances and the respective performance. The distribution for
passenger cars is based on the HTS 2010 (Federal Statistics Office, 2010a), the distribution for trucks

on data of the Federal Customs Administration (2017). The grey areas correspond to the ranges
indicated in Figure 1(a) and illustrate the electrification potential.

Figure 1: Trade-off of energy demand per km and autonomy ranges of EVs for different vehicle
types and distribution of day trip distances





        

The Swiss Federal Statistics Office collects mobility data for planning purposes, most notably
the Swiss HTS. However, when looking into the decarbonization of a vehicle fleet, it is necessary
to account for the change in demand over time. Future changes in population and spatial
structure which can affect the distribution in daily distance and total performance have to be
considered. Extrapolating perceived trends for the future mobility demand becomes necessary
on a disaggregated level to allow for a bottom-up feasibility assessment of technologies.

1.3 Related work

An extensive body of literature is dedicated to both estimation of future mobility demand and
decarbonizing transport. Our work differentiates from these studies by three main aspects: (1) we
look at the mobility demand from a technology-centered view. (2) we use socio-demographics
estimations for the future to extrapolate future mobility demand. (3) We use machine learning
algorithms to cluster Swiss mobility demand.
The related literature to each aspect is provided in the following:

1. Technology perspective:
There is comprehensive literature on a detailed geographical perspective on mobility
demand to draw conclusions on social behavior or to model traffic flows for infrastructure
planning. For that, mobility demand is usually derived from (a) agent-based models, (b)
accessibility measures, or (c) origin-destination matrices.
(a) An example of an integrated assessment of the transport and energy sector is given

by Bauer et al. (2016). The study compares different drivetrain technologies for an
average vehicle. It does not comprise a whole fleet of vehicles. The mobility demand
is derived out of a status-quo agent-based modeling.

(b) The Swiss Federal Office for Spatial Development provides mobility demand perspec-
tives (Mathys et al., 2016). Their model accounts for socio-demographic attributes
and presents different scenarios resulting in aggregated activities for different regions
in Switzerland until 2040. Mobility demand is modeled using origin-destination (O-D)
matrices. Similarly, Saadi et al. (2017) use random forest classification to estimate an
O-D matrix.

(c) Loder et al. (2017) analyze HTS data to draw conclusions on the accessibility to
reach potential destinations, in order to explain differences in the annual passenger
car mileage of households.

In contrast to the these three approaches, we provide a lean representation of daily vehicle
usage profiles that is suited to assess technological feasibility of alternative drivetrains
for observed vehicles. We do not focus on detailed geographic-resolved traffic flows





        

which are not necessary for deriving decarbonization potential of alternative drivetrain
technologies. In contrast to the work of Bauer et al. (2016), we do not only look at the
ecological impact of a single vehicle type, but of the whole fleet, clustered into mobility
archetypes.

2. Socio-demographic extrapolation perspective:
Charleux (2018) derive mobility archetypes from HTS data using the k-means algorithm.
After clustering, they analyze sociodemographic characteristics of the found clusters. In
contrast to this approach, we use socio-demographic features as clustering characteris-
tics to derive mobility archetypes. Based on demographics estimations, we intend to
extrapolate the future mobility demand.

3. Swiss perspective:
Most literature on clustering HTS data via machine learning algorithms to infer mobility
archetypes use the HTS data set of the United States (Charleux, 2018, Diana, 2012,

Mohammadian and Zhang, 2007, Pirra and Diana, 2016). Within this work, we do this
analysis for Switzerland.





        

Table 1: Available data in both, the Swiss HTS and the PHS

Demographic data

Nationality Binary variable: Swiss, Foreigner
Age Continuous variable

Gender Categorical variable: Female, Male, Other
Marital Status Categorical variable: Single, Married,

Widowed, Divorced, Other

Geographic/ spatial data

Municipality Population Density Continuous variable

Aggregated Municipality Characteristic Categorical variable: Urban agglomeration,
Suburban agglomeration, Isolated, Rural

Extensive Municipality Characteristic Categorical variable: Central, Suburban,
Peri-Urban, Rural, Touristic, Industrial,
Mixed agricultural, Agricultural, High income

Swiss Big Regions Categorical variable: Zürich, Tessin,
Lake Geneva Region, North-West/ West/
Central/ East Switzerland

2 Data

This work is based on two databases provided by the Swiss Federal Statistics Office (2010a,b):
the Population and Households Statistics (PHS) and the Swiss Household Travel Survey (HTS).
The PHS provides annual data on size and composition of the whole Swiss population. The HTS
contains detailed information on the travel behavior of Swiss citizens. Since 2000, Switzerland
has conducted such HTS in a 5 years-turnus.
As the PHS does only contain disaggregated numbers since 2010, this year is chosen for
introducing our methodology. The HTS 2010 comprises 55’052 participants aged over 18. To
get an intuition on the HTS data, we provide some statistical analysis of the data set, see Figures
7 and 8 (Appendix).
For the methodic approach introduced in the next section, only variables existing in both data
sets are chosen, see Table 1. Additionally, the daily travel time and distance are extracted from
HTS data.





        

3 Methodology

The goal of this study is to provide a method to describe mobility demand as function of socio-
demographic indicators that is capable to extrapolate future mobility demand. This requires
classification of the Swiss population with respect to its travel behavior. We propose a two-step
approach consisting of clustering HTS data and sampling onto PHS data: We cluster the HTS
participants into characteristic population groups according to similar travel behavior (I). To
infer these findings onto the whole population, we sample the people of the HTS clusters onto
the corresponding people of PHS that share the same socio-demographic and spatial/ geographic
characteristics (II).
The methodic approach of this paper is displayed in Figure 2. The following description gives
an overview on the methodology. Afterwards we provide detailed information on the single
procedure steps in the subsections.

…
Population HTS Characteristic 

PHS Groups
PopulationCharacteristic 

HTS Groups

…

Categorization Sampling

Disaggregation Aggregation

Validation

PHS

Perret
(2016)

Survey
sample

Figure 2: Methodic Approach for Data Processing

We categorize the HTS participants with respect to their daily travel distance or time using
machine learning algorithms. Both include all modes of travel. For the explanation of our
methodology, we use the DTD as target vector in the following.
The classification results in clusters of people sharing the same travel behavior, i.e. similar
DTDs. Since we focus on car mobility, we extract the values for daily traveled distance by car
(DTDC) for each cluster in a next step. The resulting DTDC for the characteristic HTS groups





        

are then sampled onto the whole population, matching the descriptive determinants for each
cluster of HTS data with the PHS data. In other words, we look up the number of people from
the whole population that share the same descriptive determinants as the HTS groups found
during clustering (like age, nationality, etc.). Then, we assign a DTDC value from the HTS
clusters (55’052 people) to each person from PHS (6’416’153 people) using different sampling
techniques. This way, every person of the whole population is assigned with a specific DTDC.
Summing up these distances for all people results in the total annual car mileage for the whole
population. This aggregated value can be validated by the official number that is drawn from
HTS by the Federal Statistical Office (Perret, 2016).
As Figure 2 shows, this approach allows for conclusions on DTDC on a disaggregated level,
e.g. from a cantonal perspective. Hence, we also had a look at spatially disaggregated cantonal
DTDCs. Here, the validation assessment was done via the (arithmetic average) sum of squared
errors (SSE) and the weighted average SSE. The SSE is defined as follows:

S S E =

n∑
i=1

(yi − ŷi)2 (1)

with yi as the reference value for canton i and ŷi as the predicted value of yi. The weighted SSE
weights the SSE of each canton according to the number of samples (s) within it:

wS S E =
1
s

n∑
i=1

si (yi − ŷi)2 (2)

Table 2 gives an overview on methodology variations to optimize the process. We varied
clustering techniques as well as their input feature vector and target variable. Furthermore, we
had a look at the impact of different sampling techniques. Given the result of the clustering and
sampling, we generalized the distributions via the parametrization of fitting functions.

3.1 Feature vector

Clustering is done based on features of the given data set. This feature vector can be a vector
(1feature) or a n-dimensional matrix (multiple features). The feature vectors serve as descriptive
determinants of travel behavior. The most important features for dividing the data set into
maximal homogeneous subsets are found during clustering. However, it is beneficial to choose
feature vectors in a meaningful way. Within this work, we focused on the discussed socio-
demographic and geographic/ spatial variables as both seem to influence travel behavior, from a
heuristic perspective. It is possible and encouraged to include other features as well. However,
the constraint that the chosen features have to exist in both the HTS and the PHS limits this
number of potential candidates drastically. Yet, this constraint is a prerequisite for the sampling
of data from the HTS to the whole population of the PHS.





        

Table 2: Approaches to optimize methodology

Feature vector • Demographic variables
• Geographic/ spatial variables

Classification method • Unsupervised Learning via PCA + k-means
• Supervised Learning via decision tree classification

Target vector • Daily Travel Time
• Daily Travel Distance

Sampling method • Random Choice
• Inverse Cumulative Distribution Function

Parametrization of • Gamma
distance distribution • Lognormal

• (Exponentiated) Weibull

3.2 Classification method

As clustering technique, we considered Decision Tree (DT) classification as well as k-means
clustering. Both aim at finding clusters within the feature vectors from HTS regarding their
travel behavior. Whereas k-means is a unsupervised clustering technique, the DT approach
represents a supervised machine learning algorithm. Hence, it takes a target vector additionally
to the feature vector as input.
DT classification is widely used in literature. Mohammadian and Zhang (2007) and Pirra and
Diana (2016) use DT clustering for the classification of tours. Hagenauer and Helbich (2017) and
Sekhar et al. (2016) use (Random Forest) DT clustering for mode choice analysis. Hagenauer
and Helbich (2017) found this classifier as the best-performing among several machine learning
algorithms. However, there is also literature using the k-means algorithm for generating mobility
archetypes, e.g. by Charleux (2018).
Both methods are described in the following. Their classification performance, with respect to
the validation on the annual mileage of the HTS report, is shown in Table 3.

3.2.1 Decision tree classification

Supervised machine learning algorithms like DT classification rely on training a classifier
with a primary data set (train set, I), consisting of a feature vector and a target vector with





        

corresponding labels. With that primary data set, the classifier can be fitted. The performance of
the model (goodness of fit) has to be tested on a secondary data set (test set, II). However, when
optimizing the hyperparameters of the classifier, there is risk of overfitting on the test set. To
avoid this problem, either a third data set (validation set, III) can be set apart in the beginning
to validate the performance after optimizing using the test set, or cross-validation can be used.
After training, optimizing and validating, the classifier can be used for the prediction of labels of
a new unknown data set comprising only the feature vector (no labels).
However, we do not follow the conventional fit-predict-path of machine learning. Instead of
predicting labels on new data sets, we are rather interested in the classification structure itself
since it allows for intuitive traceability of how data is clustered. The decision tree classification
method suits very well to this requirement as it has an intuitive visualization of how clustering
is performed in form of the decision tree. For our purposes, we rearranged the conventional
procedure as follows: We keep the fitting (I) on a given primary train set (the HTS data). As
categorical feature vectors are not suitable for the binary splits of the DT classifier, we converted
categorical into binary features. The binary splits of the decision tree are based on the mean
squared errors (MSE) cost function as classification measure. The MSE is defined as follows:

MS E =
1
n

S S E =
1
n

n∑
i=1

(yi − ŷi)2 (3)

Data is split such that the sub-nodes are most homogeneous, i.e. minimizing the MSE. However,
we do not want to predict new labels in the next step. Hence, testing and validating can be
simplified. Testing the performance of the model (II) is done by adjusting the hyperparameter
settings. Larger DTs, i.e. high number of leafs3 and low number of samples within one leaf,
are prone to overfitting to noise. In contrast, small DTs may not cover all important structural
information of the data. As discussed in the general methodology, validation (III) is done
after sampling from the decision tree leafs onto the whole population from the PHS data set.
Exemplarily, this means the following: When using the DTD as target variable, the resulting
aggregated value for the annual mileage, i.e. the total distance traveled by the whole population
per year, is validated against the corresponding value from the HTS report Perret (2016).
For the implementation of the illustrated classification methodology, we used the Decision Tree
Classifier from the Python package scikit-learn.

3We refer to leafs as the end nodes of a decision tree.





        

3.2.2 k-means clustering

Unsupervised learning is used to cluster data with unknown labels. k-means is a representative
of centroid-based clustering techniques where the data is initially split into k clusters and the
cluster centers are computed as the mean of all data points within the clusters. Then, each point
is assigned to its nearest cluster center and the cluster centers are re-calculated. This iterative
procedure is an optimization task, driven by a cost function like the SSE.
Due to that procedure, k-means allows only for continuous variables as feature vectors. Therefore,
we applied principal component analysis (PCA) to convert categorical to continuous variables in
a preprocessing step. Depending on the initial clustering, the procedure is prone to ending up in
local minima and to overfit against outliers.

3.3 Target vector

Supervised learning requires a target vector, also called label, to the feature vector. The data is
clustered with respect to that target vector. We chose travel distance and travel time as the two
most promising candidates.

3.4 Sampling method

The classification step results in clusters of people from the HTS sharing the same travel behavior,
i.e. the same DTDC. However, the sample size is limited with 55’052 people interviewed in HTS.
To infer the travel behavior of the groups of people that share similar features (i.e. similar values
of the feature vectors), the number of people (p) from the PHS who show the same features for
each group is extracted. For each cluster, p samples are drawn from the DTDC vector of the
corresponding HTS cluster. This matching allows for extending the findings of the clustering
step onto the 6’416’153 people from the PHS which are older than 18 and allowed to drive a car.
To even out sampling deviations, this procedure is executed 100 times.
Sampling was done via Random Choice (RC) and via the Inverse Cumulative Distribution
Function (ICDF). While the RC method allows only existing data points to be picked (e.g.
existing travel distances), the ICDF represents a continuous function from which arbitrary values
can be sampled.





        

3.5 Parametrization of distance distribution

Clustering and sampling results in a DTDC distribution curve, indicating the probability of
each DTDC like shown cumulatively in Figure 1(b). Up to now, the histogram of all data
points defines this curve. However, the DTDC distribution may be parametrized by fitting
functions which would allow for separating the distribution from its underlying data. Hence, the
parametrization aims at inferring a generalized function for the DTDC distribution that solely
relies on the function parameters. The described model order reduction method enables not only
a reduction of complexity in describing the travel behavior, but also faster computation.
As fitting function candidates, we chose the Lognormal, the exponentiated Weibull and the
Gamma function. All of them were only defined for x > 0 since we only have positive distances
as x values. In the following function descriptions k, α, λ, ϑ are scaling and shape parameters,
whereas µ is a location parameter:

• Lognormal function:

f (x) =
1

√
2πσx

exp
(
−

(ln(x) − µ)2

2σ2

)
(4)

• Exponentiated Weibull function:

f (x) = α
k
λ

( x − µ
λ

)k−1
[
1 − exp

(
−

( x − µ
λ

)k
)]α−1

exp
(
−

( x − µ
λ

)k
)

(5)

• Gamma function:

f (x) =
1

Γ(k)ϑk

( x − µ
ϑ

)k−1
exp

( x − µ
θ

)
(6)

To analyze the goodness of fit of different fitting functions on a data-driven distribution, we used
the Akaike Information Criterion (AIC) defined by:

AIC = 2k − 2ln(L(ΘMLE |x)) (7)

with k being the number of estimated parameters and L(ΘMLE |x) being the maximized value
of the Maximum Likelihood Estimation (MLE) for the fitted function given the estimated
parameters ΘMLE and the sampled data x. Plötz et al. (2017) found that the AIC is the best
measure of goodness of fit when comparing different fitting functions for DTD distributions. It
has to be mentioned that the AIC only allows for comparisons within the observed data set.





        

4 Results & Discussion

4.1 Feature vector

For the implementation of the classification methodology, the feature vector consisted of socio-
demographic and geographical/ spatial variables, as discussed in the data section. As target
variable we used the daily travel time as well as the daily travel distance. The optimization of
hyperparameters was done using the DTD as target vector, resulting in the following optimal
values:

• maximum number of leafs: 15
• minimum number of samples per leaf: 5% of HTS data size

There is a trade-off between the maximum number of leafs and minimum number of samples
per leaf. The chosen values represent the optimum with respect to the validation of the annual
mileage.
Figure 3 shows the resulting decision tree when feeding the DT classifier with all demographic
and geographic/ spatial features. The nodes of the DT show the following information:

• 1st line: Decision criteria that splits the data set most homogeneously.
• 2nd line: Resulting MSE for binary split.
• 3rd line: Number of samples within the node.
• 4th line: DTD value within the node.

After sampling, the found results are validated against the HTS reference value for the annual
mileage of all car drivers in Switzerland which amounts to 46’225 millions of kilometers (mkm)
(Perret, 2016).
Figure 4(a) validates the annual mileage of HTS (black line) against the calculated values from
the DT when including only demographic values as feature vectors. The orange bins show the
results of 100 iterations of re-sampling. The red lines indicate the 95% confidence interval of
the sampled values. Calculation and reference number fit perfectly. The relative difference is
only 0.06%. In contrast, the disaggregated cantonal DTDC values are not met, as depicted in
Figure 5(a). As we have fed the DT classifier only with demographic feature vectors, this is not
surprising.
To overcome this limitation, we included geographic/ spatial variables as input to the DT
classifier. The results are shown in Figures 5(b). Now, the cantonal values are met much better.
However, the relative difference of the annual mileage increases to 1.71%. This might indicate a
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Table 3: Comparison of different clustering techniques and target variables

HTS Decision Tree Decision Tree k-means
(Target Variable: (Target Variable: Clustering

Distance) Time)

Total distance by 46’225 46’252 45’410 45’363
car [mil. km]

Difference to HTS 0.00 0.06 -1.76 -1.86
data [%]

trade-off on meeting disaggregated cantonal DTDC values or aggregated annual mileages, even
if the found values are still on the border of the HTS confidence interval (CI). Hence, these
findings have to be seen in the light of HTS uncertainty, as the HTS data relies on a sample size
that represents only 0.86% of the Swiss population aged over 18. The Swiss Federal Statistics
Office takes this uncertainty in form of a confidence interval into account (Perret, 2016): Here,
the overall annual mileage of passenger car mobility of 46’225 mkm and the 90% CI, that is in
the range between 45’508 and 46’942 mkm, is provided.
It is worth mentioning that the most descriptive features for clustering are demographic variables,
even in the case when including geographical/ spatial feature vectors: The feature importances
reported from sklearn are 56.9% for age, 22.2% for gender, 18.4% for marital status and 2.5%
for the Extensive Municipality Characteristic.

4.2 Classification method

Table 3 shows the superiority of supervised against unsupervised learning when choosing the
right target variable. The DT with distance as a target variable results in a far better value
of annual mileage, compared to the DT with time as target variable or to k-means clustering.
However, these findings have to be seen in the light of the CI of the HTS reference value, again.
The value for the total distance by car found by k-means is not too far away from the 90% CI
reported in Perret (2016).
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(a) Validation of aggregated annual mileage (Feature vector for DT including demographic variables)
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Figure 4: Validation of decision tree findings on aggregated annual mileage of the HTS
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(a) Validation of cantonal annual mileage (Feature vector for DT including demographic variables)
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Figure 5: Validation of decision tree findings on cantonal annual mileage of the HTS





        

4.3 Target vector

Table 3 shows the performance of the two different target variables using decision tree classifica-
tion. It has to be mentioned that this analysis has been done as a preceding step. Hence, it is
based only on demographic features. However, as demographics will show the highest feature
importance even when including geographical/ spatial variables, the results are still valid.

4.4 Sampling method

Within their CIs, RC and ICDF sampling provide identical results. The deviation from the HTS
reference value is in any case larger than the sampling error. Hence, the impact of the sampling
method on the accuracy of the results can be neglected. However, RC results in 75 times faster
sampling wherefore its usage is recommended.

4.5 Parametrization of distance distribution

We assessed the capability of the Lognormal, exponentiated Weibull and Gamma function to fit
the DTDC probability distribution curve using the AIC. The differences in AIC values for the
observed fitting functions show high favorization of the exponentiated Weibull distribution.
Figure 6 shows the DTDC probability distribution histogram (yellow) for distances greater
than 0 and clipped at 300km. The superimposed fitting curve (red) is defined by the following
exponentiated Weibull function:

f (x) = 1.54x−0.60 ·
[
1 − exp(−x0.40)

]2.83
· exp(−x0.40) (8)

Our findings confirm the findings of Plötz et al. (2017) who stated that the Weibull function
performs best on several data sets of DTD.





        

Figure 6: DTDC probability distribution with exponentiated Weibull fitting curve (red) within
the range ]0;300]km





        

5 Conclusions & Outlook

Within this work, we present a methodology for describing mobility demand based on socio-
demographic and geographical/ spatial data. Following the structure of the methodology and the
results section, we draw conclusions for each aspect of the proposed methodic approach:

• Feature vector: We used socio-demographic and geographic/ spatial variables displayed
in Table 1 as feature vector for clustering. Socio-demographic features turned out to be
most descriptive for clustering the population with respect to their daily driven distance.
We recommend to include other features as well, considering the constraint that the chosen
features have to exist in both the HTS and the PHS. This could even enhance the model
results. However, enhancement does only make sense within the range of the CI of the
annual mileage reported in the official HTS report (Perret, 2016).

• Classification method: We found that the Decision Tree is the best classification method
to cluster HTS data for our purposes. Here, we do not see need for improvement.

• Target vector: We used travel time and distance as target vectors, with distance perform-
ing best. We encourage to enlarge the space of target vector candidates to improve the
clustering results. The same constraints as described for the feature vector hold here.

• Sampling method: We have shown that the sampling method does not impact the results
of our methodic approach significantly. No improvements are necessary.

• Parametrization of distance distributions: As a form of model order reduction, we
analyzed approaches to parameterize the distribution of DTDC. We found that the expo-
nentiated Weibull function has the highest goodness of fit when using the HTS from 2010.
It is worth to further investigate appropriate fitting functions and their ability to generalize
on different years of HTS.

In conclusion, we identified explaining features that allow for the classification of HTS sam-
ples into clusters sharing the same mobility behavior. We have proven that reconstructing
aggregated mobility activity through classification and sampling is feasible for the HTS of
2010. Geographical discretization improves cantonal means, while marginally worsening the
national aggregate. This can serve as a basis for future work. The future mobility demand
can be extrapolated when using predictions of socio-demographics for the future. Validation
of this approach will be done in the future via back-casting over all existing HTS data sets
since 2000. Based on the extrapolation of mobility demand, decarbonization pathways can be
modeled. This extrapolation is not a prediction including effects of new forms of mobility like
autonomous driving. However, extrapolating future mobility demand based on status-quo data
keeps uncertainties of assumptions low. This, in turn, improves time-resolved decarbonization





        

scenarios relying on the mobility demand estimations.
The beauty of our statistical approach lies in its simplicity contrary to agent-based modeling,
while providing sufficient insight into mobility demand as basis for decarbonization potentials of
passenger cars. As we are not interested in origin-destination- or traffic flow-based geographical
information, our methodology can solely rely on data that is often open source and at least
accessible for industry or policy makers.
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A Data Analysis

Figures 7 (a)-(d) show the average distance traveled by different modes, analyzed by a set of
demographic indicators. The main findings and conclusions are the following:

• The average daily distance jumps to higher values at the age of 18 as the car is added as
alternative means of transportation.

• The high share of car mobility shows the high importance of the automotive industry for
decarbonization of mobility, even for a country like Switzerland where the rail and bus
network is highly developed.

• The average distance by men is higher than that of women.
• The average distance of Swiss citizens is higher than that of foreigners.
• The share of car mobility increases with marriage. The increase goes hand in hand with a

decrease of train mobility. Over all modes, the average distance remains approximately
constant.

• Widowed persons show significantly lower average distances. This goes along with
declining mobility for higher ages.

Figures 8 (a)-(d) show the average distance traveled by different modes, analyzed by a set of
socio-economic indicators. The main findings and conclusions are the following:

• The average distance traveled by car increases with the number of cars of a household. If
a household has no car, the share of train distance is higher. It is worth to be mentioned,
that for increasing number of cars the overall distance increases as well.

• Car mobility highly depends on the availability of a car. The lack of access to a car
decreases the average distance significantly.

• Having a driver license increases the average distance significantly by the distance driven
by car, while the distances traveled by other modes do not decline equally.

• Higher income leads to higher mobility. This has already been proven by Schafer (2000)
who found that travel distance increases with higher income as rich people are able to rely
on faster means of transportation like car or train.





        

(a) Mode Choice by Age (b) Mode Choice by Gender

(c) Mode Choice by Nationality (d) Mode Choice by Marital Status

Figure 7: Average distance traveled by different modes, analyzed by a set of demographic
indicators (Çabukoglu, 2016)





        

(a) Mode Choice by Number of Cars (b) Mode Choice by Car Availability

(c) Mode Choice by Driver License (d) Mode Choice by Income

Figure 8: Average distance traveled by different modes, analyzed by a set of socio-economic
indicators (Çabukoglu, 2016)
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