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Abstract

Non-parametric probabilistic classification models are increasingly being investigated as an
alternative to Discrete Choice Models (DCMs), e.g. for predicting mode choice. There exist
many strategies within the literature for model selection between DCMs, either through the
testing of a null hypothesis, e.g. likelihood ratio, Wald, Lagrange Multiplier tests, or through the
comparison of information criteria, e.g. Bayesian and Aikaike information criteria. However,
these tests are only valid for parametric models, and cannot be applied to non-parametric
classifiers.

Typically, the performance of Machine Learning classifiers is validated by computing a per-
formance metric on out-of-sample test data, either through cross validation or hold-out testing.
Whilst bootstrapping can be used to investigate whether differences between test scores are
stable under resampling, there are few studies within the literature investigating whether these
differences are significant for non-parametric models.

To address this, in this paper we introduce three statistical tests which can be applied to both
parametric and non-parametric probabilistic classification models. The first test considers the
analytical distribution of the expected likelihood of a model given the true model. The second test
uses similar anaylsis to determine the distribution of the Kullback-Leibler divergence between
two models. The final test considers the convex combination of two classifiers under comparison.
These tests allow ML classifiers to be compared directly, including with DCMs.
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1 Introduction

Probabilistic classification models, which predict a probability distribution over a set of classes
from a given input, are found in many applications, including behavioural modelling, disease
detection, image recognition, document analysis, and fraud and spam classification (Hastie et al.,

2008). Discrete choice models (DCMs) (Ben-Akiva et al., 1985, Ben-Akiva and Bierlaire, 2003)
are a class of parametric probabilistic classification models, which have seen extensive use in the
field of transportation in particular. With recent advances in the abundance, scale, and depth of
data available in many applications, including transportation, non-parametric machine learning
models are increasingly being investigated as an alternative to parametric models.

Selection of a suitable model is an essential task for any application of probabilistic classifiers.
There exist many strategies within the literature for model selection for parametric models. This
includes both hypothesis tests e.g. likelihood ratio, Wald, Lagrange Multiplier tests, as well as the
comparison of information criteria, e.g. Bayesian and Aikaike information criteria (Ben-Akiva
et al., 1985, Akaike, 1998). However, as these tests rely on the analysis of model parameters,
they cannot be applied to non-parametric classifiers.

In this paper we present three statistical tests which can be applied to both parametric and
non-parametric probabilistic classification models. First we introduce the theoretical background
for probabilistic classification and model validation. In the next section, we present an overview
of the three statistical tests. Next, we introduce an experimental methodology to validate the
proposed tests on probabilistic classification models. Finally, we present the results from the
initial applications.

2 Theoretical background

Consider a set C containing NP elements, called the population. C is supposed to be sufficiently
large that it is not feasible to enumerate its elements explicitly. We also consider a partition
composed of J subsets Ci, i = 1, . . . , J, which we call classes. We have

C = ∪J
i=1Ci, (1)

and

Ci ∩ C j = ∅,∀i , j. (2)





    

Each element n ∈ C is associated with a vector of K features xn ∈ Z
K . We assume the features to

be discrete to simplify the following development. However, it is straightforward to extend it
with data sets containing both discrete and continuous variables. A probabilistic classifier is a
model which maps the vector of features xn into a probability distribution on the classes:

P : ZK → [0, 1]J. (3)

We use the notation P(i|xn) to represent the probability that element n belongs to class Ci, as
provided by the classifier. We have

P(i|xn) ≥ 0, i = 1, . . . , J and
J∑

i=1

P(i|xn) = 1,∀xn ∈ Z
K . (4)

For example, consider travelers who choose between the car and public transportation to
commute to work, so that there are J = 2 classes. The set C is the population of travelers in
a specific city on a specific day, partitioned into those who travel by car (C1), and those who
travel by public transportation (C2). The choice of traveler n in population C can be explained
by features such as the travel time, the travel cost, the weather conditions, the purpose of the trip,
etc. Note that qualitative and categorical variables can always be modeled numerically. These
features form the vector xn. The choice model provides the probability P(1|xn) that traveler n

chooses to travel by car, and P(2|xn) the probability that they travel by public transportation.

2.1 Validation set

We have at our disposal a validation set containing N elements, 1 ≤ N ≤ NP, which can be
enumerated. The validation set is separate from the data used to train or fit the classifier. Each n

in the validation set is associated with

1. a vector of features xn, and,
2. a set yn ∈ {0, 1}J of class indicators, such that

J∑
i=1

yin = 1. (5)

We denote the validation set V = (xn, yn)N
n=1 = (xV , yV).

The class indicators yn are themselves drawn from an unknown probability distribution, which





    

we call the true model. For example, within the context of choosing between the car and public
transportation for a work commute, an individual selects the mode from an unknown distribution
which is dependent on the observed features xn, as well as unobserved features not captured in
the validation set. Each element n has been independently sampled from the population C with
probability

Pr(xn, yn) = Pr(yn|xn) Pr(xn) =

J∏
i=1

P∗(i|xn)yin Pr(xn), (6)

where P∗ is the true model which has been involved in the data generation process, and Pr(xn) is
the probability to find the vector xn of features in the population. It can be convenient to denote
in the index of the class associated with element n. Because of (5), it is defined as

in =

J∑
i=i

iyin. (7)

In this case, we can write (6) as

Pr(xn, yn) = P∗(in|xn) Pr(xn). (8)

2.2 Validation process

Suppose that we have a collection of M different classifiers Pm, m = 1, . . . ,M. We want to use
the validation set to evaluate the performance of each classifier. Consider classifier Pm. For each
element n in the validation set a measure of fit dm

n (xn, yn) or dm
n (xn, in) which measures how well

or how poorly the classifier Pm is able to predict the true class membership P∗(i|xn) when using
xn as an input.

The validation set contains only realisations yn of the true class membership model. For element
n, the probability that a model Pm correctly predicts yn is defined as

J∏
i=1

Pm(i|xn)yin , (9)

or, equivalently

Pm(in|xn). (10)





    

An aggregate measure of fit measures the overall performance of classifier m on the dataset. The
quantity

Lm =

N∑
n=1

Pm(in|xn). (11)

is the expected number of “true positives”, that is the expected number of times that the classifier
Pm correctly predicts the observed class. The quantity

N∏
n=1

Pm(in|xn), (12)

is the likelihood of the validation set for classifier Pm, that is the probability that the classifier
correctly predict all observed classes. In practice, it is more convenient to consider the natural
logarithm of the likelihood, and use the quantity

Lm =

N∑
n=1

ln Pm(in|xn). (13)

Therefore, dm
n (xn, yn) can be defined as

dm
n (xn, in) = ln Pm(in|xn), (14)

or

dm
n (xn, in) = Pm(in|xn). (15)

The rest of the discussion is based on (14). A similar derivation can be obtained for (15).

The quantity dm
n (xn, in) is a random variable. Each realisation corresponds to a different element

in the validation set. The expected value of dm
n is defined as

E[dm
n ] =

∑
x

J∑
i=1

ln Pm(i|x)P∗(i|x) Pr(xn), (16)

where the first sum scans all the possible vectors of features in the population, therefore
accounting for the variability of dm

n due to the sampling of the feature vectors in the validation
set, and the second sum accounts for the variability of dm

n due to generating the class indicators
from an unknown distribution P∗.

In practice, it is infeasible to calculate the first sum, and even to obtain a good approximation of





    

Pr(x). It is therefore convenient to consider the conditional mean for a given element n:

E[dm
n |xn] =

J∑
i=1

ln Pm(i|xn)P∗(i|xn). (17)

This is equivalent to the negative cross-entropy loss of the true model P∗ with the classifier Pm:
−Hn(P∗, Pm).

As the elements of the validation set have been drawn independently, the total conditional mean
is therefore

E[Lm|xV] =

N∑
n=1

E[dm
n |xn] =

N∑
n=1

J∑
i=1

ln Pm(i|xn)P∗(i|xn). (18)

The conditional variance is

Var[dm
n |xn] = E[(dm

n )2
|xn] −

(
E[dm

n |xn]
)2

=

J∑
i=1

(ln Pm(i|xn))2 P∗(i|xn) −

 J∑
i=1

ln Pm(i|xn)P∗(i|xn)

2

=

J∑
i=1

(ln Pm(i|xn))2 P∗(i|xn) (1 − P∗(i|xn))

− 2
∑
i< j

ln Pm(i|xn)P∗(i|xn) ln Pm( j|xn)P∗( j|xn).

(19)

The total conditional variance is

Var[Lm|xV] =

N∑
n=1

 J∑
i=1

(ln Pm(i|xn))2 P∗(i|xn) −

 J∑
i=1

ln Pm(i|xn)P∗(i|xn)

2
=

N∑
n=1

 J∑
i=1

(ln Pm(i|xn))2P∗(i|xn)(1 − P∗(i|xn))

−2
∑
i< j

ln Pm(i|xn)P∗(i|xn) ln Pm( j|xn)P∗( j|xn)

 .
(20)

This analysis accounts for the stochasticity of the validation set due to the fact that the true
model P∗, may generate different outcomes yn for the same value of xn. The variability due to x

is ignored, but can be numerically estimated using bootstrapping.

(14) can be generated from (17) and (19) by substituting in P∗ = yn, i.e. by assuming P∗

is a discrete probability distribution, with the indicated class having probability 1, and all





    

other classes having probability 0. This results in a zero variance value of ln Pm(in|xn). This
is equivalent to the negative cross-entropy loss of the class labels yn with the classifier Pm:
−Hn(yn, Pm).

2.3 Simple example

Consider a simple example with J = 2 classes, where the true model is defined as

P∗(1|x) = p∗ and P∗(2|x) = 1 − p∗,∀x. (21)

The model to be validated is defined similarly as

Pm(1|x) = pm and Pm(2|x) = 1 − pm,∀x. (22)

Therefore, (17) is

p∗ ln pm + (1 − p∗) ln(1 − pm), (23)

and (19) is(
(ln pm)2 + (ln(1 − pm))2 − 2 ln(pm) ln(1 − pm)

)
p∗(1 − p∗). (24)

For instance, Figure 1 represents the mean as a function of pm when p∗ = 0.2. A similar
representation for p∗ = 0.5 is represented in Figure 2, and in Figure 3 for p∗ = 0.01.
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Figure 1: p∗ = 0.2
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Figure 2: p∗ = 0.5
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Figure 3: p∗ = 0.01





    

2.4 Kullback-Leibler divergence

The relative divergence between one probability distribution and another can be measured using
the Kullback-Leibler (KL) divergence, or relative entropy (Kullback and Leibler, 1951). For two
classifiers Pr and Pm, the KL-divergence for each element in the validation set is given by

dKL(Pr||Pm) =

J∑
i=1

ln
(

Pr(i|xn)
Pm(i|xn)

)
Pr(i|xn) (25)

The KL-divergence is a positive real value which is 0 when the two probability distributions Pr

and Pm are equivalent. Note that the KL-divergence is non-symmetric, and one model (Pr) is the
reference model against which the other is compared.

(25) is analogous to (17), when substituting in Pm = Pr

Pm and P∗ = Pr. As such, we can substitute
these values into (18) and (20) to obtain the mean and variance of the total KL-divergence
D(Pr||Pm):

E[D(Pr||Pm)] =

N∑
n=1

E[dKL(Pr||Pm)] =

N∑
n=1

J∑
i=1

ln
(

Pr(i|xn)
Pm(i|xn)

)
Pr(i|xn) (26)

Var[D(Pr||Pm)] =

N∑
n=1

 J∑
i=1

(
ln

(
Pr(i|xn)
Pm(i|xn)

))2

Pr(i|xn) −

 J∑
i=1

ln
(

Pr(i|xn)
Pm(i|xn)

)
Pr(i|xn)

2
=

N∑
n=1

 J∑
i=1

(
ln

(
Pr(i|xn)
Pm(i|xn)

))2

Pr(i|xn)(1 − Pr(i|xn))

−2
∑
i< j

ln Pm(i|xn)Pr(i|xn) ln
(

Pr(i|xn)
Pm(i|xn)

)
Pr( j|xn)

 .
(27)





    

3 Statistical tests

3.1 Single true-model test

Suppose now that we consider the classifier Pm. We want to test the hypothesis H0 that it is the
true model that has generated the data:

H0 : Pm = P∗ (28)

Under this assumption, the statistic

Lm =

N∑
n=1

ln Pm(in|xn) (29)

is normally distributed with mean

µm =

N∑
n=1

J∑
i=1

Pm(i|xn) ln Pm(i|xn) (30)

and variance

σ2
m =

N∑
n=1

J∑
i=1

(ln Pm(i|xn))2Pm(i|xn)(1 − Pm(i|xn))

−2
∑
i< j

ln Pm(i|xn)Pm(i|xn) ln Pm( j|xn)Pm( j|xn).
(31)

Equivalently, the statistic

Lm − µm

σm
∼ N(0, 1). (32)

Consider again the example from Section 2.3. Suppose that the true model corresponds to
p∗ = 0.2. Figure 4 represents the value of the statistic (32) for different values of pm when the
sample contains exactly the proportion of observed classes corresponding to the true model. As
such, the log likelihood (29) of the validation set is given by

Lm = N(p∗ ln Pm + (1 − p∗) ln(1 − Pm)). (33)

In this specific case, it is difficult to reject the hypothesis that Pm is the true classifier, even when
it is actually very different from the true one.
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3.2 Comparing two classifiers

3.2.1 Kullback-Leibler divergence test

We consider two classifiers Pm and Pr. We want to test the hypothesis H0 that the candidate
model Pm is equivalent to the reference model Pr

H0 : Pm = Pr (34)

For this assumption to hold, the total KL-divergenceD(Pr||Pm) must be 0. As in (32)

D(Pr||Pm) − µr||m

σr||m
∼ N(0, 1) (35)

with mean µr||m and variance σ2
r||m given in (26) and (27) respectively. As such, we can test the

equivalent assumption

H0 : D(Pr||Pm) = 0 (36)

with a t-test. Whilst this test determines if the two models are equivalent, it gives no indication
of respective model performance, as it is independent of the class labels yn. If two models are
significantly different under this test, L can then be used to differentiate performance.





    

3.2.2 Convex combination of classifier test

Again, we consider two classifiers Pm and Pr. We need to decide which one is performing the
best on the validation set V . To do so, we define a third classifier as the convex combination of
the two classifiers:

P(i|xn; λ) = λPr(i|xn) + (1 − λ)Pm(i|xn), where 0 < λ < 1. (37)

λ can be estimated using maximum likelihood estimation with the validation set. Maximum
likelihood estimation allows an estimate of the variance to be obtained from the Hessian. This
allows for hypothesis testing against expected values of λ using a t-test. If Pr is the true model
the true value of λ is 1. If Pm is the true model, the true value of λ is 0. For intermediate values
of λ, the convex combination of the two classifiers is superior to each individual classifier in
terms of log-likelihood fit.

The log likelihood of the validation set is

L(λ) =

N∑
n=1

J∑
i=1

yin ln P(i|xn; λ)

=

N∑
n=1

J∑
i=1

ln(λPm(in|xn) + (1 − λ)Pr(in|xn)).

(38)

4 Experimental methodology

Parametric DCM models are used in order to assess the suitability of the proposed tests. Using
parametric models allows the tests to be compared to traditional parametric tests. The models
are trained on stated preference data from the SwissMetro dataset (Bierlaire et al., 2001). The
dataset is divided into a train and test dataset using a 70:30 split. The split is stratified by mode
choice, and is grouped by individual, so that the test data is independent from train data. Each
model is trained on the train set and then tested on the test set.

First the simple multinomial logit model from Bierlaire et al. (2001) is replicated on the train data
(base model). The utility specification of this model is given in Table 1. New class indicators ŷn

are generated from the model’s predicted probability distributions, for both the train and test
data. As such, the true model P∗ is known for the remaining models.





    

Table 1: Utility function of simple multinomial logit model

Variable Alternative
SM Car SBB

ASC Constant SM Car -
TT Travel time B-Time B-Time B-Time
Cost Travel cost B-Cost B-Cost B-Cost
Freq Frequency B-Freq - B-Freq
GA Annual season B-GA - B-GA
Age Age in classes - - B-Age
Luggage Pieces of luggage - B-Luggage -
Seats Airline seating B-Seats - -

The same model specification is then used to fit a corresponding model on the simulated
class indicators ŷ. Three further models are defined by removing an insignificant parameter, a
significant parameter, and multiple significant parameters respectively. All models are tested
using the single true-model test. Additionally, all models trained and tested on the simulated
class indicators ŷn are compared to each other using the KL-divergence test and the convex
combination of classifiers test. A 5% confidence interval is used for all statistical tests.

In total 5 models are trained and tested:

1. Base: Base MNL using original class indicators yn.
2. True: Base MNL using simulated class indicators ŷn.
3. No-luggage: Remove B-Luggage (insignificant parameter) only from utility specification,

using simulated class indicators ŷn.
4. No-age: Remove B-Age (significant parameter) only from utility specification, using

simulated class indicators ŷn.
5. Time-cost: Remove all parameters from utility specification, except ASCs, B-Time and

B-Cost, using simulated class indicators ŷn.

5 Results

The parameter values for the MNL model estimated on the train set are given in Table 2. All
parameters are significant except B-Luggage.





    

Table 2: MNL parameter estimates

Parameter Estimate z

ASC Car 1.382 8.599
ASC SM 1.548 10.14
B-Cost -0.9082 -14.49
B-Time -1.174 -17.38
B-Freq -0.0045 -3.924
B-GA 1.242 5.448
B-Age 0.3168 7.675
B-Luggage -0.1141 -1.841
B-Seats -0.5283 -4.994

Final log-likelihood -3712.07
N 4734

Table 3 shows the results for the single true-model test for each model, alongside the train and
test log-likelihood. H0 is held for both the base model and true model. H0 is rejected for all
other models.

Table 3: Train log-likelihood, test log-likelihood, and results for single true-model test for each
model

Model Base True No-luggage No-age Time-cost

Train LL
(N=4374)

-3712.07 -3772.96 -3772.69 -3781.53 -3811.95

Test LL
(N=2034)

-1545.31 -1552.75 -1558.13 -1567.46 -1576.81

µm -1593.11 -1593.11 -1619.01 -1625.42 -1636.49
σm 26.39 26.39 26.20 26.16 26.23
z 1.811 1.529 2.324 2.216 2.275
p 0.0701 0.1262 0.0201 0.0267 0.0229

Table 4 shows the results for the Kullback-Leibler divergence test for each model. The true
model and no-luggage model are shown not to be significantly different from each other. All
other pairs of models are shown to be statistically different, including the true model and no-age
model. This is consistent with the parameter value significances shown in Table 2.

Figure 5 and Table 5 show the results of the convex combination of classifiers test for each





    

Table 4: Results for Kullback-Leibler divergence test for each model. Each reference model
defines a row (bold) and each candidate model defines a column.

µ

True No-luggage No-age Time-cost
True - 3.437 15.92 29.41
No-luggage 3.583 - 11.55 16.39
No-age 16.04 11.44 - 12.72
Time-cost 31.23 16.76 13.17 -

σ

True No-luggage No-age Time-cost
True - 2.568 5.620 7.431
No-luggage 2.734 - 4.829 5.657
No-age 5.681 4.760 - 4.960
Time-cost 8.135 5.852 5.226 -

p

True No-luggage No-age Time-cost
True - 0.1809 0.0046 0.0001
No-luggage 0.1900 - 0.0167 0.0038
No-age 0.0048 0.0162 - 0.0103
Time-cost 0.0001 0.0042 0.0117 -

model pair combination. In all cases, H0 holds that λ does not differ significantly from one. This
is consistent with the ranking of test log-likelihood scores shown in Table 3.
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Figure 5: Log-likelihood plots of each convex combination of classifiers for λ

Table 5: Results for convex combination of classifiers test for each model pair combination. In
each case H0 : λ = 1.

µ

No-Luggage No-age Time-cost
True 1 0.937885 0.91034
No-luggage - 0.890577 1
No-age - - 0.894997

σ

No-Luggage No-age Time-cost
True 0.367417 0.169064 0.118942
No-luggage - 0.207129 0.167707
No-age - - 0.202137

p

No-Luggage No-age Time-cost
True 0.5 0.356658 0.225481
No-luggage - 0.29865 0.5
No-age - - 0.301719





    

6 Conclusions

In this paper we present three statistical tests for model selection which are applicable to both
parametric and non-parametric models. The single true-model test tests the analytical distribution
of the expected likelihood of a model given the true model. The Kullback-Leibler divergence test

uses similar anaylsis to determine the distribution of the Kullback-Leibler divergence between
two models. Finally, the convex combination of classifiers test considers the log-likelihood of
the convex combination of two classifiers under comparison. Through an applying the tests to
parametric DCMs trained on the SwissMetro dataset we show the tests appear to be consistent
with parametric statistical tests.

Planned further work includes further validation of the tests, including on applications of non-
parametric models trained on larger datasets. Additionally, we plan to develop the methodology
to allow for the analysis for cross-validation results.
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